StabilnośćPD

Stabilność – kryterium Nyquista

Przykład:

Obiekt inercyjny piątego rzędu i regulator PD


$$G\left( s \right) = \frac{k}{\left( T_{1}s + 1 \right)\left( T_{2}s + 1 \right)\left( T_{3}s + 1 \right)\left( T_{4}s + 1 \right)\left( T_{5}s + 1 \right)}$$


R(s) = kp(1+Tds)


$$G_{\text{uo}}\left( s \right) = \frac{kk_{p}\left( 1 + T_{d}s \right)}{\left( T_{1}s + 1 \right)\left( T_{2}s + 1 \right)\left( T_{3}s + 1 \right)\left( T_{4}s + 1 \right)\left( T_{5}s + 1 \right)}$$

Dane:


k = 1,   T1 = 1,   T2 = 2,   T3 = 3,   T4 = 4,   T5 = 5


$$G_{\text{uo}}\left( s \right) = \frac{k_{p}\left( 1 + T_{d}s \right)}{\begin{bmatrix} 120s^{5} + 274s^{4} + 225s^{3} + 85s^{2} + 15s + 1 \\ \end{bmatrix}}$$


$$G_{\text{uo}}\left( \text{jω} \right) = \frac{k_{p}\left( 1 + T_{d}\text{jω} \right)}{\begin{bmatrix} 120j\omega^{5} + 274\omega^{4} - 225\text{jω}^{3} - 85\omega^{2} + 15j\omega + 1 \\ \end{bmatrix}}$$


a = 274ω4 − 85ω2 + 1


b = 120ω5 − 225ω3 + 15ω


$$G_{\text{uo}}\left( \text{jω} \right) = \frac{k_{p}\left( a - jb \right)}{\left( a^{2} + b^{2} \right)} \bullet \left( 1 + jT_{d}\omega \right)$$


$$G_{\text{uo}}\left( \text{jω} \right) = k_{p}\frac{a + bT_{d}\omega + jaT_{d}\omega - jb}{\left( a^{2} + b^{2} \right)}$$


$$G_{\text{uo}}\left( \text{jω} \right) = k_{p}\frac{a + bT_{d}\omega + j\left( aT_{d}\omega - b \right)}{\left( a^{2} + b^{2} \right)}$$


$$P_{\text{uo}}\left( \omega \right) = k_{p}\frac{a + bT_{d}\omega}{\left( a^{2} + b^{2} \right)}$$


$$Q_{\text{uo}}\left( \omega \right) = k_{p}\frac{aT_{d}\omega - b}{\left( a^{2} + b^{2} \right)}$$

Warunek granicy stabilności


$$\left\{ \begin{matrix} P_{\text{uo}}\left( \omega \right) = - 1 \\ Q_{\text{uo}}\left( \omega \right) = 0 \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} k_{p}\frac{a + bT_{d}\omega}{\left( a^{2} + b^{2} \right)} = - 1 \\ k_{p}\frac{aT_{d}\omega - b}{\left( a^{2} + b^{2} \right)} = 0 \\ \end{matrix} \right.\ $$


$$T_{d}\omega = \frac{b}{a}$$


$$k_{p}\frac{a + \frac{b^{2}}{a}}{\left( a^{2} + b^{2} \right)} = - 1$$


$$k_{p}\frac{1}{a} = - 1$$


kp = −a


$$\left\{ \begin{matrix} k_{p} = - a \\ T_{d}\omega = \frac{b}{a} \\ \end{matrix} \right.\ $$

Szukamy ekstremum funkcji wzmocnienia


kp = −(274ω4−85ω2+1)


(kp) = −(274•4ω3−170ω)


(kp) = −2ω(548ω2−85)


$$\omega = \sqrt{\frac{85}{548}}$$


$$\left\{ \begin{matrix} k_{p} = - a \\ T_{d}\omega = \frac{b}{a} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} k_{p} = - \left( 274\omega^{4} - 85\omega^{2} + 1 \right) \\ T_{d}\omega = \frac{120\omega^{5} - 225\omega^{3} + 15\omega}{274\omega^{4} - 85\omega^{2} + 1} \\ \end{matrix} \right.\ $$

Dla $\omega = \sqrt{\frac{85}{548}} = 0,3938$


$$\left\{ \begin{matrix} \left( k_{p} \right)_{\text{kr}} = 5,59 \\ \left( T_{d} \right)_{\text{kr}} = 3,04 \\ \end{matrix} \right.\ $$

Warunek: zapas modułu ΔL=ΔdB


ΔL = 20lgΔM = −Δ


$$\Delta M = 10^{- \frac{\Delta}{20}}$$


$$\left\{ \begin{matrix} P_{\text{uo}}\left( \omega \right) = - 1 + \Delta M \\ Q_{\text{uo}}\left( \omega \right) = 0 \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} k_{p}\frac{a + bT_{d}\omega}{\left( a^{2} + b^{2} \right)} = \Delta M - 1 \\ k_{p}\frac{aT_{d}\omega - b}{\left( a^{2} + b^{2} \right)} = 0 \\ \end{matrix} \right.\ $$


$$T_{d}\omega = \frac{b}{a}$$


$$k_{p}\frac{a + \frac{b^{2}}{a}}{\left( a^{2} + b^{2} \right)} = \Delta M - 1$$


$$k_{p}\frac{1}{a} = \Delta M - 1$$


kp = −a(1−ΔM)


kp = −(1−ΔM)(274ω4−85ω2+1)


$$\left\{ \begin{matrix} k_{p} = - a\left( 1 - \Delta M \right) \\ T_{d}\omega = \frac{b}{a} \\ \end{matrix} \right.\ $$

Szukamy ekstremum funkcji wzmocnienia


kp = −(1−ΔM)(274ω4−85ω2+1)


(kp) = −(1−ΔM)(274•4ω3−170ω)


(kp) = −2ω(1−ΔM)(548ω2−85)


$$\omega = \sqrt{\frac{85}{548}}$$


$$\left\{ \begin{matrix} k_{p} = - a\left( 1 - \Delta M \right) \\ T_{d}\omega = \frac{b}{a} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} k_{p} = - \left( 1 - \Delta M \right)\left( 274\omega^{4} - 85\omega^{2} + 1 \right) \\ T_{d}\omega = \frac{120\omega^{5} - 225\omega^{3} + 15\omega}{274\omega^{4} - 85\omega^{2} + 1} \\ \end{matrix} \right.\ $$

Dla ΔL=6dB i $\omega = \sqrt{\frac{85}{548}} = 0,3938$


$$\left\{ \begin{matrix} k_{p} = 2,8 \\ T_{d} = 3,04 \\ \end{matrix} \right.\ $$

Warunek: zapas fazy Δϕ


$$\left\{ \begin{matrix} M\left( \omega \right) = 1 \\ \tan\text{Δφ} = \frac{Q\left( \omega \right)}{P\left( \omega \right)} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} \sqrt{{P\left( \omega \right)}^{2} + {Q\left( \omega \right)}^{2}} = 1 \\ \tan\text{Δφ} = \frac{Q\left( \omega \right)}{P\left( \omega \right)} \\ \end{matrix} \right.\ $$


