Sprawko fizyka 1

LABORATORIUM FIZYKI I ĆWICZENIE: 1

Wydział:

WIP

Grupa:

ID-A0-43

Nazwisko i imię:

Nowakowski Adam

Temat ćwiczenia:

Badanie zależności między natęrzeniem prądu i napięciem w obwodzie elektrycznym

Prowadzący:

1.Wstęp

Celem ćwiczenia było wyznaczenie wartości rezystancji poprzez pomiar wartości napięcia i narężenia. Rezystancja jest to wartość oporu, który element stawia przeciw przepływowi prądu. Opisana jest przez stosunek napięcia do natężenia prądu. Zależność tą przedstawia prawo Ohma:


$$R = \frac{U}{I}$$

Jednostką rezystancji jest Ω (om).

Dokładność pomiaru rezystancji jest ograniczona przez błędy przyrządów w wyniku czego trzeba było określić niepewność pomiaru

2. Układ pomiarowy

Podczas ćwiczenia badaliśmy układ złożony z:

Schemat układu:

Gdzie:

A – amperomierz

V – woltomierz

Rx – opornik

Informacja o miernikach:

3. Wykonanie ćwiczenia

I. Przebieg ćwiczenia:

Przebieg ćwiczenia wyglądał następująco:

  1. Połączenie elementów w układ przedstawiony w punkcie drugim

  2. Ustawienie zakresu amperomierza na 15mA

  3. Ustawienie zakresu woltomierza na 5 V

  4. Włączenie zasilacza

  5. Wykonanie pomiarów

Wykonanie pomiarów polegało na zmianie wartości napięcia podawanego przez zasilacz, odczyt wartości z amperomierza i woltomierza oraz spisanie ich. Proces ten wykonaliśmy 10 razy.
Wartości odcztane znajdują się w tabeli numer 1.

  1. Obliczenie niepewności pomiarowych

  2. Wprowadzenie otrzymanych danych do programu ORIGIN w celu otrzymania wykresów przedstawiających te wyniki oraz ich niepewności

II. Inne metody wyznaczania nieznanej rezystancji

  1. Pomiar rezystancji mostkiem Wheatstone’a:

    Układ:

W mostku Wheatstone’a, znajdują się: rezystor mierzony Rx, trzy rezystory wewnętrzne R2, R3, R4 o regulowanych wartościach oraz galwanometr G którego zadaniem jest utrzymanie układu wstanie równowagi.

Gdy układ jest w równowadze rezystancja Rx jest określona zależnością:


$$R_{x} = \frac{R_{2}*R_{3}}{R_{4}}$$

  1. Metoda porównawcza napięciowa:

    Układ:

Polega na odczytaniu wartości napięć Uw, Ux oraz odczytaniu rezystancji rezystora Rw o regulowanej wartości.

Wartość rezystancji mierzonej Rx wyznacza się z prawa Ohma.


$$I = \ \frac{U_{w}}{R_{w}} = \ \frac{U_{x}}{R_{x}}$$

stąd


$$R_{x} = \ \frac{U_{x}*R_{w}}{U_{w}}$$

  1. Metoda porównawcza prądowa:

Układ:

Zasada określania rezystancji rezystora Rx jest analogiczna do metody porównawczej napięciowej.


Rw * Iw = Rx * Ix

stąd


$$R_{x} = \frac{R_{w}*I_{w}}{I_{x}}$$

  1. Metoda pomiaru multimetrem(omomierzem)

    Polega na tym, że miernik podłączony do układu mierzy wartość prądu i napięcia, po czym oblicza rezystancję za pomocą prawa Ohma.

4. Wyniki i ich opracowanie

Tabela numer 1

LP. I [mA] U [V]
1. 1 0,32
2. 2 0,6
3. 3 0,89
4. 4 1,12
5. 5 1,49
6. 6 1,78
7. 7 2,05
8. 8 2,4
9. 9 2,65
10. 10 2,95

Wybrany pomiar natężenia:

I = 10 [mA]

I = 0,01 [A]

Wybrany pomiar napięcia:

U = 2,95 [V]

Obliczenie wartości szukanej rezystancji:

