1. Fz=mgsinα FT=f*mgcosα F=FZ+FT W=F*s P=$\frac{W}{t}$
2. ω = $\frac{2\pi}{T}$ =2π*f I=m*r2 L = I*ω V= ω*r
3. F=-kx F=ma a= -ω2x => $\frac{a}{x}\ $= ω2
równolegle: k=k1+k2+k3 szeregowo: $\frac{1}{k}\ $=$\ \frac{1}{k_{1}} + \frac{1}{k_{2}} + \frac{1}{k_{3}}$
as=ε*r an=ω2 *r Ek =$\ \frac{mV^{2}}{2}$ Ep = $\frac{m\omega^{2}x^{2}}{2}$ Ec = $\frac{m\omega^{2}A^{2}}{2}$
1. Fz=mgsinα FT=f*mgcosα F=FZ+FT W=F*s P=$\frac{W}{t}$
2. ω = $\frac{2\pi}{T}$ =2π*f I=m*r2 L = I*ω V= ω*r
3. F=-kx F=ma a= -ω2x => $\frac{a}{x}\ $= ω2
równolegle: k=k1+k2+k3 szeregowo: $\frac{1}{k}\ $=$\ \frac{1}{k_{1}} + \frac{1}{k_{2}} + \frac{1}{k_{3}}$
as=ε*r an=ω2 *r Ek =$\ \frac{mV^{2}}{2}$ Ep = $\frac{m\omega^{2}x^{2}}{2}$ Ec = $\frac{m\omega^{2}A^{2}}{2}$
1. Fz=mgsinα FT=f*mgcosα F=FZ+FT W=F*s P=$\frac{W}{t}$
2. ω = $\frac{2\pi}{T}$ =2π*f I=m*r2 L = I*ω V= ω*r
3. F=-kx F=ma a= -ω2x => $\frac{a}{x}\ $= ω2
równolegle: k=k1+k2+k3 szeregowo: $\frac{1}{k}\ $=$\ \frac{1}{k_{1}} + \frac{1}{k_{2}} + \frac{1}{k_{3}}$
as=ε*r an=ω2 *r Ek =$\ \frac{mV^{2}}{2}$ Ep = $\frac{m\omega^{2}x^{2}}{2}$ Ec = $\frac{m\omega^{2}A^{2}}{2}$
1. Fz=mgsinα FT=f*mgcosα F=FZ+FT W=F*s P=$\frac{W}{t}$
2. ω = $\frac{2\pi}{T}$ =2π*f I=m*r2 L = I*ω V= ω*r
3. F=-kx F=ma a= -ω2x => $\frac{a}{x}\ $= ω2
równolegle: k=k1+k2+k3 szeregowo: $\frac{1}{k}\ $=$\ \frac{1}{k_{1}} + \frac{1}{k_{2}} + \frac{1}{k_{3}}$
as=ε*r an=ω2 *r Ek =$\ \frac{mV^{2}}{2}$ Ep = $\frac{m\omega^{2}x^{2}}{2}$ Ec = $\frac{m\omega^{2}A^{2}}{2}$
1. Fz=mgsinα FT=f*mgcosα F=FZ+FT W=F*s P=$\frac{W}{t}$
2. ω = $\frac{2\pi}{T}$ =2π*f I=m*r2 L = I*ω V= ω*r
3. F=-kx F=ma a= -ω2x => $\frac{a}{x}\ $= ω2
równolegle: k=k1+k2+k3 szeregowo: $\frac{1}{k}\ $=$\ \frac{1}{k_{1}} + \frac{1}{k_{2}} + \frac{1}{k_{3}}$
as=ε*r an=ω2 *r Ek =$\ \frac{mV^{2}}{2}$ Ep = $\frac{m\omega^{2}x^{2}}{2}$ Ec = $\frac{m\omega^{2}A^{2}}{2}$
1. Fz=mgsinα FT=f*mgcosα F=FZ+FT W=F*s P=$\frac{W}{t}$
2. ω = $\frac{2\pi}{T}$ =2π*f I=m*r2 L = I*ω V= ω*r
3. F=-kx F=ma a= -ω2x => $\frac{a}{x}\ $= ω2
równolegle: k=k1+k2+k3 szeregowo: $\frac{1}{k}\ $=$\ \frac{1}{k_{1}} + \frac{1}{k_{2}} + \frac{1}{k_{3}}$
as=ε*r an=ω2 *r Ek =$\ \frac{mV^{2}}{2}$ Ep = $\frac{m\omega^{2}x^{2}}{2}$ Ec = $\frac{m\omega^{2}A^{2}}{2}$
1. Fz=mgsinα FT=f*mgcosα F=FZ+FT W=F*s P=$\frac{W}{t}$
2. ω = $\frac{2\pi}{T}$ =2π*f I=m*r2 L = I*ω V= ω*r
3. F=-kx F=ma a= -ω2x => $\frac{a}{x}\ $= ω2
równolegle: k=k1+k2+k3 szeregowo: $\frac{1}{k}\ $=$\ \frac{1}{k_{1}} + \frac{1}{k_{2}} + \frac{1}{k_{3}}$
as=ε*r an=ω2 *r Ek =$\ \frac{mV^{2}}{2}$ Ep = $\frac{m\omega^{2}x^{2}}{2}$ Ec = $\frac{m\omega^{2}A^{2}}{2}$