a = 274ω4 − 85ω2 + 1


b = 120ω5 − 225ω3 + 15ω


$$\left\{ \begin{matrix} k_{p}\sqrt{\frac{1 + \left( T_{d}\omega \right)^{2}}{a^{2} + b^{2}}} = 1 \\ \tan\text{Δφ} = \frac{aT_{d}\omega - b}{a + bT_{d}\omega} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} k_{p}^{2}\left( 1 + \left( T_{d}\omega \right)^{2} \right) = a^{2} + b^{2} \\ \operatorname{a\bullet tan}\text{Δφ} + bT_{d}\omega\tan\text{Δφ} = aT_{d}\omega - b \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} k_{p}^{2}\left( 1 + \left( T_{d}\omega \right)^{2} \right) = a^{2} + b^{2} \\ \operatorname{a\bullet tan}\text{Δφ} + b = T_{d}\omega\left( a - b\tan\text{Δφ} \right) \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} k_{p}^{2} = \frac{a^{2} + b^{2}}{1 + \left( T_{d}\omega \right)^{2}} \\ T_{d}\omega = \frac{a\tan\text{Δφ} + b}{a - \operatorname{b\bullet tan}\text{Δφ}} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} k_{p}^{2} = \frac{a^{2} + b^{2}}{1 + \left( \frac{a\tan\text{Δφ} + b}{a - \operatorname{b\bullet tan}\text{Δφ}} \right)^{2}} \\ T_{d}\omega = \frac{a\tan\text{Δφ} + b}{a - \operatorname{b\bullet tan}\text{Δφ}} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} k_{p}^{2} = \frac{a^{2} + b^{2}}{\frac{\left( a - b\tan\text{Δφ} \right)^{2} + \left( \operatorname{a\bullet tan}\text{Δφ} + b \right)^{2}}{\left( a - b\tan\text{Δφ} \right)^{2}}} \\ T_{d}\omega = \frac{a\tan\text{Δφ} + b}{a - \operatorname{b\bullet tan}\text{Δφ}} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} k_{p}^{2} = \frac{\left( a^{2} + b^{2} \right)\left( a - b\tan\text{Δφ} \right)^{2}}{\left( b\tan\text{Δφ} - a \right)^{2} + \left( \operatorname{a\bullet tan}\text{Δφ} + b \right)^{2}} \\ T_{d}\omega = \frac{a\tan\text{Δφ} + b}{a - \operatorname{b\bullet tan}\text{Δφ}} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} k_{p}^{2} = \frac{\left( a^{2} + b^{2} \right)\left( a - b\tan\text{Δφ} \right)^{2}}{\left( a^{2} + b^{2} \right)\left\lbrack 1 + \left( \tan\text{Δφ} \right)^{2} \right\rbrack} \\ T_{d}\omega = \frac{a\tan\text{Δφ} + b}{a - \operatorname{b\bullet tan}\text{Δφ}} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} k_{p} = \frac{a - b\tan\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}} \\ T_{d}\omega = \frac{a\tan\text{Δφ} + b}{a - \operatorname{b\bullet tan}\text{Δφ}} \\ \end{matrix} \right.\ $$


$$k_{p} = \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 274\omega^{4} - 85\omega^{2} + 1 \right) - \frac{\tan\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)$$

Liczymy ekstremum funkcji wzmocnienia


$$\left( k_{p} \right)^{'} = \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 1096\omega^{3} - 170\omega \right) - \frac{\tan\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 600\omega^{4} - 675\omega^{2} + 15 \right)$$

Dla Δϕ=60 ̊


$$\left( k_{p} \right)^{'} = \frac{1}{2}\left( 1096\omega^{3} - 170\omega \right) - \frac{\sqrt{3}}{2}\left( 600\omega^{4} - 675\omega^{2} + 15 \right)$$


$$\left( k_{p} \right)^{'} = - 300\sqrt{3}\omega^{4} + 548\omega^{3} + 337,5\sqrt{3}\omega^{2} - 85\omega - 7,5\sqrt{3}$$

>> roots([-300*sqrt(3) 548 337.5*sqrt(3) -85 -sqrt(3)*7.5])

ans =

1.6657

-0.7298

0.2146

-0.0958


$$\left\{ \begin{matrix} k_{p} = \frac{a - b\tan\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}} \\ T_{d}\omega = \frac{a\tan\text{Δφ} + b}{a - \operatorname{b\bullet tan}\text{Δφ}} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} k_{p} = 2,076 \\ T_{d} = 3,36 \\ \end{matrix} \right.\ $$

Przykład:

Obiekt inercyjny piątego rzędu i regulator PD rzeczywisty


$$G\left( s \right) = \frac{k}{\left( T_{1}s + 1 \right)\left( T_{2}s + 1 \right)\left( T_{3}s + 1 \right)\left( T_{4}s + 1 \right)\left( T_{5}s + 1 \right)}$$


$$R\left( s \right) = k_{p}\left( 1 + \frac{T_{d}s}{Ts + 1} \right)$$


$$G_{\text{uo}}\left( s \right) = \frac{kk_{p}\left( 1 + \frac{T_{d}s}{Ts + 1} \right)}{\left( T_{1}s + 1 \right)\left( T_{2}s + 1 \right)\left( T_{3}s + 1 \right)\left( T_{4}s + 1 \right)\left( T_{5}s + 1 \right)}$$

Dane:


k = 1,   T1 = 1,   T2 = 2,   T3 = 3,   T4 = 4,   T5 = 5


$$G_{\text{uo}}\left( s \right) = \frac{k_{p}\left( 1 + \frac{T_{d}s}{Ts + 1} \right)}{\begin{bmatrix} 120s^{5} + 274s^{4} + 225s^{3} + 85s^{2} + 15s + 1 \\ \end{bmatrix}}$$


$$G_{\text{uo}}\left( \text{jω} \right) = \frac{k_{p}\left( 1 + \frac{jT_{d}\omega}{1 + jT\omega} \right)}{\begin{bmatrix} 120j\omega^{5} + 274\omega^{4} - 225\text{jω}^{3} - 85\omega^{2} + 15j\omega + 1 \\ \end{bmatrix}}$$


a = 274ω4 − 85ω2 + 1


b = 120ω5 − 225ω3 + 15ω


$$G_{\text{uo}}\left( \text{jω} \right) = \frac{k_{p}\left( a - jb \right)}{\left( a^{2} + b^{2} \right)} \bullet \left( 1 + \frac{jT_{d}\omega}{1 + j\text{Tω}} \bullet \frac{1 - jT\omega}{1 - jT\omega} \right)$$


$$G_{\text{uo}}\left( \text{jω} \right) = \frac{k_{p}\left( a - jb \right)}{\left( a^{2} + b^{2} \right)} \bullet \left( 1 + \frac{TT_{d}\omega^{2} + jT_{d}\omega}{1 + T^{2}\omega^{2}} \right)$$


$$G_{\text{uo}}\left( \text{jω} \right) = \frac{k_{p}\left( a - jb \right)}{\left( a^{2} + b^{2} \right)} \bullet \left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} + j\frac{T_{d}\omega}{1 + T^{2}\omega^{2}} \right)$$


$$G_{\text{uo}}\left( j\omega \right) = k_{p}\frac{a\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right) + b\frac{T_{d}\omega}{1 + T^{2}\omega^{2}} + ja\frac{T_{d}\omega}{1 + T^{2}\omega^{2}} - jb\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right)}{\left( a^{2} + b^{2} \right)}$$


$$G_{\text{uo}}\left( \text{jω} \right) = k_{p}\frac{a\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right) + b\frac{T_{d}\omega}{1 + T^{2}\omega^{2}} + j\left( a\frac{T_{d}\omega}{1 + T^{2}\omega^{2}} - b\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right) \right)}{\left( a^{2} + b^{2} \right)}$$


$$P_{\text{uo}}\left( \omega \right) = k_{p}\frac{a\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right) + b\frac{T_{d}\omega}{1 + T^{2}\omega^{2}}}{\left( a^{2} + b^{2} \right)}$$


$$Q_{\text{uo}}\left( \omega \right) = k_{p}\frac{a\frac{T_{d}\omega}{1 + T^{2}\omega^{2}} - b\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right)}{\left( a^{2} + b^{2} \right)}$$

