Stabilność – kryterium Nyquista
Przykład:
Obiekt inercyjny piątego rzędu i regulator PD
$$G\left( s \right) = \frac{k}{\left( T_{1}s + 1 \right)\left( T_{2}s + 1 \right)\left( T_{3}s + 1 \right)\left( T_{4}s + 1 \right)\left( T_{5}s + 1 \right)}$$
R(s) = kp(1+Tds)
$$G_{\text{uo}}\left( s \right) = \frac{kk_{p}\left( 1 + T_{d}s \right)}{\left( T_{1}s + 1 \right)\left( T_{2}s + 1 \right)\left( T_{3}s + 1 \right)\left( T_{4}s + 1 \right)\left( T_{5}s + 1 \right)}$$
Dane:
k = 1, T1 = 1, T2 = 2, T3 = 3, T4 = 4, T5 = 5
$$G_{\text{uo}}\left( s \right) = \frac{k_{p}\left( 1 + T_{d}s \right)}{\begin{bmatrix}
120s^{5} + 274s^{4} + 225s^{3} + 85s^{2} + 15s + 1 \\
\end{bmatrix}}$$
$$G_{\text{uo}}\left( \text{jω} \right) = \frac{k_{p}\left( 1 + T_{d}\text{jω} \right)}{\begin{bmatrix}
120j\omega^{5} + 274\omega^{4} - 225\text{jω}^{3} - 85\omega^{2} + 15j\omega + 1 \\
\end{bmatrix}}$$
a = 274ω4 − 85ω2 + 1
b = 120ω5 − 225ω3 + 15ω
$$G_{\text{uo}}\left( \text{jω} \right) = \frac{k_{p}\left( a - jb \right)}{\left( a^{2} + b^{2} \right)} \bullet \left( 1 + jT_{d}\omega \right)$$
$$G_{\text{uo}}\left( \text{jω} \right) = k_{p}\frac{a + bT_{d}\omega + jaT_{d}\omega - jb}{\left( a^{2} + b^{2} \right)}$$
$$G_{\text{uo}}\left( \text{jω} \right) = k_{p}\frac{a + bT_{d}\omega + j\left( aT_{d}\omega - b \right)}{\left( a^{2} + b^{2} \right)}$$
$$P_{\text{uo}}\left( \omega \right) = k_{p}\frac{a + bT_{d}\omega}{\left( a^{2} + b^{2} \right)}$$
$$Q_{\text{uo}}\left( \omega \right) = k_{p}\frac{aT_{d}\omega - b}{\left( a^{2} + b^{2} \right)}$$
Warunek granicy stabilności
$$\left\{ \begin{matrix}
P_{\text{uo}}\left( \omega \right) = - 1 \\
Q_{\text{uo}}\left( \omega \right) = 0 \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p}\frac{a + bT_{d}\omega}{\left( a^{2} + b^{2} \right)} = - 1 \\
k_{p}\frac{aT_{d}\omega - b}{\left( a^{2} + b^{2} \right)} = 0 \\
\end{matrix} \right.\ $$
$$T_{d}\omega = \frac{b}{a}$$
$$k_{p}\frac{a + \frac{b^{2}}{a}}{\left( a^{2} + b^{2} \right)} = - 1$$
$$k_{p}\frac{1}{a} = - 1$$
kp = −a
$$\left\{ \begin{matrix}
k_{p} = - a \\
T_{d}\omega = \frac{b}{a} \\
\end{matrix} \right.\ $$
Szukamy ekstremum funkcji wzmocnienia
kp = −(274ω4−85ω2+1)
(kp)′ = −(274•4ω3−170ω)
(kp)′ = −2ω(548ω2−85)
$$\omega = \sqrt{\frac{85}{548}}$$
$$\left\{ \begin{matrix}
k_{p} = - a \\
T_{d}\omega = \frac{b}{a} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p} = - \left( 274\omega^{4} - 85\omega^{2} + 1 \right) \\
T_{d}\omega = \frac{120\omega^{5} - 225\omega^{3} + 15\omega}{274\omega^{4} - 85\omega^{2} + 1} \\
\end{matrix} \right.\ $$
Dla $\omega = \sqrt{\frac{85}{548}} = 0,3938$
$$\left\{ \begin{matrix}
\left( k_{p} \right)_{\text{kr}} = 5,59 \\
\left( T_{d} \right)_{\text{kr}} = 3,04 \\
\end{matrix} \right.\ $$
Warunek: zapas modułu ΔL=ΔdB
ΔL = 20lgΔM = −Δ
$$\Delta M = 10^{- \frac{\Delta}{20}}$$
$$\left\{ \begin{matrix}
P_{\text{uo}}\left( \omega \right) = - 1 + \Delta M \\
Q_{\text{uo}}\left( \omega \right) = 0 \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p}\frac{a + bT_{d}\omega}{\left( a^{2} + b^{2} \right)} = \Delta M - 1 \\
k_{p}\frac{aT_{d}\omega - b}{\left( a^{2} + b^{2} \right)} = 0 \\
\end{matrix} \right.\ $$
$$T_{d}\omega = \frac{b}{a}$$
$$k_{p}\frac{a + \frac{b^{2}}{a}}{\left( a^{2} + b^{2} \right)} = \Delta M - 1$$
$$k_{p}\frac{1}{a} = \Delta M - 1$$
kp = −a(1−ΔM)
kp = −(1−ΔM)(274ω4−85ω2+1)
$$\left\{ \begin{matrix}
k_{p} = - a\left( 1 - \Delta M \right) \\
T_{d}\omega = \frac{b}{a} \\
\end{matrix} \right.\ $$
Szukamy ekstremum funkcji wzmocnienia
kp = −(1−ΔM)(274ω4−85ω2+1)
(kp)′ = −(1−ΔM)(274•4ω3−170ω)
(kp)′ = −2ω(1−ΔM)(548ω2−85)
$$\omega = \sqrt{\frac{85}{548}}$$
$$\left\{ \begin{matrix}
k_{p} = - a\left( 1 - \Delta M \right) \\
T_{d}\omega = \frac{b}{a} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p} = - \left( 1 - \Delta M \right)\left( 274\omega^{4} - 85\omega^{2} + 1 \right) \\
T_{d}\omega = \frac{120\omega^{5} - 225\omega^{3} + 15\omega}{274\omega^{4} - 85\omega^{2} + 1} \\
\end{matrix} \right.\ $$
Dla ΔL=6dB i $\omega = \sqrt{\frac{85}{548}} = 0,3938$
$$\left\{ \begin{matrix}
k_{p} = 2,8 \\
T_{d} = 3,04 \\
\end{matrix} \right.\ $$
Warunek: zapas fazy Δϕ
$$\left\{ \begin{matrix}
M\left( \omega \right) = 1 \\
\tan\text{Δφ} = \frac{Q\left( \omega \right)}{P\left( \omega \right)} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
\sqrt{{P\left( \omega \right)}^{2} + {Q\left( \omega \right)}^{2}} = 1 \\
\tan\text{Δφ} = \frac{Q\left( \omega \right)}{P\left( \omega \right)} \\
\end{matrix} \right.\ $$
a = 274ω4 − 85ω2 + 1
b = 120ω5 − 225ω3 + 15ω
$$\left\{ \begin{matrix}
k_{p}\sqrt{\frac{1 + \left( T_{d}\omega \right)^{2}}{a^{2} + b^{2}}} = 1 \\
\tan\text{Δφ} = \frac{aT_{d}\omega - b}{a + bT_{d}\omega} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p}^{2}\left( 1 + \left( T_{d}\omega \right)^{2} \right) = a^{2} + b^{2} \\
\operatorname{a\bullet tan}\text{Δφ} + bT_{d}\omega\tan\text{Δφ} = aT_{d}\omega - b \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p}^{2}\left( 1 + \left( T_{d}\omega \right)^{2} \right) = a^{2} + b^{2} \\
\operatorname{a\bullet tan}\text{Δφ} + b = T_{d}\omega\left( a - b\tan\text{Δφ} \right) \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p}^{2} = \frac{a^{2} + b^{2}}{1 + \left( T_{d}\omega \right)^{2}} \\
T_{d}\omega = \frac{a\tan\text{Δφ} + b}{a - \operatorname{b\bullet tan}\text{Δφ}} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p}^{2} = \frac{a^{2} + b^{2}}{1 + \left( \frac{a\tan\text{Δφ} + b}{a - \operatorname{b\bullet tan}\text{Δφ}} \right)^{2}} \\