Wzór:


$$R = \frac{\overset{\overline{}}{U}}{\overset{\overline{}}{I}}$$

Obliczenia:


$$R = \ \frac{2,95}{0,01} = 295\ \lbrack\mathrm{\Omega}\rbrack$$

5. Obliczanie niepewności

Niepewność wzorcowania


$$\Delta x = \ \frac{klasa*zakres}{100}$$

Niepewność eksperymentatora


$$\Delta x = \ \frac{\text{zakres}}{2*ilosc\ dzialek}$$

I. Wyznaczenie niepewności wartości natężenia:

Wyznaczamy niepewność typu B ,gdyż bierzemy pod uwagę tylko jeden pomiar i niepewność związana jest niedoskonałością miernika.


$$u\left( I \right) = \ \sqrt{({\frac{\text{ΔI}}{\sqrt{3}})}^{2} + ({\frac{\Delta I_{e}}{\sqrt{3}})}^{2}}$$


$$\Delta I = \ \frac{0,5*15}{100} = 0,075\ \lbrack mA\rbrack$$


$$\Delta I_{e} = \ \frac{15}{2*60} = 0,125\ \lbrack mA\rbrack$$


$$u\left( I \right) = \ \sqrt{({\frac{0,075}{\sqrt{3}})}^{2} + ({\frac{0,125}{\sqrt{3}})}^{2}} = \sqrt{1,875*10^{- 3} + 5,208*10^{- 3}} = 0,084\ \lbrack mA\rbrack$$

Wartość natężenia wraz z niepewnością:


I = 10, 00(84) [mA]

II. Wyznaczenie niepewności wartości napięcia:

Wyznaczamy niepewność typu B ,gdyż bierzemy pod uwagę tylko jeden pomiar i niepewność związana jest niedoskonałością miernika.


$$u\left( U \right) = \ \sqrt{({\frac{\text{ΔU}}{\sqrt{3}})}^{2} + ({\frac{\Delta U_{e}}{\sqrt{3}})}^{2}}$$


$$\Delta U = \ \frac{1,5*5}{100} = 0,075\ \lbrack V\rbrack$$


$$\Delta U_{e} = \ \frac{5}{2*50} = 0,05\ \lbrack V\rbrack$$


$$u\left( U \right) = \ \sqrt{({\frac{0,075}{\sqrt{3}})}^{2} + ({\frac{0,05}{\sqrt{3}})}^{2}} = \sqrt{{0,043}^{2} + {0,029}^{2}} = 0,052\ \lbrack V\rbrack$$

Wartość napięcia wraz z niepewnością:


U = 2, 950(52) [V]

III. Wyznaczenie niepewności wartości oporu:

Wyznaczamy niepewność złożoną:


$$u_{c}\left( R \right) = \sqrt{{(\frac{\partial R}{\partial I})}^{2}*u^{2}\left( I \right) + {(\frac{\partial R}{\partial U})}^{2}*u^{2}\left( U \right)}$$


$$u_{c}\left( R \right) = \sqrt{{( - \frac{U}{I^{2}})}^{2}*u^{2}\left( I \right) + {(\frac{1}{I})}^{2}*u^{2}\left( U \right)}$$


$$u_{c}\left( R \right) = \sqrt{\left( - \frac{2,95}{\left( 0,01 \right)^{2}} \right)^{2}*{0,000084}^{2} + \left( \frac{1}{0,01} \right)^{2}*{0,052}^{2}} = \sqrt{6,14 + 27,04} = 5,76$$

Wartość oporu wraz z niepewnością złożoną:


R = 295, 0(5,8) [Ω]

Niepewność rozszerzona:


Uc(R) = k * uc(R)

gdzie k=2


Uc(R) = 2 * 5, 76 = 11, 52 [Ω]

Wyznaczony opór ma wartość:


R = (295±12) Ω 

IV. Metoda mniejszych kwadratów


y = Ax + B

Gdzie:

y = I

x = U

$A = \frac{1}{R}$,

B = 0

czyli


$$R = \frac{1}{A}$$


$$u\left( R \right) = \sqrt{{(\frac{\partial R}{\partial A})}^{2}*u^{2}\left( A \right)}$$


$$u\left( R \right) = \sqrt{{( - \frac{1}{A^{2}})}^{2}*u^{2}\left( A \right)}$$

  1. Dla I(U)

    A= 0,0034


u(A)= 1, 6113 * 10−5

Niepewność typu A:


$$u\left( R \right) = \sqrt{{( - \frac{1}{{0,0034}^{2}})}^{2}*{(1,6113*10^{- 5})}^{2}} = 1,394$$