Warunek granicy stabilności


$$\left\{ \begin{matrix} P_{\text{uo}}\left( \omega \right) = - 1 \\ Q_{\text{uo}}\left( \omega \right) = 0 \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} k_{p}\frac{a\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right) + b\frac{T_{d}\omega}{1 + T^{2}\omega^{2}}}{\left( a^{2} + b^{2} \right)} = - 1 \\ k_{p}\frac{a\frac{T_{d}\omega}{1 + T^{2}\omega^{2}} - b\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right)}{\left( a^{2} + b^{2} \right)} = 0 \\ \end{matrix} \right.\ $$


$$a\frac{T_{d}\omega}{1 + T^{2}\omega^{2}} = b\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right)$$


$$a\frac{T_{d}\omega}{1 + T^{2}\omega^{2}} = b\frac{1 + T^{2}\omega^{2} + TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}}$$


aTdω = b(1+T2ω2+TTdω2)


aTdω = b + bT2ω2 + bTTdω2


bTTdω2 − aTdω = −b − bT2ω2


Tdω(bTωa) = −b(1+T2ω2)


$$T_{d}\omega = - \frac{b\left( 1 + T^{2}\omega^{2} \right)}{\left( bT\omega - a \right)}$$


$$k_{p}\frac{a\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right) + b\frac{T_{d}\omega}{1 + T^{2}\omega^{2}}}{\left( a^{2} + b^{2} \right)} = - 1$$


$$k_{p}\frac{a\left( 1 + \frac{- T\omega\frac{b\left( 1 + T^{2}\omega^{2} \right)}{\left( bT\omega - a \right)}}{1 + T^{2}\omega^{2}} \right) - b\frac{\frac{b\left( 1 + T^{2}\omega^{2} \right)}{\left( bT\omega - a \right)}}{1 + T^{2}\omega^{2}}}{\left( a^{2} + b^{2} \right)} = - 1$$


$$k_{p}\frac{a\left( 1 - \frac{\text{bTω}}{\left( bT\omega - a \right)} \right) - b\frac{b}{\left( bT\omega - a \right)}}{\left( a^{2} + b^{2} \right)} = - 1$$


$$k_{p}\frac{a\frac{- a}{\left( bT\omega - a \right)} - b\frac{b}{\left( bT\omega - a \right)}}{\left( a^{2} + b^{2} \right)} = - 1$$


$$k_{p}\frac{{- a}^{2} - b^{2}}{\left( a^{2} + b^{2} \right)\left( bT\omega - a \right)} = - 1$$


$$k_{p}\frac{1}{\left( bT\omega - a \right)} = 1$$


kp = bTω − a


$$\left\{ \begin{matrix} k_{p} = - a + bT\omega \\ T_{d}\omega = - \frac{b\left( 1 + T^{2}\omega^{2} \right)}{\left( bT\omega - a \right)} \\ \end{matrix} \right.\ $$


a = 274ω4 − 85ω2 + 1


b = 120ω5 − 225ω3 + 15ω

Szukamy ekstremum funkcji wzmocnienia


kp = −(274ω4−85ω2+1) + (120ω5−225ω3+15ω)Tω


kp = 120Tω6 − (225T+274)ω4 + (15T+85)ω2 − 1


(kp) = 720Tω5 − 4 • (225T+274)ω3 + 2 • (15T+85)ω


(kp) = 2ω[360Tω4−2•(225T+274)ω2+(15T+85)]


Δ = 4 • (225T+274)2 − 4 • 360T(15T+85)


Δ = 4 • (50625T2+123300T+75076−5400T2−30600T)


Δ = 4 • (45225T2+92700T+75076) > 0 dla kazdego T

T w1 (kp)kr (Td)kr
0 0,3938 5,59 3,04
0,05 0,38862 5,46 2,97
0,1 0,38365 5,35 2,91
0,15 0,37890 5,24 2,84
0,2 0,37436 5,13 2,78
0,25 0,37003 5,04 2,71
0,3 0,36589 4,95 2,65
0,35 0,36192 4,86 2,59
0,4 0,35813 4,78 2,53
0,45 0,35449 4,71 2,48
0,5 0,35100 4,64 2,42
0,55 0,34765 4,58 2,36
0,6 0,34443 4,52 2,31
0,65 0,34134 4,46 2,26
0,7 0,33836 4,40 2,20
0,75 0,33550 4,35 2,15
0,8 0,33274 4,30 2,10
0,85 0,33008 4,26 2,05
0,9 0,32752 4,22 2,00
0,95 0,32505 4,18 1,95
1 0,32266 4,14 1,90

Wybrane parametry regulatora PDrz : kp=2,5 Td=2,7 T=0,25

Warunek: zapas fazy Δϕ


$$G_{\text{uo}}\left( \text{jω} \right) = \frac{k_{p}\left( a - jb \right)}{\left( a^{2} + b^{2} \right)} \bullet \left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} + j\frac{T_{d}\omega}{1 + T^{2}\omega^{2}} \right)$$


$$P_{\text{uo}}\left( \omega \right) = k_{p}\frac{a\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right) + b\frac{T_{d}\omega}{1 + T^{2}\omega^{2}}}{\left( a^{2} + b^{2} \right)}$$


$$Q_{\text{uo}}\left( \omega \right) = k_{p}\frac{a\frac{T_{d}\omega}{1 + T^{2}\omega^{2}} - b\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right)}{\left( a^{2} + b^{2} \right)}$$


$$M_{o}\left( \text{jω} \right) = \frac{1}{\sqrt{a^{2} + b^{2}}}$$


$$M_{R}\left( \text{jω} \right) = k_{p}\sqrt{\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right)^{2} + \left( \frac{T_{d}\omega}{1 + T^{2}\omega^{2}} \right)^{2}}$$


$$\left\{ \begin{matrix} M\left( \omega \right) = 1 \\ \tan\text{Δφ} = \frac{Q\left( \omega \right)}{P\left( \omega \right)} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} M_{O}\left( \omega \right)M_{R}\left( \omega \right) = 1 \\ \tan\text{Δφ} = \frac{Q\left( \omega \right)}{P\left( \omega \right)} \\ \end{matrix} \right.\ $$


a = 274ω4 − 85ω2 + 1


b = 120ω5 − 225ω3 + 15ω


$$\left\{ \begin{matrix} k_{p}\frac{1}{\sqrt{a^{2} + b^{2}}}\sqrt{\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right)^{2} + \left( \frac{T_{d}\omega}{1 + T^{2}\omega^{2}} \right)^{2}} = 1 \\ \tan\text{Δφ} = \frac{a\frac{T_{d}\omega}{1 + T^{2}\omega^{2}} - b\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right)}{a\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right) + b\frac{T_{d}\omega}{1 + T^{2}\omega^{2}}} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} k_{p}^{2}\left( \left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right)^{2} + \left( \frac{T_{d}\omega}{1 + T^{2}\omega^{2}} \right)^{2} \right) = a^{2} + b^{2} \\ \operatorname{atan}\text{Δφ} + b\frac{T_{d}\omega}{1 + T^{2}\omega^{2}}\tan\text{Δφ} = a\frac{T_{d}\omega}{1 + T^{2}\omega^{2}} - b\left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right) \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} k_{p}^{2}\left( \left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right)^{2} + \left( \frac{T_{d}\omega}{1 + T^{2}\omega^{2}} \right)^{2} \right) = a^{2} + b^{2} \\ \operatorname{atan}\text{Δφ} - a\frac{T_{d}\omega}{1 + T^{2}\omega^{2}} + b\frac{T_{d}\omega}{1 + T^{2}\omega^{2}}\tan\text{Δφ} + b\frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} = - b - a\tan\text{Δφ} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} k_{p}^{2}\left( \left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right)^{2} + \left( \frac{T_{d}\omega}{1 + T^{2}\omega^{2}} \right)^{2} \right) = a^{2} + b^{2} \\ T_{d}\omega\left\lbrack \operatorname{aT\omega tan}\text{Δφ} - a + b\tan\text{Δφ} + bT\omega \right\rbrack = - \left( b + a\tan\text{Δφ} \right)\left( 1 + T^{2}\omega^{2} \right) \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} k_{p}^{2}\left( \left( 1 + \frac{TT_{d}\omega^{2}}{1 + T^{2}\omega^{2}} \right)^{2} + \left( \frac{T_{d}\omega}{1 + T^{2}\omega^{2}} \right)^{2} \right) = a^{2} + b^{2} \\ T_{d}\omega = \frac{- \left( b + a\tan\text{Δφ} \right)\left( 1 + T^{2}\omega^{2} \right)}{b\tan\text{Δφ} - a + T\omega\left( b + \operatorname{atan}\text{Δφ} \right)} \\ \end{matrix} \right.\ $$