T_{d}\omega = \frac{a\tan\text{Δφ} + b}{a - \operatorname{b\bullet tan}\text{Δφ}} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p}^{2} = \frac{a^{2} + b^{2}}{\frac{\left( a - b\tan\text{Δφ} \right)^{2} + \left( \operatorname{a\bullet tan}\text{Δφ} + b \right)^{2}}{\left( a - b\tan\text{Δφ} \right)^{2}}} \\
T_{d}\omega = \frac{a\tan\text{Δφ} + b}{a - \operatorname{b\bullet tan}\text{Δφ}} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p}^{2} = \frac{\left( a^{2} + b^{2} \right)\left( a - b\tan\text{Δφ} \right)^{2}}{\left( b\tan\text{Δφ} - a \right)^{2} + \left( \operatorname{a\bullet tan}\text{Δφ} + b \right)^{2}} \\
T_{d}\omega = \frac{a\tan\text{Δφ} + b}{a - \operatorname{b\bullet tan}\text{Δφ}} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p}^{2} = \frac{\left( a^{2} + b^{2} \right)\left( a - b\tan\text{Δφ} \right)^{2}}{\left( a^{2} + b^{2} \right)\left\lbrack 1 + \left( \tan\text{Δφ} \right)^{2} \right\rbrack} \\
T_{d}\omega = \frac{a\tan\text{Δφ} + b}{a - \operatorname{b\bullet tan}\text{Δφ}} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p} = \frac{a - b\tan\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}} \\
T_{d}\omega = \frac{a\tan\text{Δφ} + b}{a - \operatorname{b\bullet tan}\text{Δφ}} \\
\end{matrix} \right.\ $$
$$k_{p} = \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 274\omega^{4} - 85\omega^{2} + 1 \right) - \frac{\tan\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)$$
Liczymy ekstremum funkcji wzmocnienia
$$\left( k_{p} \right)^{'} = \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 1096\omega^{3} - 170\omega \right) - \frac{\tan\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 600\omega^{4} - 675\omega^{2} + 15 \right)$$
Dla Δϕ=60 ̊
$$\left( k_{p} \right)^{'} = \frac{1}{2}\left( 1096\omega^{3} - 170\omega \right) - \frac{\sqrt{3}}{2}\left( 600\omega^{4} - 675\omega^{2} + 15 \right)$$
$$\left( k_{p} \right)^{'} = - 300\sqrt{3}\omega^{4} + 548\omega^{3} + 337,5\sqrt{3}\omega^{2} - 85\omega - 7,5\sqrt{3}$$
>> roots([-300*sqrt(3) 548 337.5*sqrt(3) -85 -sqrt(3)*7.5])
ans =
1.6657
-0.7298
0.2146
-0.0958
$$\left\{ \begin{matrix}
k_{p} = \frac{a - b\tan\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}} \\
T_{d}\omega = \frac{a\tan\text{Δφ} + b}{a - \operatorname{b\bullet tan}\text{Δφ}} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p} = 2,076 \\
T_{d} = 3,36 \\
\end{matrix} \right.\ $$
Przykład:
Obiekt inercyjny piątego rzędu i regulator PD rzeczywisty
$$G\left( s \right) = \frac{k}{\left( T_{1}s + 1 \right)\left( T_{2}s + 1 \right)\left( T_{3}s + 1 \right)\left( T_{4}s + 1 \right)\left( T_{5}s + 1 \right)}$$
$$R\left( s \right) = k_{p}\left( 1 + \frac{T_{d}s}{Ts + 1} \right)$$
$$G_{\text{uo}}\left( s \right) = \frac{kk_{p}\left( 1 + \frac{T_{d}s}{Ts + 1} \right)}{\left( T_{1}s + 1 \right)\left( T_{2}s + 1 \right)\left( T_{3}s + 1 \right)\left( T_{4}s + 1 \right)\left( T_{5}s + 1 \right)}$$
Dane:
k = 1, T1 = 1, T2 = 2, T3 = 3, T4 = 4, T5 = 5
$$G_{\text{uo}}\left( s \right) = \frac{k_{p}\left( 1 + \frac{T_{d}s}{Ts + 1} \right)}{\begin{bmatrix}
120s^{5} + 274s^{4} + 225s^{3} + 85s^{2} + 15s + 1 \\
\end{bmatrix}}$$
$$G_{\text{uo}}\left( \text{jω} \right) = \frac{k_{p}\left( 1 + \frac{jT_{d}\omega}{1 + jT\omega} \right)}{\begin{bmatrix}
120j\omega^{5} + 274\omega^{4} - 225\text{jω}^{3} - 85\omega^{2} + 15j\omega + 1 \\
\end{bmatrix}}$$
a = 274ω4 − 85ω2 + 1
b = 120ω5 − 225ω3 + 15ω
$$G_{\text{uo}}\left( \text{jω} \right) = \frac{k_{p}\left( a - jb \right)}{\left( a^{2} + b^{2} \right)} \bullet \left( 1 + \frac{jT_{d}\omega}{1 + j\text{Tω}} \bullet \frac{1 - jT\omega}{1 - jT\omega} \right)$$
$$G_{\text{uo}}\left( \text{jω} \right) = \frac{k_{p}\left( a - jb \right)}{\left( a^{2} + b^{2} \right)} \bullet \left( 1 + \frac{TT_{d}\omega^{2} + jT_{d}\omega}{1 + T^{2}\omega^{2}} \right)$$
$$G_{\text{uo}}\left( \text{jω} \right) = \frac{k_{p}\left( a - jb \right)}{\left( a^{2} + b^{2} \right)} \bullet \left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} + j\frac{T_{d}\omega}{1 + T^{2}\omega^{2}} \right)$$
$$G_{\text{uo}}\left( j\omega \right) = k_{p}\frac{a\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right) + b\frac{T_{d}\omega}{1 + T^{2}\omega^{2}} + ja\frac{T_{d}\omega}{1 + T^{2}\omega^{2}} - jb\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right)}{\left( a^{2} + b^{2} \right)}$$
$$G_{\text{uo}}\left( \text{jω} \right) = k_{p}\frac{a\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right) + b\frac{T_{d}\omega}{1 + T^{2}\omega^{2}} + j\left( a\frac{T_{d}\omega}{1 + T^{2}\omega^{2}} - b\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right) \right)}{\left( a^{2} + b^{2} \right)}$$
$$P_{\text{uo}}\left( \omega \right) = k_{p}\frac{a\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right) + b\frac{T_{d}\omega}{1 + T^{2}\omega^{2}}}{\left( a^{2} + b^{2} \right)}$$
$$Q_{\text{uo}}\left( \omega \right) = k_{p}\frac{a\frac{T_{d}\omega}{1 + T^{2}\omega^{2}} - b\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right)}{\left( a^{2} + b^{2} \right)}$$
Warunek granicy stabilności
$$\left\{ \begin{matrix}
P_{\text{uo}}\left( \omega \right) = - 1 \\
Q_{\text{uo}}\left( \omega \right) = 0 \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p}\frac{a\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right) + b\frac{T_{d}\omega}{1 + T^{2}\omega^{2}}}{\left( a^{2} + b^{2} \right)} = - 1 \\