1. Fz=mgsinα FT=f*mgcosα F=FZ+FT W=F*s P=$\frac{W}{t}$
2. ω = $\frac{2\pi}{T}$ =2π*f I=m*r2 L = I*ω V= ω*r
3. F=-kx F=ma a= -ω2x => $\frac{a}{x}\ $= ω2
równolegle: k=k1+k2+k3 szeregowo: $\frac{1}{k}\ $=$\ \frac{1}{k_{1}} + \frac{1}{k_{2}} + \frac{1}{k_{3}}$
as=ε*r an=ω2 *r Ek =$\ \frac{mV^{2}}{2}$ Ep = $\frac{m\omega^{2}x^{2}}{2}$ Ec = $\frac{m\omega^{2}A^{2}}{2}$
1. Fz=mgsinα FT=f*mgcosα F=FZ+FT W=F*s P=$\frac{W}{t}$
2. ω = $\frac{2\pi}{T}$ =2π*f I=m*r2 L = I*ω V= ω*r
3. F=-kx F=ma a= -ω2x => $\frac{a}{x}\ $= ω2
równolegle: k=k1+k2+k3 szeregowo: $\frac{1}{k}\ $=$\ \frac{1}{k_{1}} + \frac{1}{k_{2}} + \frac{1}{k_{3}}$
as=ε*r an=ω2 *r Ek =$\ \frac{mV^{2}}{2}$ Ep = $\frac{m\omega^{2}x^{2}}{2}$ Ec = $\frac{m\omega^{2}A^{2}}{2}$
1. Fz=mgsinα FT=f*mgcosα F=FZ+FT W=F*s P=$\frac{W}{t}$
2. ω = $\frac{2\pi}{T}$ =2π*f I=m*r2 L = I*ω V= ω*r
3. F=-kx F=ma a= -ω2x => $\frac{a}{x}\ $= ω2
równolegle: k=k1+k2+k3 szeregowo: $\frac{1}{k}\ $=$\ \frac{1}{k_{1}} + \frac{1}{k_{2}} + \frac{1}{k_{3}}$
as=ε*r an=ω2 *r Ek =$\ \frac{mV^{2}}{2}$ Ep = $\frac{m\omega^{2}x^{2}}{2}$ Ec = $\frac{m\omega^{2}A^{2}}{2}$
1. Fz=mgsinα FT=f*mgcosα F=FZ+FT W=F*s P=$\frac{W}{t}$
2. ω = $\frac{2\pi}{T}$ =2π*f I=m*r2 L = I*ω V= ω*r
3. F=-kx F=ma a= -ω2x => $\frac{a}{x}\ $= ω2
równolegle: k=k1+k2+k3 szeregowo: $\frac{1}{k}\ $=$\ \frac{1}{k_{1}} + \frac{1}{k_{2}} + \frac{1}{k_{3}}$
as=ε*r an=ω2 *r Ek =$\ \frac{mV^{2}}{2}$ Ep = $\frac{m\omega^{2}x^{2}}{2}$ Ec = $\frac{m\omega^{2}A^{2}}{2}$
1. Fz=mgsinα FT=f*mgcosα F=FZ+FT W=F*s P=$\frac{W}{t}$
2. ω = $\frac{2\pi}{T}$ =2π*f I=m*r2 L = I*ω V= ω*r
3. F=-kx F=ma a= -ω2x => $\frac{a}{x}\ $= ω2
równolegle: k=k1+k2+k3 szeregowo: $\frac{1}{k}\ $=$\ \frac{1}{k_{1}} + \frac{1}{k_{2}} + \frac{1}{k_{3}}$
as=ε*r an=ω2 *r Ek =$\ \frac{mV^{2}}{2}$ Ep = $\frac{m\omega^{2}x^{2}}{2}$ Ec = $\frac{m\omega^{2}A^{2}}{2}$
1. Fz=mgsinα FT=f*mgcosα F=FZ+FT W=F*s P=$\frac{W}{t}$
2. ω = $\frac{2\pi}{T}$ =2π*f I=m*r2 L = I*ω V= ω*r
3. F=-kx F=ma a= -ω2x => $\frac{a}{x}\ $= ω2
równolegle: k=k1+k2+k3 szeregowo: $\frac{1}{k}\ $=$\ \frac{1}{k_{1}} + \frac{1}{k_{2}} + \frac{1}{k_{3}}$
as=ε*r an=ω2 *r Ek =$\ \frac{mV^{2}}{2}$ Ep = $\frac{m\omega^{2}x^{2}}{2}$ Ec = $\frac{m\omega^{2}A^{2}}{2}$
1. Fz=mgsinα FT=f*mgcosα F=FZ+FT W=F*s P=$\frac{W}{t}$
2. ω = $\frac{2\pi}{T}$ =2π*f I=m*r2 L = I*ω V= ω*r
3. F=-kx F=ma a= -ω2x => $\frac{a}{x}\ $= ω2
równolegle: k=k1+k2+k3 szeregowo: $\frac{1}{k}\ $=$\ \frac{1}{k_{1}} + \frac{1}{k_{2}} + \frac{1}{k_{3}}$
as=ε*r an=ω2 *r Ek =$\ \frac{mV^{2}}{2}$ Ep = $\frac{m\omega^{2}x^{2}}{2}$ Ec = $\frac{m\omega^{2}A^{2}}{2}$