$$k_{p}^{2}\left( \left( 1 - \frac{\text{Tω}\left( b + a\tan\text{Δφ} \right)}{b\tan\text{Δφ} - a + T\omega\left( b + \operatorname{atan}\text{Δφ} \right)} \right)^{2} + \left( \frac{b + a\tan\text{Δφ}}{b\tan\text{Δφ} - a + T\omega\left( b + \operatorname{atan}\text{Δφ} \right)} \right)^{2} \right) = a^{2} + b^{2}$$


$$k_{p}^{2}\left( \left( \frac{b\tan\text{Δφ} - a}{b\tan\text{Δφ} - a + T\omega\left( b + \operatorname{atan}\text{Δφ} \right)} \right)^{2} + \left( \frac{b + a\tan\text{Δφ}}{b\tan\text{Δφ} - a + T\omega\left( b + \operatorname{atan}\text{Δφ} \right)} \right)^{2} \right) = a^{2} + b^{2}$$


$$k_{p}^{2}\frac{\left( b\tan\text{Δφ} - a \right)^{2} + \left( b + a\tan\text{Δφ} \right)^{2}}{\left\lbrack b\tan\text{Δφ} - a + T\omega\left( b + \operatorname{atan}\text{Δφ} \right) \right\rbrack^{2}} = a^{2} + b^{2}$$


$$k_{p}^{2}\frac{\left( a^{2} + b^{2} \right)\left( 1 + \left( \tan\text{Δφ} \right)^{2} \right)}{\left\lbrack b\tan\text{Δφ} - a + T\omega\left( b + \operatorname{atan}\text{Δφ} \right) \right\rbrack^{2}} = a^{2} + b^{2}$$


$$k_{p}^{2}\frac{\left( 1 + \left( \tan\text{Δφ} \right)^{2} \right)}{\left\lbrack b\tan\text{Δφ} - a + T\omega\left( b + \operatorname{atan}\text{Δφ} \right) \right\rbrack^{2}} = 1$$


$$k_{p} = \frac{b\tan\text{Δφ} - a + T\omega\left( b + \operatorname{atan}\text{Δφ} \right)}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}$$


$$k_{p} = \frac{b\tan\text{Δφ} + bT\omega + a\operatorname{T\omega tan}\text{Δφ} - a}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}$$


$$k_{p} = \frac{\tan\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}b + \frac{T}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}b\omega + \frac{\operatorname{Ttan}\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}a\omega - \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}a$$


$$k_{p} = \frac{\tan\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 120\omega^{5} - 225\omega^{3} + 15\omega \right) + \frac{T}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 120\omega^{6} - 225\omega^{4} + 15\omega^{2} \right) + \frac{\operatorname{Ttan}\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 274\omega^{5} - 85\omega^{3} + \omega \right) - \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 274\omega^{4} - 85\omega^{2} + 1 \right)$$


$$k_{p} = \frac{120T}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\omega^{6} + \frac{\tan\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 120 + 274T \right)\omega^{5} - \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 274 + 225T \right)\omega^{4} - \frac{\tan\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 225 + 85T \right)\omega^{3} + \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 85 + 15T \right)\omega^{2} + \frac{\tan\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 15 + T \right)\omega - \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}$$

Szukamy ekstremum funkcji wzmocnienia:


$$\left( k_{p} \right)^{'} = \frac{720T}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\omega^{5} + \frac{\tan\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}5\left( 120 + 274T \right)\omega^{4} - \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}4\left( 274 + 225T \right)\omega^{3} - \frac{\tan\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}3\left( 225 + 85T \right)\omega^{2} + \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}2\left( 85 + 15T \right)\omega + \frac{\tan\text{Δφ}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left( 15 + T \right)$$

Dla Δϕ=60 ̊


$$\left( k_{p} \right)^{'} = 360T\omega^{5} + \frac{5\sqrt{3}}{2}\left( 120 + 274T \right)\omega^{4} - \left( 548 + 450T \right)\omega^{3} - \frac{3\sqrt{3}}{2}\left( 225 + 85T \right)\omega^{2} + \left( 85 + 15T \right)\omega + \frac{\sqrt{3}}{2}\left( 15 + T \right)$$


$$\left\{ \begin{matrix} k_{p} = \frac{b\tan\text{Δφ} - a + T\omega\left( b + \operatorname{atan}\text{Δφ} \right)}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}} \\ T_{d}\omega = \frac{- \left( b + a\tan\text{Δφ} \right)\left( 1 + T^{2}\omega^{2} \right)}{b\tan\text{Δφ} - a + T\omega\left( b + \operatorname{atan}\text{Δφ} \right)} \\ \end{matrix} \right.\ $$


a = 274ω4 − 85ω2 + 1


b = 120ω5 − 225ω3 + 15ω

T w1 kp Td
0,05 0,21350 2,06 3,33
0,1 0,21180 2,05 3,26
0,15 0,21000 2,03 3,19
0,2 0,20840 2,02 3,13
0,25 0,20670 2,00 3,07
0,3 0,20520 1,99 3,01
0,35 0,20370 1,98 2,95
0,4 0,20220 1,97 2,89
0,45 0,20070 1,96 2,82
0,5 0,19930 1,95 2,76

Przykład:

Obiekt inercyjny piątego rzędu i regulator PID


$$G\left( s \right) = \frac{k}{\left( T_{1}s + 1 \right)\left( T_{2}s + 1 \right)\left( T_{3}s + 1 \right)\left( T_{4}s + 1 \right)\left( T_{5}s + 1 \right)}$$


$$R\left( s \right) = k_{p}\left( 1 + \frac{1}{T_{i}s} + T_{d}s \right)$$


$$G_{\text{uo}}\left( s \right) = \frac{kk_{p}\left( 1 + \frac{1}{T_{i}s} + T_{d}s \right)}{\left( T_{1}s + 1 \right)\left( T_{2}s + 1 \right)\left( T_{3}s + 1 \right)\left( T_{4}s + 1 \right)\left( T_{5}s + 1 \right)}$$

Dane:


k = 1,   T1 = 1,   T2 = 2,   T3 = 3,   T4 = 4,   T5 = 5


$$G_{\text{uo}}\left( \text{jω} \right) = \frac{k_{p}\left( 1 + \frac{1}{T_{i}\text{jω}} + T_{d}\text{jω} \right)}{\begin{bmatrix} 120j\omega^{5} + 274\omega^{4} - 225\text{jω}^{3} - 85\omega^{2} + 15j\omega + 1 \\ \end{bmatrix}}$$


a = 274ω4 − 85ω2 + 1


b = 120ω5 − 225ω3 + 15ω


$$G_{\text{uo}}\left( \text{jω} \right) = \frac{k_{p}\left( a - jb \right)}{\left( a^{2} + b^{2} \right)} \bullet \left( 1 + j\left( T_{d}\omega - \frac{1}{T_{i}\omega} \right) \right)$$


$$G_{\text{uo}}\left( \text{jω} \right) = k_{p}\frac{a + b\left( T_{d}\omega - \frac{1}{T_{i}\omega} \right) + ja\left( T_{d}\omega - \frac{1}{T_{i}\omega} \right) - jb}{\left( a^{2} + b^{2} \right)}$$


$$G_{\text{uo}}\left( \text{jω} \right) = k_{p}\frac{a + b\left( T_{d}\omega - \frac{1}{T_{i}\omega} \right) + j\left( \text{aT}_{d}\omega - \frac{a}{T_{i}\omega} - b \right)}{\left( a^{2} + b^{2} \right)}$$


$$P_{\text{uo}}\left( \omega \right) = k_{p}\frac{a + bT_{d}\omega - \frac{b}{T_{i}\omega}}{\left( a^{2} + b^{2} \right)}$$


$$Q_{\text{uo}}\left( \omega \right) = k_{p}\frac{{- b + aT}_{d}\omega - \frac{a}{T_{i}\omega}}{\left( a^{2} + b^{2} \right)}$$