k_{p}\frac{a\frac{T_{d}\omega}{1 + T^{2}\omega^{2}} - b\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right)}{\left( a^{2} + b^{2} \right)} = 0 \\
\end{matrix} \right.\ $$
$$a\frac{T_{d}\omega}{1 + T^{2}\omega^{2}} = b\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right)$$
$$a\frac{T_{d}\omega}{1 + T^{2}\omega^{2}} = b\frac{1 + T^{2}\omega^{2} + TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}}$$
aTdω = b(1+T2ω2+TTdω2)
aTdω = b + bT2ω2 + bTTdω2
bTTdω2 − aTdω = −b − bT2ω2
Tdω(bTω−a) = −b(1+T2ω2)
$$T_{d}\omega = - \frac{b\left( 1 + T^{2}\omega^{2} \right)}{\left( bT\omega - a \right)}$$
$$k_{p}\frac{a\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right) + b\frac{T_{d}\omega}{1 + T^{2}\omega^{2}}}{\left( a^{2} + b^{2} \right)} = - 1$$
$$k_{p}\frac{a\left( 1 + \frac{- T\omega\frac{b\left( 1 + T^{2}\omega^{2} \right)}{\left( bT\omega - a \right)}}{1 + T^{2}\omega^{2}} \right) - b\frac{\frac{b\left( 1 + T^{2}\omega^{2} \right)}{\left( bT\omega - a \right)}}{1 + T^{2}\omega^{2}}}{\left( a^{2} + b^{2} \right)} = - 1$$
$$k_{p}\frac{a\left( 1 - \frac{\text{bTω}}{\left( bT\omega - a \right)} \right) - b\frac{b}{\left( bT\omega - a \right)}}{\left( a^{2} + b^{2} \right)} = - 1$$
$$k_{p}\frac{a\frac{- a}{\left( bT\omega - a \right)} - b\frac{b}{\left( bT\omega - a \right)}}{\left( a^{2} + b^{2} \right)} = - 1$$
$$k_{p}\frac{{- a}^{2} - b^{2}}{\left( a^{2} + b^{2} \right)\left( bT\omega - a \right)} = - 1$$
$$k_{p}\frac{1}{\left( bT\omega - a \right)} = 1$$
kp = bTω − a
$$\left\{ \begin{matrix}
k_{p} = - a + bT\omega \\
T_{d}\omega = - \frac{b\left( 1 + T^{2}\omega^{2} \right)}{\left( bT\omega - a \right)} \\
\end{matrix} \right.\ $$
a = 274ω4 − 85ω2 + 1
b = 120ω5 − 225ω3 + 15ω
Szukamy ekstremum funkcji wzmocnienia
kp = −(274ω4−85ω2+1) + (120ω5−225ω3+15ω)Tω
kp = 120Tω6 − (225T+274)ω4 + (15T+85)ω2 − 1
(kp)′ = 720Tω5 − 4 • (225T+274)ω3 + 2 • (15T+85)ω
(kp)′ = 2ω[360Tω4−2•(225T+274)ω2+(15T+85)]
Δ = 4 • (225T+274)2 − 4 • 360T(15T+85)
Δ = 4 • (50625T2+123300T+75076−5400T2−30600T)
Δ = 4 • (45225T2+92700T+75076) > 0 dla kazdego T
T | w1 | (kp)kr | (Td)kr |
---|---|---|---|
0 | 0,3938 | 5,59 | 3,04 |
0,05 | 0,38862 | 5,46 | 2,97 |
0,1 | 0,38365 | 5,35 | 2,91 |
0,15 | 0,37890 | 5,24 | 2,84 |
0,2 | 0,37436 | 5,13 | 2,78 |
0,25 | 0,37003 | 5,04 | 2,71 |
0,3 | 0,36589 | 4,95 | 2,65 |
0,35 | 0,36192 | 4,86 | 2,59 |
0,4 | 0,35813 | 4,78 | 2,53 |
0,45 | 0,35449 | 4,71 | 2,48 |
0,5 | 0,35100 | 4,64 | 2,42 |
0,55 | 0,34765 | 4,58 | 2,36 |
0,6 | 0,34443 | 4,52 | 2,31 |
0,65 | 0,34134 | 4,46 | 2,26 |
0,7 | 0,33836 | 4,40 | 2,20 |
0,75 | 0,33550 | 4,35 | 2,15 |
0,8 | 0,33274 | 4,30 | 2,10 |
0,85 | 0,33008 | 4,26 | 2,05 |
0,9 | 0,32752 | 4,22 | 2,00 |
0,95 | 0,32505 | 4,18 | 1,95 |
1 | 0,32266 | 4,14 | 1,90 |
Wybrane parametry regulatora PDrz : kp=2,5 Td=2,7 T=0,25
Warunek: zapas fazy Δϕ
$$G_{\text{uo}}\left( \text{jω} \right) = \frac{k_{p}\left( a - jb \right)}{\left( a^{2} + b^{2} \right)} \bullet \left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} + j\frac{T_{d}\omega}{1 + T^{2}\omega^{2}} \right)$$
$$P_{\text{uo}}\left( \omega \right) = k_{p}\frac{a\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right) + b\frac{T_{d}\omega}{1 + T^{2}\omega^{2}}}{\left( a^{2} + b^{2} \right)}$$
$$Q_{\text{uo}}\left( \omega \right) = k_{p}\frac{a\frac{T_{d}\omega}{1 + T^{2}\omega^{2}} - b\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right)}{\left( a^{2} + b^{2} \right)}$$
$$M_{o}\left( \text{jω} \right) = \frac{1}{\sqrt{a^{2} + b^{2}}}$$
$$M_{R}\left( \text{jω} \right) = k_{p}\sqrt{\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right)^{2} + \left( \frac{T_{d}\omega}{1 + T^{2}\omega^{2}} \right)^{2}}$$
$$\left\{ \begin{matrix}
M\left( \omega \right) = 1 \\
\tan\text{Δφ} = \frac{Q\left( \omega \right)}{P\left( \omega \right)} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
M_{O}\left( \omega \right)M_{R}\left( \omega \right) = 1 \\
\tan\text{Δφ} = \frac{Q\left( \omega \right)}{P\left( \omega \right)} \\
\end{matrix} \right.\ $$
a = 274ω4 − 85ω2 + 1
b = 120ω5 − 225ω3 + 15ω
$$\left\{ \begin{matrix}
k_{p}\frac{1}{\sqrt{a^{2} + b^{2}}}\sqrt{\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right)^{2} + \left( \frac{T_{d}\omega}{1 + T^{2}\omega^{2}} \right)^{2}} = 1 \\
\tan\text{Δφ} = \frac{a\frac{T_{d}\omega}{1 + T^{2}\omega^{2}} - b\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right)}{a\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right) + b\frac{T_{d}\omega}{1 + T^{2}\omega^{2}}} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p}^{2}\left( \left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right)^{2} + \left( \frac{T_{d}\omega}{1 + T^{2}\omega^{2}} \right)^{2} \right) = a^{2} + b^{2} \\
\operatorname{atan}\text{Δφ} + b\frac{T_{d}\omega}{1 + T^{2}\omega^{2}}\tan\text{Δφ} = a\frac{T_{d}\omega}{1 + T^{2}\omega^{2}} - b\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right) \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p}^{2}\left( \left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right)^{2} + \left( \frac{T_{d}\omega}{1 + T^{2}\omega^{2}} \right)^{2} \right) = a^{2} + b^{2} \\