Prawo dodawania niepewności typu A i B


$$u\left( R \right) = \sqrt{{5,76}^{2} + {1,394}^{2}} = 5,93$$

Wartość oporu:


$$R = \frac{1}{0,0034} = 294,117$$

Wartość oporu wraz z niepewnością:


R = 294, 1(5,9) [Ω]

Niepewność rozszerzona:


Uc(R) = k * uc(R)

gdzie k=2


Uc(R) = 2 * 5, 9 = 11, 85 [Ω]

Wyznaczony opór ma wartość:


R = (294±12) Ω 

Wynik testu χ2 wynosi 13,00194 i jest mniejszy od wartości krytycznej dla 8 stopni swobody i poziomu istotności 0,05 (15,5), więc zależność może być zalewnością liniową.

  1. Dla U(I)

Dla tego przypadku współczynnik kierunkowy prostej U(I), jest szukaną wartością oporu.

R = A = 293,76


u(A) = u(R)= 1, 77

Prawo dodawania niepewności typu A i B


$$u\left( R \right) = \sqrt{{5,76}^{2} + {1,77}^{2}} = 6,03$$

Wartość oporu wraz z niepewnością:


R = 293, 76(6,03) [Ω]

Niepewność rozszerzona:


Uc(R) = k * uc(R)

gdzie k=2


Uc(R) = 2 * 6, 03 = 12, 06 [Ω]

Wyznaczony opór ma wartość:


R = (294±12) Ω 

Wynik testu χ2 wynosi 1,12 i jest mniejszy od wartości krytycznej dla 8 stopni swobody i poziomu istotności 0,05, więc zależność może być zalewnością liniową.

5. Pytania

  1. Do czego służy metoda najmniejszych kwadratów?

    Metoda najmniejszych kwadratów polega na znalezieniu funkcji, dla której suma kwadratów odchyleń powinna być minimalna. Do szacowania parametrów służą: B-stała regresji oraz A-współczynnik kierunkowy. Metoda ta służy do oceny liniowej i nieliniowej związku. Pozwala określić parametry funkcji regresji w postaci y=Ax+B

  2. Dla jakich wartości prądu płynącego przez rezystor zależność pomiędzy U i I można uznać za liniową?

Podczas przepływu prądu przez obwód wydziela się na oporniku temperatura, i gdy nie spowoduje ona przegrzania, wtedy zależność tego prądu(i jego napięcia) można uznać za liniową.

Zależność oporu od temperatury opisany jest wzorem:


RT = R0[1 + α(TT0)]

Gdzie

RT - rezystancja przy danej temperaturze

R0 - rezystancja przewodnika

α – współczynnik temperatury rezystancji

T0 – temperatura otoczenia

6. Wnioski


Wyszukiwarka

Podobne podstrony:
Sprawko fizyka1
sprawko fizyka 1 POPRANE
sprawka fizyka, 220-Wyznaczanie stałej Plancka i pracy wyjścia na podstawie zjawiska fotoelektryczne
sprawko fizyka 1
303b, Studia, ROK I, 1 semestr, Fizyka, LABKI z FIZ, Sprawozdania, fizyka lab sprawka, Fizyka- labor
sprawka fizyka, Cechowanie termoogniwa, nr
sprawka fizyka, Wyznaczanie prędkości dźwięku w powietrzu, nr
sprawka fizyka, Wyznaczanie promienia krzywizny soczewki za pomocą pierścieni Newtona
sprawka fizyka, Wyznaczanie stałej Plancka i pracy wyjścia na podstawie zjawiska fotoelektrycznego.,
sprawka fizyka ~$0 Wyznaczanie stałej Plancka i pracy wyjścia na podstawie zjawiska fotoelektr
Sprawko fizyka(
sprawozdanie z laboratorium fizyki nr 1, sprawka fizyka
!!!!PYTANIA WEJSCIOWKA !!!, sprawka fizyka
302A, Studia, ROK I, 1 semestr, Fizyka, LABKI z FIZ, Sprawozdania, fizyka lab sprawka, Fizyka- labor
Sprawozdanie nr1, sprawka fizyka
Sprawko-Fizyka, Studia 1, I rok, fizyka
28 - II, sprawka fizyka
sprawka fizyka, Wyznaczanie ogniskowych soczewek ze wzoru soczewkowego oraz metodą Bessela., nr
LABORATORIUM FIZYKI I sprawko, sprawka fizyka

więcej podobnych podstron