Warunek granicy stabilności


$$\left\{ \begin{matrix} P_{\text{uo}}\left( \omega \right) = - 1 \\ Q_{\text{uo}}\left( \omega \right) = 0 \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} k_{p}\frac{a + bT_{d}\omega - \frac{b}{T_{i}\omega}}{\left( a^{2} + b^{2} \right)} = - 1 \\ k_{p}\frac{{- b + aT}_{d}\omega - \frac{a}{T_{i}\omega}}{\left( a^{2} + b^{2} \right)} = 0 \\ \end{matrix} \right.\ $$


$$T_{d}\omega - \frac{1}{T_{i}\omega} = \frac{b}{a}$$


$$k_{p}\frac{a + b\frac{b}{a}}{\left( a^{2} + b^{2} \right)} = - 1$$


$$k_{p}\frac{1}{a} = - 1$$


$$\left\{ \begin{matrix} k_{p} = - a \\ T_{d}\omega - \frac{1}{T_{i}\omega} = \frac{b}{a} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} k_{p} = - a \\ T_{d}\omega - \frac{b}{a} = \frac{1}{T_{i}\omega} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} k_{p} = - a \\ \frac{1}{T_{i}\omega} = T_{d}\omega - \frac{b}{a} \\ \end{matrix} \right.\ $$


$$\frac{k_{p}}{T_{i}\omega} = b - aT_{d}\omega$$


$$\frac{k_{p}}{T_{i}} = b\omega - aT_{d}\omega^{2}$$

Szukamy ekstremum wyznaczonej funkcji z parametrem Td


a = 274ω4 − 85ω2 + 1


b = 120ω5 − 225ω3 + 15ω


$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = \left\lbrack \left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)\omega - T_{d}{\left( 274\omega^{4} - 85\omega^{2} + 1 \right)\omega}^{2} \right\rbrack^{'}$$


$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = \left( \left( 120\omega^{6} - 225\omega^{4} + 15\omega^{2} \right) - T_{d}\left( 274\omega^{6} - 85\omega^{4} + \omega^{2} \right) \right)^{'}$$


$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = \left( 120\omega^{6} - 225\omega^{4} + 15\omega^{2} - 274T_{d}\omega^{6} + 85T_{d}\omega^{4} - T_{d}\omega^{2} \right)^{'}$$


$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = \left( \left( 120 - 274T_{d} \right)\omega^{6} + \left( 85T_{d} - 225 \right)\omega^{4} + \left( 15 - T_{d} \right)\omega^{2} \right)^{'}$$


$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = 2\omega\left\lbrack 3\left( 120 - 274T_{d} \right)\omega^{4} + 2\left( 85T_{d} - 225 \right)\omega^{2} + \left( 15 - T_{d} \right) \right\rbrack$$


=4[(85Td−225)2−3(120−274Td)(15−Td)]


=4[7225Td2−38250Td+50625−5400+360Td+12330Td−822Td2]


=4(6403Td2−25560Td+45225)


$$\omega_{1}^{2} = \frac{- 85T_{d} + 225 - \sqrt{6403T_{d}^{2} - 25560T_{d} + 45225}}{3\left( 120 - 274T_{d} \right)}$$


$$\omega_{2}^{2} = \frac{- 85T_{d} + 225 - \sqrt{6403T_{d}^{2} - 25560T_{d} + 45225}}{3\left( 120 - 274T_{d} \right)}$$

Td w1 kp Ti
0 0,18513 1,59 6,25
0,05 0,18637 1,62 6,300496
0,1 0,18763 2,26 10,64036
0,15 0,18893 2,22 9,954836
0,2 0,19024 2,17 9,374234
0,25 0,19159 2,13 8,82347
0,3 0,19297 2,09 8,352568
0,35 0,19437 2,06 7,916507
0,4 0,19581 2,02 7,511543
0,45 0,19727 1,98 7,134455
0,5 0,19877 1,94 6,795203
0,55 0,20029 -445,58 18,31182
0,6 0,20185 -6000,31 -9,62861

Warunek: zapas modułu ΔL=ΔdB


ΔL = 20lgΔM = −Δ


$$\Delta M = 10^{- \frac{\Delta}{20}}$$


$$\left\{ \begin{matrix} P_{\text{uo}}\left( \omega \right) = - 1 + \Delta M \\ Q_{\text{uo}}\left( \omega \right) = 0 \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} k_{p}\frac{a + bT_{d}\omega - \frac{b}{T_{i}\omega}}{\left( a^{2} + b^{2} \right)} = \Delta M - 1 \\ k_{p}\frac{{- b + aT}_{d}\omega - \frac{a}{T_{i}\omega}}{\left( a^{2} + b^{2} \right)} = 0 \\ \end{matrix} \right.\ $$


$$T_{d}\omega - \frac{1}{T_{i}\omega} = \frac{b}{a}$$


$$k_{p}\frac{a + b\frac{b}{a}}{\left( a^{2} + b^{2} \right)} = \Delta M - 1$$


$$k_{p}\frac{1}{a} = \Delta M - 1$$


$$\left\{ \begin{matrix} k_{p} = a\left( \Delta M - 1 \right) \\ T_{d}\omega - \frac{1}{T_{i}\omega} = \frac{b}{a} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} k_{p} = a\left( \Delta M - 1 \right) \\ T_{d}\omega - \frac{b}{a} = \frac{1}{T_{i}\omega} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} k_{p} = a\left( \Delta M - 1 \right) \\ \frac{1}{T_{i}\omega} = T_{d}\omega - \frac{b}{a} \\ \end{matrix} \right.\ $$


$$\frac{k_{p}}{T_{i}\omega} = \left( b - aT_{d}\omega \right)\left( 1 - \Delta M \right)$$


$$\frac{k_{p}}{T_{i}} = \left( b\omega - aT_{d}\omega^{2} \right)\left( 1 - \Delta M \right)$$

Szukamy ekstremum wyznaczonej funkcji z parametrem Td


a = 274ω4 − 85ω2 + 1


b = 120ω5 − 225ω3 + 15ω


$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = \left( 1 - \Delta M \right)\left\lbrack \left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)\omega - T_{d}{\left( 274\omega^{4} - 85\omega^{2} + 1 \right)\omega}^{2} \right\rbrack^{'}$$


$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = {\left( 1 - \Delta M \right)\left( \left( 120\omega^{6} - 225\omega^{4} + 15\omega^{2} \right) - T_{d}\left( 274\omega^{6} - 85\omega^{4} + \omega^{2} \right) \right)}^{'}$$


$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = \left( 1 - \Delta M \right)\left( 120\omega^{6} - 225\omega^{4} + 15\omega^{2} - 274T_{d}\omega^{6} + 85T_{d}\omega^{4} - T_{d}\omega^{2} \right)^{'}$$


$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = {\left( 1 - \Delta M \right)\left( \left( 120 - 274T_{d} \right)\omega^{6} + \left( 85T_{d} - 225 \right)\omega^{4} + \left( 15 - T_{d} \right)\omega^{2} \right)}^{'}$$


$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = 2\omega\left( 1 - \Delta M \right)\left\lbrack 3\left( 120 - 274T_{d} \right)\omega^{4} + 2\left( 85T_{d} - 225 \right)\omega^{2} + \left( 15 - T_{d} \right) \right\rbrack$$


=4[(85Td−225)2−3(120−274Td)(15−Td)]


=4[7225Td2−38250Td+50625−5400+360Td+12330Td−822Td2]


=4(6403Td2−25560Td+45225)


$$\omega_{1}^{2} = \frac{- 85T_{d} + 225 - \sqrt{6403T_{d}^{2} - 25560T_{d} + 45225}}{3\left( 120 - 274T_{d} \right)}$$


$$\omega_{2}^{2} = \frac{- 85T_{d} + 225 - \sqrt{6403T_{d}^{2} - 25560T_{d} + 45225}}{3\left( 120 - 274T_{d} \right)}$$

Td w1 kp Ti
0 0,18513 0,79 6,25
0,05 0,18637 0,81 6,300496
0,1 0,18763 1,13 10,64036
0,15 0,18893 1,11 9,954836
0,2 0,19024 1,08 9,374234
0,25 0,19159 1,06 8,82347
0,3 0,19297 1,05 8,352568
0,35 0,19437 1,03 7,916507
0,4 0,19581 1,01 7,511543
0,45 0,19727 0,99 7,134455
0,5 0,19877 0,97 6,795203