\operatorname{atan}\text{Δφ} - a\frac{T_{d}\omega}{1 + T^{2}\omega^{2}} + b\frac{T_{d}\omega}{1 + T^{2}\omega^{2}}\tan\text{Δφ} + b\frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} = - b - a\tan\text{Δφ} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p}^{2}\left( \left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right)^{2} + \left( \frac{T_{d}\omega}{1 + T^{2}\omega^{2}} \right)^{2} \right) = a^{2} + b^{2} \\
T_{d}\omega\left\lbrack \operatorname{aT\omega tan}\text{Δφ} - a + b\tan\text{Δφ} + bT\omega \right\rbrack = - \left( b + a\tan\text{Δφ} \right)\left( 1 + T^{2}\omega^{2} \right) \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p}^{2}\left( \left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right)^{2} + \left( \frac{T_{d}\omega}{1 + T^{2}\omega^{2}} \right)^{2} \right) = a^{2} + b^{2} \\
T_{d}\omega = \frac{- \left( b + a\tan\text{Δφ} \right)\left( 1 + T^{2}\omega^{2} \right)}{b\tan\text{Δφ} - a + T\omega\left( b + \operatorname{atan}\text{Δφ} \right)} \\
\end{matrix} \right.\ $$
$$k_{p}^{2}\left( \left( 1 - \frac{\text{Tω}\left( b + a\tan\text{Δφ} \right)}{b\tan\text{Δφ} - a + T\omega\left( b + \operatorname{atan}\text{Δφ} \right)} \right)^{2} + \left( \frac{b + a\tan\text{Δφ}}{b\tan\text{Δφ} - a + T\omega\left( b + \operatorname{atan}\text{Δφ} \right)} \right)^{2} \right) = a^{2} + b^{2}$$
$$k_{p}^{2}\left( \left( \frac{b\tan\text{Δφ} - a}{b\tan\text{Δφ} - a + T\omega\left( b + \operatorname{atan}\text{Δφ} \right)} \right)^{2} + \left( \frac{b + a\tan\text{Δφ}}{b\tan\text{Δφ} - a + T\omega\left( b + \operatorname{atan}\text{Δφ} \right)} \right)^{2} \right) = a^{2} + b^{2}$$
$$k_{p}^{2}\frac{\left( b\tan\text{Δφ} - a \right)^{2} + \left( b + a\tan\text{Δφ} \right)^{2}}{\left\lbrack b\tan\text{Δφ} - a + T\omega\left( b + \operatorname{atan}\text{Δφ} \right) \right\rbrack^{2}} = a^{2} + b^{2}$$
$$k_{p}^{2}\frac{\left( a^{2} + b^{2} \right)\left( 1 + \left( \tan\text{Δφ} \right)^{2} \right)}{\left\lbrack b\tan\text{Δφ} - a + T\omega\left( b + \operatorname{atan}\text{Δφ} \right) \right\rbrack^{2}} = a^{2} + b^{2}$$
$$k_{p}^{2}\frac{\left( 1 + \left( \tan\text{Δφ} \right)^{2} \right)}{\left\lbrack b\tan\text{Δφ} - a + T\omega\left( b + \operatorname{atan}\text{Δφ} \right) \right\rbrack^{2}} = 1$$
$$k_{p} = \frac{b\tan\text{Δφ} - a + T\omega\left( b + \operatorname{atan}\text{Δφ} \right)}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}$$
$$k_{p} = \frac{b\tan\text{Δφ} + bT\omega + a\operatorname{T\omega tan}\text{Δφ} - a}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}$$
$$k_{p} = \frac{\tan\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}b + \frac{T}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}b\omega + \frac{\operatorname{Ttan}\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}a\omega - \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}a$$
$$k_{p} = \frac{\tan\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 120\omega^{5} - 225\omega^{3} + 15\omega \right) + \frac{T}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 120\omega^{6} - 225\omega^{4} + 15\omega^{2} \right) + \frac{\operatorname{Ttan}\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 274\omega^{5} - 85\omega^{3} + \omega \right) - \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 274\omega^{4} - 85\omega^{2} + 1 \right)$$
$$k_{p} = \frac{120T}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\omega^{6} + \frac{\tan\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 120 + 274T \right)\omega^{5} - \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 274 + 225T \right)\omega^{4} - \frac{\tan\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 225 + 85T \right)\omega^{3} + \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 85 + 15T \right)\omega^{2} + \frac{\tan\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 15 + T \right)\omega - \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}$$
Szukamy ekstremum funkcji wzmocnienia:
$$\left( k_{p} \right)^{'} = \frac{720T}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\omega^{5} + \frac{\tan\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}5\left( 120 + 274T \right)\omega^{4} - \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}4\left( 274 + 225T \right)\omega^{3} - \frac{\tan\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}3\left( 225 + 85T \right)\omega^{2} + \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}2\left( 85 + 15T \right)\omega + \frac{\tan\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 15 + T \right)$$
Dla Δϕ=60 ̊
$$\left( k_{p} \right)^{'} = 360T\omega^{5} + \frac{5\sqrt{3}}{2}\left( 120 + 274T \right)\omega^{4} - \left( 548 + 450T \right)\omega^{3} - \frac{3\sqrt{3}}{2}\left( 225 + 85T \right)\omega^{2} + \left( 85 + 15T \right)\omega + \frac{\sqrt{3}}{2}\left( 15 + T \right)$$
$$\left\{ \begin{matrix}
k_{p} = \frac{b\tan\text{Δφ} - a + T\omega\left( b + \operatorname{atan}\text{Δφ} \right)}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}} \\
T_{d}\omega = \frac{- \left( b + a\tan\text{Δφ} \right)\left( 1 + T^{2}\omega^{2} \right)}{b\tan\text{Δφ} - a + T\omega\left( b + \operatorname{atan}\text{Δφ} \right)} \\
\end{matrix} \right.\ $$
a = 274ω4 − 85ω2 + 1
b = 120ω5 − 225ω3 + 15ω
T | w1 | kp | Td |
---|---|---|---|
0,05 | 0,21350 | 2,06 | 3,33 |
0,1 | 0,21180 | 2,05 | 3,26 |
0,15 | 0,21000 | 2,03 | 3,19 |
0,2 | 0,20840 | 2,02 | 3,13 |
0,25 | 0,20670 | 2,00 | 3,07 |
0,3 | 0,20520 | 1,99 | 3,01 |
0,35 | 0,20370 | 1,98 | 2,95 |
0,4 | 0,20220 | 1,97 | 2,89 |
0,45 | 0,20070 | 1,96 | 2,82 |
