project final

Let’s consider the following circuit:

R = R1 = R2 = R3 = 25 Ω

C = 190 µF

L = 125 mH

E = 100 V

where switches S1 and S2 are closed at t = 0 and t = τ (where τ is the time constant of the LR circuit), according the following behavior:


$$\left\{ \begin{matrix} S1 = Off & S2 = O\text{ff} & dla\ t < 0 \\ S1 = On & S2 = Off & dla\ 0\ \leq t < \tau \\ S1 = On & S2 = On & dla\ t\ \geq \ \tau \\ \end{matrix} \right.\ $$

The goal is to find the solution of the above circuit, basically the current iL(t) through the inductor and the voltage v(t)C on the capacitor. Knowing v(t)C we can easily find the current i1(t). We will obtain the solution with 2 different methods:

Classic method

iL(t) = iC(t) = 0


$$\left\{ \begin{matrix} E - R_{3}i_{3} - L\frac{di_{1}}{\text{dt}} - R_{1}i_{1} = 0 \\ \text{\ \ \ i}_{2} = 0\ \ = = = > \ \ i_{1} = i_{2} = i_{L}\text{\ \ \ } \\ \end{matrix} \right.\ $$

We obtain a First Order Linear Differential equation with initial conditions:


$$\left\{ \begin{matrix} L\frac{di_{L}}{\text{dt}} + 2Ri_{L} = E \\ i_{L}\left( 0 \right) = 0 \\ \end{matrix} \right.\ $$

To find the solution, first we consider the associated homogenous equation and the characteristic equation:

$L\frac{di_{L}}{\text{dt}} + 2Ri_{L} = 0$ Lλ + 2R = 0 $\lambda = - \frac{2R}{L}$

so


$$i_{L}\left( t \right) = Ce^{\text{λt}} = Ce^{- \frac{2R}{L}t}$$

To find a particular solution we assume that the derivative of the current iL is zero:

2RiL = E $i_{L} = \frac{E}{2R}$

So:


$$i_{L}\left( t \right) = \text{Ce}^{- \frac{2R}{L}t} + \frac{E}{2R}$$

To calculate the value of constant C, we use the initial condition:

$0 = C + \frac{E}{2R}$ $C = - \frac{E}{2R}$

Finally the solution of the differential equation is:

$i_{L}\left( t \right) = \frac{E}{2R}\ \left( 1 - e^{- \frac{2R}{L}t} \right)$ for 0 ≤ t ≤ τ

where τ is:


$$\tau = \left| \frac{1}{\lambda} \right| = \frac{L}{2R}$$

Replacing the values for R, L and E we have:

iL(t) = 2 (1−e−400t) for 0 ≤ t ≤ 2,5 msec


$$\left\{ \begin{matrix} E - R_{3}i_{3} - L\frac{di_{L}}{\text{dt}} - R_{1}i_{L} = 0 \\ R_{3}i_{3} - v_{C} - R_{2}C\frac{dv_{C}}{\text{dt}} = 0 \\ i_{L} = C\frac{dv_{C}}{dt} + i_{3} \\ \end{matrix} \right.\ $$

Considering the current iL(t), we obtain a Second Order Linear Differential equation


$$2RLC\frac{d^{2}i_{L}}{dt^{2}} + \left( 5R^{2}C + L \right)\frac{di_{L}}{\text{dt}} + 2Ri_{L} = E$$

The initial conditions can be obtained by the solution:

$i_{L}\left( t \right) = \frac{E}{2R}\ \left( 1 - e^{- \frac{2R}{L}t} \right)$ dla 0 ≤ t ≤ τ

when t = τ. So we obtain:


$$i_{L}\left( \tau \right) = \frac{E}{2R}\ \left( 1 - e^{- \frac{2R}{L}\tau} \right) = \frac{E}{2R}\ \left( 1 - \frac{1}{e} \right) = 1,26\ A$$

and:


$$i_{L}^{'}\left( \tau \right) = \left. \ \frac{di_{L}(t)}{\text{dt}} \right|_{t = \tau}\ = \left. \ \frac{E}{L}\ \left( e^{- \frac{2R}{L}t} \right) \right|_{t = \tau} = \frac{E}{L}\ \frac{1}{e} = 295\ A/sec$$

Finally we obtain a Second Order Linear Differential equation with initial conditions


$$\left\{ \begin{matrix} 2RLC\frac{d^{2}i_{L}}{dt^{2}} + \left( 3R^{2}C + L \right)\frac{di_{L}}{\text{dt}} + 2Ri_{L} = E \\ i_{L}\left( \tau \right) = \frac{E}{2R}\ \left( 1 - \frac{1}{e} \right)\text{\ \ \ \ } \\ i_{L}^{'}\left( \tau \right) = \frac{E}{L}\ \frac{1}{e} \\ \end{matrix} \right.\ $$

To find the solution, first we consider the associated homogenous equation and the characteristic equation:

$2RLC\frac{d^{2}i_{L}}{dt^{2}} + \left( 5R^{2}C + L \right)\frac{di_{L}}{\text{dt}} + 2Ri_{L} = 0$ 2RLCλ2 + (5R2C+L)λ + 2R = 0

Substituting values for R, L and C we have:


1, 1875 * 10−3λ2 + 481, 25 * 10−3λ + 50 = 0

and solving the second order equation, we obtain two complex solutions:

λ1, 2 = α ± jβ = −202, 6 ± j32, 3

so:


iL(t) = eαt(c1cos(βt)+c2sin(βt)) = e−202, 6t(c1cos(32,3t)+c2sin(32,3t)) 

To find a particular solution we assume that the derivative of the current iL is zero:

2RiL = E $i_{L} = \frac{E}{2R}$

So:


$$i_{L}\left( t \right) = e^{- 202,6t}\left( c_{1}\cos\left( 32,3t \right) + c_{2}\sin\left( 32,3t \right) \right) + \frac{E}{2R}$$

To calculate the value of constant c1 and c2, we use the initial condition on iL(τ):

1,26 = e−202, 6 * 2, 5 * 10−3(c1cos(32,3*2,5*10−3)+c2sin(32,3*2,5*10−3)) + 2

-1,226 = c1cos(0,08075) + c2sin(0,08075)


0, 81565 * c1 + 0, 00115 * c2 = −1

and the initial condition on iL(τ):


295 = −202, 6 * e−202, 6 * 2, 5 * 10−3(c1cos(32,3*2,5*10−3)+c2sin(32,3*2,5*10−3)) + e−202, 6 * 2, 5 * 10−3(− 32, 3 * c1sin(32,3*2,5*10−3)+32, 3 * c2cos(32,3*2,5*10−3))


122, 2474 * c1 + 19, 6623 * c2 = 295

We obtain the following system of equations:

$\left\{ \begin{matrix} 0,81565*c_{1} + 0,00115*c_{2} = - 1 \\ 122,2474*c_{1} + 19,6623*c_{2} = 295 \\ \end{matrix} \right.\ $ $\left\{ \begin{matrix} c_{1} = - 1,19 \\ c_{2} = 22,429 \\ \end{matrix} \right.\ $

Finally the solution of the differential equation is:

iL(t) = e−202, 6t(−1.19*cos(32,3t)+22,429*sin(32,3t)) + 2 for t > 2,5 msec

Laplace method

iL(t) = iC(t) = 0

The impedance of the circuit is:

Z = R3 + sL + R1= 2R + sL

So the current flowing in the circuit is:


$$I\left( s \right) = \frac{V(s)}{Z} = \ \frac{1}{2R + sL}V\left( s \right) = \frac{1}{2R + sL}*\frac{E}{s} = \frac{E}{L}\ \frac{1}{s\left( \frac{2R}{L} + s \right)} = \frac{E}{L}\ \left( \frac{A}{s} + \frac{B}{\left( \frac{2R}{L} + s \right)} \right)$$

where:


$$A = \operatorname{}{\frac{1}{\left( \frac{2R}{L} + s \right)} = \frac{2R}{L}}$$


$$B = \operatorname{}{\frac{1}{s} = - \frac{2R}{L}}$$

Definitively:


$$I\left( s \right) = \frac{E}{2R}\left( \frac{1}{s} - \frac{1}{s + \frac{2R}{L}} \right)$$

Applying the inverse Laplace transformer we obtain:


$$i_{L}\left( t \right) = i\left( t \right) = \frac{E}{2R}\ \left( 1 - e^{- \frac{2R}{L}t} \right)$$

that is the same result obtained with the classic method.


$$Z_{1} = R_{2} + \frac{1}{\text{sC}}$$


$$Z_{2} = \frac{R_{3}\left( R_{2} + \frac{1}{\text{sC}} \right)}{R_{3} + \left( R_{2} + \frac{1}{\text{sC}} \right)} = R\frac{RCs + 1}{2RCs + 1}$$


$$Z_{3} = R\frac{RCs + 1}{2RCs + 1} + R + SL = \frac{2RLCs^{2} + \left( 3R^{2}C + L \right)s + 2R}{2RCs + 1}$$

The current is:


$$I\left( s \right) = \frac{V(s)}{Z_{3}} = \ \frac{2RCs + 1}{2RLCs^{2} + \left( 3R^{2}C + L \right)s + 2R}*\frac{E}{s}$$

Replacing all the known values, we have:


$$I\left( s \right) = \ 100\frac{9,5*10^{- 3}s + 1}{s\left( 1,1875*10^{- 3}s^{2} + 481,25*10^{- 3}s + 50 \right)} = \frac{100}{1,1875*10^{- 3}}\left( \frac{9,5*10^{- 3}s + 1}{s\left( \left( s + 202,6 \right)^{2} + {32,3}^{2} \right)} \right) = \ \frac{100}{1,1875*10^{- 3}}\left( \frac{A}{s} + \frac{Bs + C}{\left( s + 202,6 \right)^{2} + {32,3}^{2}} \right)$$

Decomposing the polynomial and using inverse Laplace transformer we have

iL(t) = e−202, 6t(−1.17*cos(32,3t)+22,4*sin(32,3t)) + 2


Wyszukiwarka

Podobne podstrony:
project final tromba
Pew Global Attitudes Project Russia Report FINAL September 3 20131
Architecting Presetation Final Release ppt
Prezentacja ZPR MS Project
Opracowanie FINAL miniaturka id Nieznany
Art & Intentions (final seminar paper) Lo
Free Energy Projects 2
Microsoft Office Project Project1 id 299062
FINAŁ, 3 rok, edukacja ekologiczna
pyt contr final
KRO Final
FInal pkm 3
project
Raport FOCP Fractions Report Fractions Final
FINAL
fizyka egzamin paja final
89SXX Project Board
CCNA 2 Final Exam v
05 Daimler GroupA FINAL

więcej podobnych podstron