Warunek: zapas fazy Δϕ


$$G_{\text{uo}}\left( \text{jω} \right) = k_{p}\frac{a + b\left( T_{d}\omega - \frac{1}{T_{i}\omega} \right) + j\left( \text{aT}_{d}\omega - \frac{a}{T_{i}\omega} - b \right)}{\left( a^{2} + b^{2} \right)}$$


$$P_{\text{uo}}\left( \omega \right) = k_{p}\frac{a + bT_{d}\omega - \frac{b}{T_{i}\omega}}{\left( a^{2} + b^{2} \right)}$$


$$Q_{\text{uo}}\left( \omega \right) = k_{p}\frac{{- b + aT}_{d}\omega - \frac{a}{T_{i}\omega}}{\left( a^{2} + b^{2} \right)}$$


$$M_{o}\left( \text{jω} \right) = \frac{1}{\sqrt{a^{2} + b^{2}}}$$


$$M_{R}\left( \text{jω} \right) = k_{p}\sqrt{1 + \left( T_{d}\omega - \frac{1}{T_{i}\omega} \right)^{2}}$$


$$\left\{ \begin{matrix} M\left( \omega \right) = 1 \\ \tan\text{Δφ} = \frac{Q\left( \omega \right)}{P\left( \omega \right)} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} M_{O}\left( \omega \right)M_{R}\left( \omega \right) = 1 \\ \tan\text{Δφ} = \frac{Q\left( \omega \right)}{P\left( \omega \right)} \\ \end{matrix} \right.\ $$


a = 274ω4 − 85ω2 + 1


b = 120ω5 − 225ω3 + 15ω


$$\left\{ \begin{matrix} \frac{k_{p}}{\sqrt{a^{2} + b^{2}}}\sqrt{1 + \left( T_{d}\omega - \frac{1}{T_{i}\omega} \right)^{2}} = 1 \\ \tan\text{Δφ} = \frac{- b + a\left( T_{d}\omega - \frac{1}{T_{i}\omega} \right)}{a + b\left( T_{d}\omega - \frac{1}{T_{i}\omega} \right)} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} \frac{k_{p}}{\sqrt{a^{2} + b^{2}}}\sqrt{1 + \left( T_{d}\omega - \frac{1}{T_{i}\omega} \right)^{2}} = 1 \\ a\tan\text{Δφ} + b\tan\text{Δφ}\left( T_{d}\omega - \frac{1}{T_{i}\omega} \right) = - b + a\left( T_{d}\omega - \frac{1}{T_{i}\omega} \right) \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} \frac{k_{p}}{\sqrt{a^{2} + b^{2}}}\sqrt{1 + \left( T_{d}\omega - \frac{1}{T_{i}\omega} \right)^{2}} = 1 \\ \left( b\tan\text{Δφ} - a \right)\left( T_{d}\omega - \frac{1}{T_{i}\omega} \right) = - b - a\tan\text{Δφ} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} \frac{k_{p}}{\sqrt{a^{2} + b^{2}}}\sqrt{1 + \left( T_{d}\omega - \frac{1}{T_{i}\omega} \right)^{2}} = 1 \\ T_{d}\omega - \frac{1}{T_{i}\omega} = - \frac{b + a\tan\text{Δφ}}{b\tan\text{Δφ} - a} \\ \end{matrix} \right.\ $$


$$\frac{k_{p}}{\sqrt{a^{2} + b^{2}}}\sqrt{1 + \left( \frac{b + a\tan\text{Δφ}}{b\tan\text{Δφ} - a} \right)^{2}} = 1$$


$$\frac{k_{p}}{\sqrt{a^{2} + b^{2}}}\sqrt{\frac{{\left( a - b\tan\text{Δφ} \right)^{2} + \left( b + a\tan\text{Δφ} \right)}^{2}}{\left( b\tan\text{Δφ} - a \right)^{2}}} = 1$$


$$\frac{k_{p}}{\sqrt{a^{2} + b^{2}}}\sqrt{\frac{\left( a^{2} + b^{2} \right)\left( 1 + \left( \tan\text{Δφ} \right)^{2} \right)}{\left( b\tan\text{Δφ} - a \right)^{2}}} = 1$$


$$k_{p} = \frac{b\tan{\text{Δφ} - a}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}$$


$$\left\{ \begin{matrix} k_{p} = \frac{b\tan\text{Δφ} - a}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}} \\ T_{d}\omega - \frac{1}{T_{i}\omega} = - \frac{b + a\tan\text{Δφ}}{b\tan\text{Δφ} - a} \\ \end{matrix} \right.\ $$


$$\left\{ \begin{matrix} k_{p} = \frac{b\tan\text{Δφ} - a}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}} \\ \frac{1}{T_{i}\omega} = T_{d}\omega + \frac{b + a\tan\text{Δφ}}{b\tan\text{Δφ} - a} \\ \end{matrix} \right.\ $$


$$\frac{k_{p}}{T_{i}\omega} = \left( T_{d}\omega + \frac{b + a\tan\text{Δφ}}{b\tan\text{Δφ} - a} \right)\frac{b\tan{\text{Δφ} - a}}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}$$


$$\frac{k_{p}}{T_{i}\omega} = \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left\lbrack T_{d}\omega\left( b\tan\text{Δφ} - a \right) + b + a\tan\text{Δφ} \right\rbrack$$


$$\frac{k_{p}}{T_{i}} = \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left\lbrack T_{d}b\omega^{2}\tan\text{Δφ} - T_{d}a\omega^{2} + \text{bω} + \text{aω}\tan\text{Δφ} \right\rbrack$$

Szukamy ekstremum wyznaczonej funkcji z parametrem Td


a = 274ω4 − 85ω2 + 1


b = 120ω5 − 225ω3 + 15ω


$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left\lbrack T_{d}\left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)\omega^{2}\tan\text{Δφ} - T_{d}\left( 274\omega^{4} - 85\omega^{2} + 1 \right)\omega^{2} + \left( 120\omega^{5} - 225\omega^{3} + 15\omega \right)\omega + \left( 274\omega^{4} - 85\omega^{2} + 1 \right)\omega\tan\text{Δφ} \right\rbrack^{'}$$


$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left\lbrack 120{T_{d}\omega}^{7}\tan\text{Δφ} - 225{T_{d}\omega}^{5}\tan\text{Δφ} + 15T_{d}\omega^{3}\tan\text{Δφ} - 274T_{d}\omega^{6} + 85T_{d}\omega^{4} - {T_{d}\omega}^{2} + 120\omega^{6} - 225\omega^{4} + 15\omega^{2} + 274\omega^{5}\tan\text{Δφ} - 85\omega^{3}\tan\text{Δφ} + \omega\tan\text{Δφ} \right\rbrack^{'}$$


$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left\lbrack 120{T_{d}\omega}^{7}\tan\text{Δφ} + \left( 120 - 274T_{d} \right)\omega^{6} + \left( 274 - 225T_{d} \right)\omega^{5}\tan\text{Δφ} + \left( 85T_{d} - 225 \right)\omega^{4} + \left( 15T_{d} - 85 \right)\omega^{3}\tan\text{Δφ} + \left( {15 - T}_{d} \right)\omega^{2} + \omega\tan\text{Δφ} \right\rbrack^{'}$$


$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = \frac{1}{\sqrt{1 + \left( \tan\text{Δφ} \right)^{2}}}\left\lbrack 840{T_{d}\omega}^{6}\tan\text{Δφ} + 6\left( 120 - 274T_{d} \right)\omega^{5} + 5\left( 274 - 225T_{d} \right)\omega^{4}\tan\text{Δφ} + 4\left( 85T_{d} - 225 \right)\omega^{3} + 3\left( 15T_{d} - 85 \right)\omega^{2}\tan\text{Δφ} + 2\left( {15 - T}_{d} \right)\omega + \tan\text{Δφ} \right\rbrack$$

Dla Δϕ=60 ̊


$$\left( \frac{k_{p}}{T_{i}} \right)^{'} = \left\lbrack 420{{\sqrt{3}T}_{d}\omega}^{6} + \left( 360 - 822T_{d} \right)\omega^{5} + \sqrt{3}\left( 685 - 562,5T_{d} \right)\omega^{4} + \left( 170T_{d} - 450 \right)\omega^{3} + \sqrt{3}\left( 22,5T_{d} - 127,5 \right)\omega^{2} + \left( 15 - T_{d} \right)\omega + 0,5\sqrt{3} \right\rbrack$$