0,5 | 0,19930 | 1,95 | 2,76 |
Przykład:
Obiekt inercyjny piątego rzędu i regulator PID
$$G\left( s \right) = \frac{k}{\left( T_{1}s + 1 \right)\left( T_{2}s + 1 \right)\left( T_{3}s + 1 \right)\left( T_{4}s + 1 \right)\left( T_{5}s + 1 \right)}$$
$$R\left( s \right) = k_{p}\left( 1 + \frac{1}{T_{i}s} + T_{d}s \right)$$
$$G_{\text{uo}}\left( s \right) = \frac{kk_{p}\left( 1 + \frac{1}{T_{i}s} + T_{d}s \right)}{\left( T_{1}s + 1 \right)\left( T_{2}s + 1 \right)\left( T_{3}s + 1 \right)\left( T_{4}s + 1 \right)\left( T_{5}s + 1 \right)}$$
Dane:
k = 1, T1 = 1, T2 = 2, T3 = 3, T4 = 4, T5 = 5
$$G_{\text{uo}}\left( \text{jω} \right) = \frac{k_{p}\left( 1 + \frac{1}{T_{i}\text{jω}} + T_{d}\text{jω} \right)}{\begin{bmatrix}
120j\omega^{5} + 274\omega^{4} - 225\text{jω}^{3} - 85\omega^{2} + 15j\omega + 1 \\
\end{bmatrix}}$$
a = 274ω4 − 85ω2 + 1
b = 120ω5 − 225ω3 + 15ω
$$G_{\text{uo}}\left( \text{jω} \right) = \frac{k_{p}\left( a - jb \right)}{\left( a^{2} + b^{2} \right)} \bullet \left( 1 + j\left( T_{d}\omega - \frac{1}{T_{i}\omega} \right) \right)$$
$$G_{\text{uo}}\left( \text{jω} \right) = k_{p}\frac{a + b\left( T_{d}\omega - \frac{1}{T_{i}\omega} \right) + ja\left( T_{d}\omega - \frac{1}{T_{i}\omega} \right) - jb}{\left( a^{2} + b^{2} \right)}$$
$$G_{\text{uo}}\left( \text{jω} \right) = k_{p}\frac{a + b\left( T_{d}\omega - \frac{1}{T_{i}\omega} \right) + j\left( \text{aT}_{d}\omega - \frac{a}{T_{i}\omega} - b \right)}{\left( a^{2} + b^{2} \right)}$$
$$P_{\text{uo}}\left( \omega \right) = k_{p}\frac{a + bT_{d}\omega - \frac{b}{T_{i}\omega}}{\left( a^{2} + b^{2} \right)}$$
$$Q_{\text{uo}}\left( \omega \right) = k_{p}\frac{{- b + aT}_{d}\omega - \frac{a}{T_{i}\omega}}{\left( a^{2} + b^{2} \right)}$$
Warunek granicy stabilności
$$\left\{ \begin{matrix}
P_{\text{uo}}\left( \omega \right) = - 1 \\
Q_{\text{uo}}\left( \omega \right) = 0 \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p}\frac{a + bT_{d}\omega - \frac{b}{T_{i}\omega}}{\left( a^{2} + b^{2} \right)} = - 1 \\
k_{p}\frac{{- b + aT}_{d}\omega - \frac{a}{T_{i}\omega}}{\left( a^{2} + b^{2} \right)} = 0 \\
\end{matrix} \right.\ $$
$$T_{d}\omega - \frac{1}{T_{i}\omega} = \frac{b}{a}$$
$$k_{p}\frac{a + b\frac{b}{a}}{\left( a^{2} + b^{2} \right)} = - 1$$
$$k_{p}\frac{1}{a} = - 1$$
$$\left\{ \begin{matrix}
k_{p} = - a \\
T_{d}\omega - \frac{1}{T_{i}\omega} = \frac{b}{a} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p} = - a \\
T_{d}\omega - \frac{b}{a} = \frac{1}{T_{i}\omega} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p} = - a \\
\frac{1}{T_{i}\omega} = T_{d}\omega - \frac{b}{a} \\
\end{matrix} \right.\ $$
$$\frac{k_{p}}{T_{i}\omega} = b - aT_{d}\omega$$
$$\frac{k_{p}}{T_{i}} = b\omega - aT_{d}\omega^{2}$$
Szukamy ekstremum wyznaczonej funkcji z parametrem Td
a = 274ω4 − 85ω2 + 1
b = 120ω5 − 225ω3 + 15ω
$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = \left\lbrack \left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)\omega - T_{d}{\left( 274\omega^{4} - 85\omega^{2} + 1 \right)\omega}^{2} \right\rbrack^{'}$$
$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = \left( \left( 120\omega^{6} - 225\omega^{4} + 15\omega^{2} \right) - T_{d}\left( 274\omega^{6} - 85\omega^{4} + \omega^{2} \right) \right)^{'}$$
$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = \left( 120\omega^{6} - 225\omega^{4} + 15\omega^{2} - 274T_{d}\omega^{6} + 85T_{d}\omega^{4} - T_{d}\omega^{2} \right)^{'}$$
$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = \left( \left( 120 - 274T_{d} \right)\omega^{6} + \left( 85T_{d} - 225 \right)\omega^{4} + \left( 15 - T_{d} \right)\omega^{2} \right)^{'}$$
$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = 2\omega\left\lbrack 3\left( 120 - 274T_{d} \right)\omega^{4} + 2\left( 85T_{d} - 225 \right)\omega^{2} + \left( 15 - T_{d} \right) \right\rbrack$$
=4[(85Td−225)2−3(120−274Td)(15−Td)]
=4[7225Td2−38250Td+50625−5400+360Td+12330Td−822Td2]
=4(6403Td2−25560Td+45225)
$$\omega_{1}^{2} = \frac{- 85T_{d} + 225 - \sqrt{6403T_{d}^{2} - 25560T_{d} + 45225}}{3\left( 120 - 274T_{d} \right)}$$
$$\omega_{2}^{2} = \frac{- 85T_{d} + 225 - \sqrt{6403T_{d}^{2} - 25560T_{d} + 45225}}{3\left( 120 - 274T_{d} \right)}$$
Td | w1 | kp | Ti |
---|---|---|---|
0 | 0,18513 | 1,59 | 6,25 |
0,05 | 0,18637 | 1,62 | 6,300496 |
0,1 | 0,18763 | 2,26 | 10,64036 |
0,15 | 0,18893 | 2,22 | 9,954836 |
0,2 | 0,19024 | 2,17 | 9,374234 |
0,25 | 0,19159 | 2,13 | 8,82347 |
0,3 | 0,19297 | 2,09 | 8,352568 |
0,35 | 0,19437 | 2,06 | 7,916507 |
0,4 | 0,19581 | 2,02 | 7,511543 |
0,45 | 0,19727 | 1,98 | 7,134455 |
0,5 | 0,19877 | 1,94 | 6,795203 |
0,55 | 0,20029 | -445,58 | 18,31182 |
0,6 | 0,20185 | -6000,31 | -9,62861 |
Warunek: zapas modułu ΔL=ΔdB
ΔL = 20lgΔM = −Δ
$$\Delta M = 10^{- \frac{\Delta}{20}}$$
$$\left\{ \begin{matrix}
P_{\text{uo}}\left( \omega \right) = - 1 + \Delta M \\
Q_{\text{uo}}\left( \omega \right) = 0 \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p}\frac{a + bT_{d}\omega - \frac{b}{T_{i}\omega}}{\left( a^{2} + b^{2} \right)} = \Delta M - 1 \\
k_{p}\frac{{- b + aT}_{d}\omega - \frac{a}{T_{i}\omega}}{\left( a^{2} + b^{2} \right)} = 0 \\
\end{matrix} \right.\ $$
$$T_{d}\omega - \frac{1}{T_{i}\omega} = \frac{b}{a}$$
$$k_{p}\frac{a + b\frac{b}{a}}{\left( a^{2} + b^{2} \right)} = \Delta M - 1$$
$$k_{p}\frac{1}{a} = \Delta M - 1$$
$$\left\{ \begin{matrix}
k_{p} = a\left( \Delta M - 1 \right) \\
