Mikroskop polaryzacyjny - mikroskop optyczny używany do badań obiektów anizotropowych w świetle spolaryzowanym.
Zasada działania
Działanie mikroskopu polaryzacyjnego jest oparte na zjawisku dwójłomności substancji, w których występuje dalekozasięgowe uporządkowanie cząsteczek. Mikroskop ten posiada między okularem i źródłem światła dwa filtry polaryzacyjne. Jeden z nich jest nazywany polaryzatorem i znajduje się między źródłem światła i analizowaną próbką, a drugi jest nazywany analizatorem i znajduje się między próbką a tubusem. Polaryzator i analizator przepuszczają tylko tę część światła, która ma ściśle określoną polaryzację. W trakcie obserwacji są one skręcone względem siebie o 90° (są skrzyżowane), co powoduje, że jeśli próbka nie skręca płaszczyzny polaryzacji światła, to nie może ono przejść przez cały układ. Jeśli próbka jest aktywna optycznie, to wówczas przynajmniej część światła przechodzi przez analizator i dociera do oka obserwatora. Płaszczyznę polaryzacji analizatora można zmieniać uzyskując wygaszanie jednych obszarów i rozjaśnienie innych. Towarzyszą temu zazwyczaj efekty barwne, ze względu na różnice w skręcalności właściwej substancji aktywnej optycznie, dla różnych długości światła. Możliwość regulacji analizatora umożliwia to uzyskanie ostrego i skontrastowanego obrazu badanej próbki.
Zastosowanie
Mikroskop polaryzacyjny stosowany jest m.in. do badania: kruszców, minerałów, preparatów biologicznych, struktury komórek i tkanek, w metalografii, w przemyśle szklarskim i włókienniczym. Zastosowanie znalazł również w badaniu ciekłych kryształów chiralnych. Umożliwia on obserwowanie zmian fazowych, wyznaczanie temperatur przejść fazowych i pozwala na precyzyjne określanie obszarów występowania danej fazy ciekłego kryształu.
Mikroskop fluorescencyjny to mikroskop świetlny używany w badaniach substancji organicznych i nieorganicznych, którego działanie oparte jest na zjawisku fluorescencji i fosforescencji, zamiast, lub razem ze zjawiskami odbicia i absorpcji światła (co jest wykorzystane w klasycznym mikroskopie optycznym). Fluoroscencja próbki może być pochodzenia naturalnego (np. fluoroscencja chlorofilu) lub być wynikiem dołączenia (kowalencyjnie lub poprzez jakikolwiek inny typ oddziaływań fizyko-chemicznych między substancjami) do elementów obserwowanej próbki fluoroforów, czyli substancji chemicznych, które fluoryzują po wzbudzeniu światłem o określonej długości. Drugi sposób jest najczęściej wykorzystywanym w biologii, a w szczególności w biologii molekularnej, gdyż pozwala, poprzez znajomość oddziaływań, na wyznakowanie interesujących elementów komórki (np. białek, czy organelli), fluoroforami o zadanych właściwościach (np. barwie emisji). Większość używanych mikroskopów fluorescencyjnych to mikroskopy epi-fluorescencyjne. Oznacza to, że wzbudzenie próbki falą świetlną, jak i jej obserwacja zachodzi znad niej (epi).