Td w1 kp Ti
0 0,096 1,172 14,734
0,05 0,09580 1,15 11,90651
0,5 0,10020 1,23 12,10053
1 0,10580 1,34 12,27725
1,5 0,11230 1,45 12,39409
2 0,11970 1,58 12,40172
2,5 0,12820 1,72 12,28026
3 0,13740 1,86 11,95301
3,5 0,14740 2,00 11,43656
4 0,15700 2,13 10,68797
4,5 0,16630 2,24 9,815442
5 0,17490 2,32 8,891611
5,5 0,18260 2,39 7,985072
6 0,18940 2,43 7,143023
6,5 0,19540 2,46 6,388137
7 0,20050 2,49 5,723418
7,5 0,20510 2,50 5,147402
8 0,20910 2,51 4,6493

Stabilność – kryterium Hurwitza

Badanie stabilności układu regulacji na podstawie transmitancji operatorowej.


$$G\left( s \right) = \frac{k}{a_{n}s^{n} + a_{n - 1}s^{n - 1} + ...\ldots\ldots + a_{3}s^{3} + a_{2}s^{2} + a_{1}s + a_{0}}$$

Macierz Hurwitza


$$\Delta_{n} = \left| \begin{matrix} \begin{matrix} \begin{matrix} a_{n - 1} & a_{n} & 0 \\ a_{n - 3} & a_{n - 2} & a_{n - 1} \\ a_{n - 5} & a_{n - 4} & a_{n - 3} \\ \end{matrix} \\ \begin{matrix} a_{n - 7} & a_{n - 6} & a_{n - 5} \\ a_{n - 9} & a_{n - 8} & a_{n - 7} \\ \ldots & \ldots & \ldots \\ \end{matrix} \\ \end{matrix} & \begin{matrix} 0 \\ a_{n} \\ \begin{matrix} a_{n - 2} \\ a_{n - 4} \\ \begin{matrix} a_{n - 6} \\ \ldots \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} & \begin{matrix} \begin{matrix} 0 & \ldots \\ \end{matrix} \\ \begin{matrix} 0 & \ldots \\ \end{matrix} \\ \begin{matrix} \begin{matrix} a_{n - 1} & \ldots \\ \end{matrix} \\ \begin{matrix} a_{n - 3} & \ldots \\ \end{matrix} \\ \begin{matrix} \begin{matrix} a_{n - 5} & \ldots \\ \end{matrix} \\ \begin{matrix} \ldots & \ldots \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \right|$$

  1. Warunek konieczny - wszystkie wyrazy równania charakterystycznego istnieją i są dodatnie


an > 0,    an − 1 > 0,   ...……   a3 > 0,    a2 > 0      a1 > 0,      a0 > 0

  1. Warunek dostateczny – wszystkie podwyznaczniki wyznacznika głównego macierzy Hurwitza są większe od zera


Δn > 0,    Δn − 1 > 0,   ...……   Δ3 > 0,    Δ2 > 0      Δ1 > 0

Jeżeli któryś ze współczynników równania charakterystycznego jest ujemny lub równy zero albo któryś z podwyznaczników jest ujemny lub równy zero to układ jest niestabilny.

Ponieważ Δn = a0Δn − 1 i Δ1 = an − 1, to niecelowe jest sprawdzanie dodatności tych wyznaczników. Konieczne jest sprawdzanie dodatności wyznaczników od Δ2 do Δn-1.

Jeżeli któryś z podwyznaczników jest równy zero to układ jest na granicy stabilności – oscylacje o stałej amplitudzie.

Kryterium Hurwitza nie podaje żadnych progów stabilności.

Przykład:


$$G\left( s \right) = \frac{k}{\left( T_{1}s + 1 \right)\left( T_{2}s + 1 \right)\left( T_{3}s + 1 \right)\left( T_{4}s + 1 \right)\left( T_{5}s + 1 \right)}$$

Dane:


k = 1,   T1 = 1,   T2 = 2,   T3 = 3,   T4 = 4,   T5 = 5


$$G\left( s \right) = \frac{1}{120s^{5} + 274s^{4} + 225s^{3} + 85s^{2} + 15s + 1}$$


a5 = 120,    a4 = 274,     a3 = 225,    a2 = 85      a1 = 15,      a0 = 1


$$\Delta_{5} = \left| \begin{matrix} \begin{matrix} \begin{matrix} a_{4} & a_{5} & 0 \\ a_{2} & a_{3} & a_{4} \\ a_{0} & a_{1} & a_{2} \\ \end{matrix} \\ \begin{matrix} 0 & 0 & a_{0} \\ 0 & 0 & 0 \\ \end{matrix} \\ \end{matrix} & \begin{matrix} 0 \\ a_{5} \\ \begin{matrix} a_{3} \\ a_{1} \\ \begin{matrix} 0 \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} & \begin{matrix} \begin{matrix} 0 \\ \end{matrix} \\ \begin{matrix} 0 \\ \end{matrix} \\ \begin{matrix} \begin{matrix} a_{4} \\ \end{matrix} \\ \begin{matrix} a_{2} \\ \end{matrix} \\ \begin{matrix} \begin{matrix} a_{0} \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \right|$$


$$\Delta_{5} = \left| \begin{matrix} \begin{matrix} \begin{matrix} 274 & 120 & 0 \\ 85 & 225 & 274 \\ \begin{matrix} 1 \\ 0 \\ 0 \\ \end{matrix} & \begin{matrix} 15 \\ 0 \\ 0 \\ \end{matrix} & \begin{matrix} 85 \\ 1 \\ 0 \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} & \begin{matrix} 0 \\ 120 \\ \begin{matrix} 225 \\ 15 \\ \begin{matrix} 0 \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} & \begin{matrix} \begin{matrix} 0 \\ \end{matrix} \\ \begin{matrix} 0 \\ \end{matrix} \\ \begin{matrix} \begin{matrix} 274 \\ \end{matrix} \\ \begin{matrix} 85 \\ \end{matrix} \\ \begin{matrix} \begin{matrix} 1 \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \right|$$


$$\Delta_{2} = \left| \begin{matrix} 274 & 120 \\ 85 & 225 \\ \end{matrix} \right| = 274 \bullet 225 - 120 \bullet 85 = 51450$$


$$\Delta_{3} = \left| \begin{matrix} \begin{matrix} \begin{matrix} 274 & 120 & 0 \\ 85 & 225 & 274 \\ \begin{matrix} 1 \\ \end{matrix} & \begin{matrix} 15 \\ \end{matrix} & \begin{matrix} 85 \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \right| = 274 \bullet 225 \bullet 85 + 1 \bullet 120 \bullet 274 - 274 \bullet 15 \bullet 274 - 85 \bullet 120 \bullet 85 = 3279990$$


$$\Delta_{4} = \left| \begin{matrix} \begin{matrix} \begin{matrix} 274 & 120 & 0 \\ 85 & 225 & 274 \\ \begin{matrix} 1 \\ 0 \\ \end{matrix} & \begin{matrix} 15 \\ 0 \\ \end{matrix} & \begin{matrix} 85 \\ 1 \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} & \begin{matrix} 0 \\ 120 \\ \begin{matrix} 225 \\ 15 \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \right| = \left( - 1 \right)^{1 + 1} \bullet 274 \bullet \left| \begin{matrix} \begin{matrix} \begin{matrix} 225 & 274 & 120 \\ 15 & 85 & 225 \\ \begin{matrix} 0 \\ \end{matrix} & \begin{matrix} 1 \\ \end{matrix} & \begin{matrix} 15 \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \right| + \left( - 1 \right)^{1 + 2} \bullet 120 \bullet \left| \begin{matrix} \begin{matrix} \begin{matrix} 85 & 274 & 120 \\ 1 & 85 & 225 \\ \begin{matrix} 0 \\ \end{matrix} & \begin{matrix} 1 \\ \end{matrix} & \begin{matrix} 15 \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \right| =$$


$$\Delta_{4} = 274 \bullet \left| \begin{matrix} \begin{matrix} \begin{matrix} 225 & 274 & 120 \\ 15 & 85 & 225 \\ \begin{matrix} 0 \\ \end{matrix} & \begin{matrix} 1 \\ \end{matrix} & \begin{matrix} 15 \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \right| - 120 \bullet \left| \begin{matrix} \begin{matrix} \begin{matrix} 85 & 274 & 120 \\ 1 & 85 & 225 \\ \begin{matrix} 0 \\ \end{matrix} & \begin{matrix} 1 \\ \end{matrix} & \begin{matrix} 15 \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \right| =$$