T_{d}\omega - \frac{1}{T_{i}\omega} = \frac{b}{a} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p} = a\left( \Delta M - 1 \right) \\
T_{d}\omega - \frac{b}{a} = \frac{1}{T_{i}\omega} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p} = a\left( \Delta M - 1 \right) \\
\frac{1}{T_{i}\omega} = T_{d}\omega - \frac{b}{a} \\
\end{matrix} \right.\ $$
$$\frac{k_{p}}{T_{i}\omega} = \left( b - aT_{d}\omega \right)\left( 1 - \Delta M \right)$$
$$\frac{k_{p}}{T_{i}} = \left( b\omega - aT_{d}\omega^{2} \right)\left( 1 - \Delta M \right)$$
Szukamy ekstremum wyznaczonej funkcji z parametrem Td
a = 274ω4 − 85ω2 + 1
b = 120ω5 − 225ω3 + 15ω
$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = \left( 1 - \Delta M \right)\left\lbrack \left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)\omega - T_{d}{\left( 274\omega^{4} - 85\omega^{2} + 1 \right)\omega}^{2} \right\rbrack^{'}$$
$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = {\left( 1 - \Delta M \right)\left( \left( 120\omega^{6} - 225\omega^{4} + 15\omega^{2} \right) - T_{d}\left( 274\omega^{6} - 85\omega^{4} + \omega^{2} \right) \right)}^{'}$$
$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = \left( 1 - \Delta M \right)\left( 120\omega^{6} - 225\omega^{4} + 15\omega^{2} - 274T_{d}\omega^{6} + 85T_{d}\omega^{4} - T_{d}\omega^{2} \right)^{'}$$
$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = {\left( 1 - \Delta M \right)\left( \left( 120 - 274T_{d} \right)\omega^{6} + \left( 85T_{d} - 225 \right)\omega^{4} + \left( 15 - T_{d} \right)\omega^{2} \right)}^{'}$$
$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = 2\omega\left( 1 - \Delta M \right)\left\lbrack 3\left( 120 - 274T_{d} \right)\omega^{4} + 2\left( 85T_{d} - 225 \right)\omega^{2} + \left( 15 - T_{d} \right) \right\rbrack$$
=4[(85Td−225)2−3(120−274Td)(15−Td)]
=4[7225Td2−38250Td+50625−5400+360Td+12330Td−822Td2]
=4(6403Td2−25560Td+45225)
$$\omega_{1}^{2} = \frac{- 85T_{d} + 225 - \sqrt{6403T_{d}^{2} - 25560T_{d} + 45225}}{3\left( 120 - 274T_{d} \right)}$$
$$\omega_{2}^{2} = \frac{- 85T_{d} + 225 - \sqrt{6403T_{d}^{2} - 25560T_{d} + 45225}}{3\left( 120 - 274T_{d} \right)}$$
Td | w1 | kp | Ti |
---|---|---|---|
0 | 0,18513 | 0,79 | 6,25 |
0,05 | 0,18637 | 0,81 | 6,300496 |
0,1 | 0,18763 | 1,13 | 10,64036 |
0,15 | 0,18893 | 1,11 | 9,954836 |
0,2 | 0,19024 | 1,08 | 9,374234 |
0,25 | 0,19159 | 1,06 | 8,82347 |
0,3 | 0,19297 | 1,05 | 8,352568 |
0,35 | 0,19437 | 1,03 | 7,916507 |
0,4 | 0,19581 | 1,01 | 7,511543 |
0,45 | 0,19727 | 0,99 | 7,134455 |
0,5 | 0,19877 | 0,97 | 6,795203 |
Warunek: zapas fazy Δϕ
$$G_{\text{uo}}\left( \text{jω} \right) = k_{p}\frac{a + b\left( T_{d}\omega - \frac{1}{T_{i}\omega} \right) + j\left( \text{aT}_{d}\omega - \frac{a}{T_{i}\omega} - b \right)}{\left( a^{2} + b^{2} \right)}$$
$$P_{\text{uo}}\left( \omega \right) = k_{p}\frac{a + bT_{d}\omega - \frac{b}{T_{i}\omega}}{\left( a^{2} + b^{2} \right)}$$
$$Q_{\text{uo}}\left( \omega \right) = k_{p}\frac{{- b + aT}_{d}\omega - \frac{a}{T_{i}\omega}}{\left( a^{2} + b^{2} \right)}$$
$$M_{o}\left( \text{jω} \right) = \frac{1}{\sqrt{a^{2} + b^{2}}}$$
$$M_{R}\left( \text{jω} \right) = k_{p}\sqrt{1 + \left( T_{d}\omega - \frac{1}{T_{i}\omega} \right)^{2}}$$
$$\left\{ \begin{matrix}
M\left( \omega \right) = 1 \\
\tan\text{Δφ} = \frac{Q\left( \omega \right)}{P\left( \omega \right)} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
M_{O}\left( \omega \right)M_{R}\left( \omega \right) = 1 \\
\tan\text{Δφ} = \frac{Q\left( \omega \right)}{P\left( \omega \right)} \\
\end{matrix} \right.\ $$
a = 274ω4 − 85ω2 + 1
b = 120ω5 − 225ω3 + 15ω
$$\left\{ \begin{matrix}
\frac{k_{p}}{\sqrt{a^{2} + b^{2}}}\sqrt{1 + \left( T_{d}\omega - \frac{1}{T_{i}\omega} \right)^{2}} = 1 \\
\tan\text{Δφ} = \frac{- b + a\left( T_{d}\omega - \frac{1}{T_{i}\omega} \right)}{a + b\left( T_{d}\omega - \frac{1}{T_{i}\omega} \right)} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
\frac{k_{p}}{\sqrt{a^{2} + b^{2}}}\sqrt{1 + \left( T_{d}\omega - \frac{1}{T_{i}\omega} \right)^{2}} = 1 \\
a\tan\text{Δφ} + b\tan\text{Δφ}\left( T_{d}\omega - \frac{1}{T_{i}\omega} \right) = - b + a\left( T_{d}\omega - \frac{1}{T_{i}\omega} \right) \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
\frac{k_{p}}{\sqrt{a^{2} + b^{2}}}\sqrt{1 + \left( T_{d}\omega - \frac{1}{T_{i}\omega} \right)^{2}} = 1 \\
\left( b\tan\text{Δφ} - a \right)\left( T_{d}\omega - \frac{1}{T_{i}\omega} \right) = - b - a\tan\text{Δφ} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
\frac{k_{p}}{\sqrt{a^{2} + b^{2}}}\sqrt{1 + \left( T_{d}\omega - \frac{1}{T_{i}\omega} \right)^{2}} = 1 \\
T_{d}\omega - \frac{1}{T_{i}\omega} = - \frac{b + a\tan\text{Δφ}}{b\tan\text{Δφ} - a} \\
\end{matrix} \right.\ $$
$$\frac{k_{p}}{\sqrt{a^{2} + b^{2}}}\sqrt{1 + \left( \frac{b + a\tan\text{Δφ}}{b\tan\text{Δφ} - a} \right)^{2}} = 1$$
$$\frac{k_{p}}{\sqrt{a^{2} + b^{2}}}\sqrt{\frac{{\left( a - b\tan\text{Δφ} \right)^{2} + \left( b + a\tan\text{Δφ} \right)}^{2}}{\left( b\tan\text{Δφ} - a \right)^{2}}} = 1$$
$$\frac{k_{p}}{\sqrt{a^{2} + b^{2}}}\sqrt{\frac{\left( a^{2} + b^{2} \right)\left( 1 + \left( \tan\text{Δφ} \right)^{2} \right)}{\left( b\tan\text{Δφ} - a \right)^{2}}} = 1$$
$$k_{p} = \frac{b\tan{\text{Δφ} - a}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}$$
$$\left\{ \begin{matrix}
k_{p} = \frac{b\tan\text{Δφ} - a}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}} \\
T_{d}\omega - \frac{1}{T_{i}\omega} = - \frac{b + a\tan\text{Δφ}}{b\tan\text{Δφ} - a} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
k_{p} = \frac{b\tan\text{Δφ} - a}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}} \\
\frac{1}{T_{i}\omega} = T_{d}\omega + \frac{b + a\tan\text{Δφ}}{b\tan\text{Δφ} - a} \\
\end{matrix} \right.\ $$
$$\frac{k_{p}}{T_{i}\omega} = \left( T_{d}\omega + \frac{b + a\tan\text{Δφ}}{b\tan\text{Δφ} - a} \right)\frac{b\tan{\text{Δφ} - a}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}$$
$$\frac{k_{p}}{T_{i}\omega} = \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left\lbrack T_{d}\omega\left( b\tan\text{Δφ} - a \right) + b + a\tan\text{Δφ} \right\rbrack$$
$$\frac{k_{p}}{T_{i}} = \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left\lbrack T_{d}b\omega^{2}\tan\text{Δφ} - T_{d}a\omega^{2} + \text{bω} + \text{aω}\tan\text{Δφ} \right\rbrack$$
Szukamy ekstremum wyznaczonej funkcji z parametrem Td
a = 274ω4 − 85ω2 + 1
b = 120ω5 − 225ω3 + 15ω
$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left\lbrack T_{d}\left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)\omega^{2}\tan\text{Δφ} - T_{d}\left( 274\omega^{4} - 85\omega^{2} + 1 \right)\omega^{2} + \left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)\omega + \left( 274\omega^{4} - 85\omega^{2} + 1 \right)\omega\tan\text{Δφ} \right\rbrack^{'}$$
$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left\lbrack 120{T_{d}\omega}^{7}\tan\text{Δφ} - 225{T_{d}\omega}^{5}\tan\text{Δφ} + 15T_{d}\omega^{3}\tan\text{Δφ} - 274T_{d}\omega^{6} + 85T_{d}\omega^{4} - {T_{d}\omega}^{2} + 120\omega^{6} - 225\omega^{4} + 15\omega^{2} + 274\omega^{5}\tan\text{Δφ} - 85\omega^{3}\tan\text{Δφ} + \omega\tan\text{Δφ} \right\rbrack^{'}$$
$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left\lbrack 120{T_{d}\omega}^{7}\tan\text{Δφ} + \left( 120 - 274T_{d} \right)\omega^{6} + \left( 274 - 225T_{d} \right)\omega^{5}\tan\text{Δφ} + \left( 85T_{d} - 225 \right)\omega^{4} + \left( 15T_{d} - 85 \right)\omega^{3}\tan\text{Δφ} + \left( {15 - T}_{d} \right)\omega^{2} + \omega\tan\text{Δφ} \right\rbrack^{'}$$
$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left\lbrack 840{T_{d}\omega}^{6}\tan\text{Δφ} + 6\left( 120 - 274T_{d} \right)\omega^{5} + 5\left( 274 - 225T_{d} \right)\omega^{4}\tan\text{Δφ} + 4\left( 85T_{d} - 225 \right)\omega^{3} + 3\left( 15T_{d} - 85 \right)\omega^{2}\tan\text{Δφ} + 2\left( {15 - T}_{d} \right)\omega + \tan\text{Δφ} \right\rbrack$$
Dla Δϕ=60 ̊
$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = \left\lbrack 420{{\sqrt{3}T}_{d}\omega}^{6} + \left( 360 - 822T_{d} \right)\omega^{5} + \sqrt{3}\left( 685 - 562,5T_{d} \right)\omega^{4} + \left( 170T_{d} - 450 \right)\omega^{3} + \sqrt{3}\left( 22,5T_{d} - 127,5 \right)\omega^{2} + \left( 15 - T_{d} \right)\omega + 0,5\sqrt{3} \right\rbrack$$
Td | w1 | kp | Ti |
---|---|---|---|
0 | 0,096 | 1,172 | 14,734 |
0,05 | 0,09580 | 1,15 | 11,90651 |
0,5 | 0,10020 | 1,23 | 12,10053 |
1 | 0,10580 | 1,34 | 12,27725 |
1,5 | 0,11230 | 1,45 | 12,39409 |
2 | 0,11970 | 1,58 | 12,40172 |
2,5 | 0,12820 | 1,72 | 12,28026 |
3 | 0,13740 | 1,86 | 11,95301 |
3,5 | 0,14740 | 2,00 | 11,43656 |
4 | 0,15700 | 2,13 | 10,68797 |
4,5 | 0,16630 | 2,24 | 9,815442 |
5 | 0,17490 | 2,32 | 8,891611 |
5,5 | 0,18260 | 2,39 | 7,985072 |
6 | 0,18940 | 2,43 | 7,143023 |
6,5 | 0,19540 | 2,46 | 6,388137 |
7 | 0,20050 | 2,49 | 5,723418 |
7,5 | 0,20510 | 2,50 | 5,147402 |
8 | 0,20910 | 2,51 | 4,6493 |
Stabilność – kryterium Hurwitza
Badanie stabilności układu regulacji na podstawie transmitancji operatorowej.
$$G\left( s \right) = \frac{k}{a_{n}s^{n} + a_{n - 1}s^{n - 1} + ...\ldots\ldots + a_{3}s^{3} + a_{2}s^{2} + a_{1}s + a_{0}}$$
Macierz Hurwitza
$$\Delta_{n} = \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
a_{n - 1} & a_{n} & 0 \\
a_{n - 3} & a_{n - 2} & a_{n - 1} \\
a_{n - 5} & a_{n - 4} & a_{n - 3} \\
\end{matrix} \\
\begin{matrix}
a_{n - 7} & a_{n - 6} & a_{n - 5} \\
a_{n - 9} & a_{n - 8} & a_{n - 7} \\
\ldots & \ldots & \ldots \\
\end{matrix} \\
\end{matrix} & \begin{matrix}
0 \\
a_{n} \\
\begin{matrix}
a_{n - 2} \\
a_{n - 4} \\
\begin{matrix}
a_{n - 6} \\
\ldots \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} & \begin{matrix}
\begin{matrix}
0 & \ldots \\
\end{matrix} \\
\begin{matrix}
0 & \ldots \\
\end{matrix} \\
\begin{matrix}
\begin{matrix}
a_{n - 1} & \ldots \\
\end{matrix} \\
\begin{matrix}
a_{n - 3} & \ldots \\
\end{matrix} \\
\begin{matrix}
\begin{matrix}
a_{n - 5} & \ldots \\
\end{matrix} \\
\begin{matrix}
\ldots & \ldots \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right|$$
Warunek konieczny - wszystkie wyrazy równania charakterystycznego istnieją i są dodatnie
an > 0, an − 1 > 0, ...…… a3 > 0, a2 > 0 a1 > 0, a0 > 0
Warunek dostateczny – wszystkie podwyznaczniki wyznacznika głównego macierzy Hurwitza są większe od zera
Δn > 0, Δn − 1 > 0, ...…… Δ3 > 0, Δ2 > 0 Δ1 > 0
Jeżeli któryś ze współczynników równania charakterystycznego jest ujemny lub równy zero albo któryś z podwyznaczników jest ujemny lub równy zero to układ jest niestabilny.
Ponieważ Δn = a0Δn − 1 i Δ1 = an − 1, to niecelowe jest sprawdzanie dodatności tych wyznaczników. Konieczne jest sprawdzanie dodatności wyznaczników od Δ2 do Δn-1.
Jeżeli któryś z podwyznaczników jest równy zero to układ jest na granicy stabilności – oscylacje o stałej amplitudzie.
Kryterium Hurwitza nie podaje żadnych progów stabilności.