Δ4 = 274(225•85•15+15•120−225•225−15•274•15) − 120(85•85•15+120−85•225−274•15) = 38102400

Układ otwarty jest stabilny, wszystkie warunki są spełnione

Badanie granicy stabilności układu zamkniętego:


$$G\left( s \right) = \frac{1}{120s^{5} + 274s^{4} + 225s^{3} + 85s^{2} + 15s + 1}$$


R(s) = kp


$$G_{z}\left( s \right) = \frac{k_{p}\frac{1}{120s^{5} + 274s^{4} + 225s^{3} + 85s^{2} + 15s + 1}}{1 + k_{p}\frac{1}{120s^{5} + 274s^{4} + 225s^{3} + 85s^{2} + 15s + 1}}$$


$$G_{z}\left( s \right) = \frac{k_{p}}{120s^{5} + 274s^{4} + 225s^{3} + 85s^{2} + 15s + 1 + k_{p}}$$


a5 = 120,    a4 = 274,     a3 = 225,    a2 = 85      a1 = 15,      a0 = 1 + kp


$$\Delta_{5} = \left| \begin{matrix} \begin{matrix} \begin{matrix} a_{4} & a_{5} & 0 \\ a_{2} & a_{3} & a_{4} \\ a_{0} & a_{1} & a_{2} \\ \end{matrix} \\ \begin{matrix} 0 & 0 & a_{0} \\ 0 & 0 & 0 \\ \end{matrix} \\ \end{matrix} & \begin{matrix} 0 \\ a_{5} \\ \begin{matrix} a_{3} \\ a_{1} \\ \begin{matrix} 0 \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} & \begin{matrix} \begin{matrix} 0 \\ \end{matrix} \\ \begin{matrix} 0 \\ \end{matrix} \\ \begin{matrix} \begin{matrix} a_{4} \\ \end{matrix} \\ \begin{matrix} a_{2} \\ \end{matrix} \\ \begin{matrix} \begin{matrix} a_{0} \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \right|$$


$$\Delta_{5} = \left| \begin{matrix} \begin{matrix} \begin{matrix} 274 & 120 & 0 \\ 85 & 225 & 274 \\ \begin{matrix} 1 + k_{p} \\ 0 \\ 0 \\ \end{matrix} & \begin{matrix} 15 \\ 0 \\ 0 \\ \end{matrix} & \begin{matrix} 85 \\ 1 + k_{p} \\ 0 \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} & \begin{matrix} 0 \\ 120 \\ \begin{matrix} 225 \\ 15 \\ \begin{matrix} 0 \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} & \begin{matrix} \begin{matrix} 0 \\ \end{matrix} \\ \begin{matrix} 0 \\ \end{matrix} \\ \begin{matrix} \begin{matrix} 274 \\ \end{matrix} \\ \begin{matrix} 85 \\ \end{matrix} \\ 1 + k_{p} \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \right|$$


$$\Delta_{2} = \left| \begin{matrix} 274 & 120 \\ 85 & 225 \\ \end{matrix} \right| = 274 \bullet 225 - 120 \bullet 85 = 51450$$


$$\Delta_{3} = \left| \begin{matrix} \begin{matrix} \begin{matrix} 274 & 120 & 0 \\ 85 & 225 & 274 \\ \begin{matrix} 1 + k_{p} \\ \end{matrix} & \begin{matrix} 15 \\ \end{matrix} & \begin{matrix} 85 \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \right| = 274 \bullet 225 \bullet 85 + \left( 1 + k_{p} \right) \bullet 120 \bullet 274 - 274 \bullet 15 \bullet 274 - 85 \bullet 120 \bullet 85 = 5240250 + \left( 1 + k_{p} \right)32880 - 1126140 - 867000 = 3247110 + \left( 1 + k_{p} \right)32880$$


kp ≥ −97, 756


$$\Delta_{4} = \left| \begin{matrix} \begin{matrix} \begin{matrix} 274 & 120 & 0 \\ 85 & 225 & 274 \\ \begin{matrix} 1 + k_{p} \\ 0 \\ \end{matrix} & \begin{matrix} 15 \\ 0 \\ \end{matrix} & \begin{matrix} 85 \\ 1 + k_{p} \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} & \begin{matrix} 0 \\ 120 \\ \begin{matrix} 225 \\ 15 \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \right| = \left( - 1 \right)^{1 + 1} \bullet 274 \bullet \left| \begin{matrix} \begin{matrix} \begin{matrix} 225 & 274 & 120 \\ 15 & 85 & 225 \\ \begin{matrix} 0 \\ \end{matrix} & \begin{matrix} 1 + k_{p} \\ \end{matrix} & \begin{matrix} 15 \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \right| + \left( - 1 \right)^{1 + 2} \bullet 120 \bullet \left| \begin{matrix} \begin{matrix} \begin{matrix} 85 & 274 & 120 \\ 1 + k_{p} & 85 & 225 \\ \begin{matrix} 0 \\ \end{matrix} & \begin{matrix} 1 + k_{p} \\ \end{matrix} & \begin{matrix} 15 \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \right| =$$


$$\Delta_{4} = 274 \bullet \left| \begin{matrix} \begin{matrix} \begin{matrix} 225 & 274 & 120 \\ 15 & 85 & 225 \\ \begin{matrix} 0 \\ \end{matrix} & \begin{matrix} 1 + k_{p} \\ \end{matrix} & \begin{matrix} 15 \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \right| - 120 \bullet \left| \begin{matrix} \begin{matrix} \begin{matrix} 85 & 274 & 120 \\ 1 + k_{p} & 85 & 225 \\ \begin{matrix} 0 \\ \end{matrix} & \begin{matrix} 1 + k_{p} \\ \end{matrix} & \begin{matrix} 15 \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \right| =$$


Δ4 = 274(225•85•15+15•120(1+kp)−225•225(1+kp)−15•274•15) − 120(85•85•15+120(1+kp)(1+kp)−85•225(1+kp)−274•15(1+kp)) = 274(286875+1800(1+kp)−50625(1+kp)−61650) − 120(108375+120(1+kp)(1+kp)−19125(1+kp)−4110(1+kp)) = 274(225225−48825(1+kp)) − 120(108375+120(1+kp)(1+kp)−23235(1+kp)) = 48706650 − 10589850(1+kp) − 14400(1+kp)(1+kp)


1 + kp = 4, 571     i       1 + kp = −734

Wzmocnienie krytyczne wynosi (kp)kr = 3, 571


Wyszukiwarka

Podobne podstrony:
vii w stabilnosc prionow
4 stabilnosc
5 STABILNOSC id 40487 Nieznany (2)
82 Nw 04 Stabilizator temperatury
dusznica bolesna stabilna - ktostam - 4 rok - am bydgoszcz, IV rok Lekarski CM UMK, Kardiologia, Ćwi
System stabilizacji miednicy, Ortopedia
sprawozdanie automatyka2, studia, V semestr, Automatyka i robotyka, sprawko automaty stabilność
stabilizacja
UNCERTAINTY RISK STABILITY?nking 04
Diody prostownicze, stabilizacyjne, LED
Badanie stabilności układów na podstawie kryterium Nyquista Zapas?zy i wzmocnienia
stabilizatory napiecia
Stabilność
stabilizatory
Heat Stabilizers
3 STABILIZATORY NAPIECIA STALE Nieznany
aspekty stabilności smakowej
PA7 stabilnosc
MCP1700 stabilizatory napiecia

więcej podobnych podstron