Przykład:
$$G\left( s \right) = \frac{k}{\left( T_{1}s + 1 \right)\left( T_{2}s + 1 \right)\left( T_{3}s + 1 \right)\left( T_{4}s + 1 \right)\left( T_{5}s + 1 \right)}$$
Dane:
k = 1, T1 = 1, T2 = 2, T3 = 3, T4 = 4, T5 = 5
$$G\left( s \right) = \frac{1}{120s^{5} + 274s^{4} + 225s^{3} + 85s^{2} + 15s + 1}$$
a5 = 120, a4 = 274, a3 = 225, a2 = 85 a1 = 15, a0 = 1
$$\Delta_{5} = \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
a_{4} & a_{5} & 0 \\
a_{2} & a_{3} & a_{4} \\
a_{0} & a_{1} & a_{2} \\
\end{matrix} \\
\begin{matrix}
0 & 0 & a_{0} \\
0 & 0 & 0 \\
\end{matrix} \\
\end{matrix} & \begin{matrix}
0 \\
a_{5} \\
\begin{matrix}
a_{3} \\
a_{1} \\
\begin{matrix}
0 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} & \begin{matrix}
\begin{matrix}
0 \\
\end{matrix} \\
\begin{matrix}
0 \\
\end{matrix} \\
\begin{matrix}
\begin{matrix}
a_{4} \\
\end{matrix} \\
\begin{matrix}
a_{2} \\
\end{matrix} \\
\begin{matrix}
\begin{matrix}
a_{0} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right|$$
$$\Delta_{5} = \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
274 & 120 & 0 \\
85 & 225 & 274 \\
\begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
15 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
85 \\
1 \\
0 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} & \begin{matrix}
0 \\
120 \\
\begin{matrix}
225 \\
15 \\
\begin{matrix}
0 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} & \begin{matrix}
\begin{matrix}
0 \\
\end{matrix} \\
\begin{matrix}
0 \\
\end{matrix} \\
\begin{matrix}
\begin{matrix}
274 \\
\end{matrix} \\
\begin{matrix}
85 \\
\end{matrix} \\
\begin{matrix}
\begin{matrix}
1 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right|$$
$$\Delta_{2} = \left| \begin{matrix}
274 & 120 \\
85 & 225 \\
\end{matrix} \right| = 274 \bullet 225 - 120 \bullet 85 = 51450$$
$$\Delta_{3} = \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
274 & 120 & 0 \\
85 & 225 & 274 \\
\begin{matrix}
1 \\
\end{matrix} & \begin{matrix}
15 \\
\end{matrix} & \begin{matrix}
85 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right| = 274 \bullet 225 \bullet 85 + 1 \bullet 120 \bullet 274 - 274 \bullet 15 \bullet 274 - 85 \bullet 120 \bullet 85 = 3279990$$
$$\Delta_{4} = \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
274 & 120 & 0 \\
85 & 225 & 274 \\
\begin{matrix}
1 \\
0 \\
\end{matrix} & \begin{matrix}
15 \\
0 \\
\end{matrix} & \begin{matrix}
85 \\
1 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} & \begin{matrix}
0 \\
120 \\
\begin{matrix}
225 \\
15 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right| = \left( - 1 \right)^{1 + 1} \bullet 274 \bullet \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
225 & 274 & 120 \\
15 & 85 & 225 \\
\begin{matrix}
0 \\
\end{matrix} & \begin{matrix}
1 \\
\end{matrix} & \begin{matrix}
15 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right| + \left( - 1 \right)^{1 + 2} \bullet 120 \bullet \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
85 & 274 & 120 \\
1 & 85 & 225 \\
\begin{matrix}
0 \\
\end{matrix} & \begin{matrix}
1 \\
\end{matrix} & \begin{matrix}
15 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right| =$$
$$\Delta_{4} = 274 \bullet \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
225 & 274 & 120 \\
15 & 85 & 225 \\
\begin{matrix}
0 \\
\end{matrix} & \begin{matrix}
1 \\
\end{matrix} & \begin{matrix}
15 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right| - 120 \bullet \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
85 & 274 & 120 \\
1 & 85 & 225 \\
\begin{matrix}
0 \\
\end{matrix} & \begin{matrix}
1 \\
\end{matrix} & \begin{matrix}
15 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right| =$$
Δ4 = 274(225•85•15+15•120−225•225−15•274•15) − 120(85•85•15+120−85•225−274•15) = 38102400
Układ otwarty jest stabilny, wszystkie warunki są spełnione
Badanie granicy stabilności układu zamkniętego:
$$G\left( s \right) = \frac{1}{120s^{5} + 274s^{4} + 225s^{3} + 85s^{2} + 15s + 1}$$
R(s) = kp
$$G_{z}\left( s \right) = \frac{k_{p}\frac{1}{120s^{5} + 274s^{4} + 225s^{3} + 85s^{2} + 15s + 1}}{1 + k_{p}\frac{1}{120s^{5} + 274s^{4} + 225s^{3} + 85s^{2} + 15s + 1}}$$
$$G_{z}\left( s \right) = \frac{k_{p}}{120s^{5} + 274s^{4} + 225s^{3} + 85s^{2} + 15s + 1 + k_{p}}$$
a5 = 120, a4 = 274, a3 = 225, a2 = 85 a1 = 15, a0 = 1 + kp
$$\Delta_{5} = \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
a_{4} & a_{5} & 0 \\
a_{2} & a_{3} & a_{4} \\
a_{0} & a_{1} & a_{2} \\
\end{matrix} \\
\begin{matrix}
0 & 0 & a_{0} \\
0 & 0 & 0 \\
\end{matrix} \\
\end{matrix} & \begin{matrix}
0 \\
a_{5} \\
\begin{matrix}
a_{3} \\
a_{1} \\
\begin{matrix}
0 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} & \begin{matrix}
\begin{matrix}
0 \\
\end{matrix} \\
\begin{matrix}
0 \\
\end{matrix} \\
\begin{matrix}
\begin{matrix}
a_{4} \\
\end{matrix} \\
\begin{matrix}
a_{2} \\
\end{matrix} \\
\begin{matrix}
\begin{matrix}
a_{0} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right|$$
$$\Delta_{5} = \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
274 & 120 & 0 \\
85 & 225 & 274 \\
\begin{matrix}
1 + k_{p} \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
15 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
85 \\
1 + k_{p} \\
0 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} & \begin{matrix}
0 \\
120 \\
\begin{matrix}
225 \\
15 \\
\begin{matrix}
0 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} & \begin{matrix}
\begin{matrix}
0 \\
\end{matrix} \\
\begin{matrix}
0 \\
\end{matrix} \\
\begin{matrix}
\begin{matrix}
274 \\
\end{matrix} \\
\begin{matrix}
85 \\
\end{matrix} \\
1 + k_{p} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right|$$
$$\Delta_{2} = \left| \begin{matrix}
274 & 120 \\
85 & 225 \\
\end{matrix} \right| = 274 \bullet 225 - 120 \bullet 85 = 51450$$
$$\Delta_{3} = \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
274 & 120 & 0 \\
85 & 225 & 274 \\
\begin{matrix}
1 + k_{p} \\
\end{matrix} & \begin{matrix}
15 \\
\end{matrix} & \begin{matrix}
85 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right| = 274 \bullet 225 \bullet 85 + \left( 1 + k_{p} \right) \bullet 120 \bullet 274 - 274 \bullet 15 \bullet 274 - 85 \bullet 120 \bullet 85 = 5240250 + \left( 1 + k_{p} \right)32880 - 1126140 - 867000 = 3247110 + \left( 1 + k_{p} \right)32880$$
kp ≥ −97, 756
$$\Delta_{4} = \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
274 & 120 & 0 \\
85 & 225 & 274 \\
\begin{matrix}
1 + k_{p} \\
0 \\
\end{matrix} & \begin{matrix}
15 \\
0 \\
\end{matrix} & \begin{matrix}
85 \\
1 + k_{p} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} & \begin{matrix}
0 \\
120 \\
\begin{matrix}
225 \\
15 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right| = \left( - 1 \right)^{1 + 1} \bullet 274 \bullet \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
225 & 274 & 120 \\
15 & 85 & 225 \\
\begin{matrix}
0 \\
\end{matrix} & \begin{matrix}
1 + k_{p} \\
\end{matrix} & \begin{matrix}
15 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right| + \left( - 1 \right)^{1 + 2} \bullet 120 \bullet \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
85 & 274 & 120 \\
1 + k_{p} & 85 & 225 \\
\begin{matrix}
0 \\
\end{matrix} & \begin{matrix}
1 + k_{p} \\
\end{matrix} & \begin{matrix}
15 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right| =$$
$$\Delta_{4} = 274 \bullet \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
225 & 274 & 120 \\
15 & 85 & 225 \\
\begin{matrix}
0 \\
\end{matrix} & \begin{matrix}
1 + k_{p} \\
\end{matrix} & \begin{matrix}
15 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right| - 120 \bullet \left| \begin{matrix}
\begin{matrix}
\begin{matrix}
85 & 274 & 120 \\
1 + k_{p} & 85 & 225 \\
\begin{matrix}
0 \\
\end{matrix} & \begin{matrix}
1 + k_{p} \\
\end{matrix} & \begin{matrix}
15 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \right| =$$
Δ4 = 274(225•85•15+15•120(1+kp)−225•225(1+kp)−15•274•15) − 120(85•85•15+120(1+kp)(1+kp)−85•225(1+kp)−274•15(1+kp)) = 274(286875+1800(1+kp)−50625(1+kp)−61650) − 120(108375+120(1+kp)(1+kp)−19125(1+kp)−4110(1+kp)) = 274(225225−48825(1+kp)) − 120(108375+120(1+kp)(1+kp)−23235(1+kp)) = 48706650 − 10589850(1+kp) − 14400(1+kp)(1+kp)
1 + kp = 4, 571 i 1 + kp = −734
Wzmocnienie krytyczne wynosi (kp)kr = 3, 571