sady

WYKŁAD 1

Sadownictwo – uprawa roślin wieloletnich, dających jadalne owoce.

Liczba gatunków roślin sadowniczych – ok. 1000, jednak tylko 20-40 gatunków satnowi większość światowej produkcji owoców.

  1. Owoce cytrusowe 21,5%

    • Pomarańcza

    • Mandarynka

    • Cytryna => krzyżówka cytrona i limetki

    • Grejpfrut

    • Pompela =>popularna w Chinach, gorzki smak

    • Cytron

    • limeta

  2. Banany 20,1%

W tym banany skrobiowe =>w krajach trzeciego świata służą jako podstawowe pożywienie. Banany źle łączą się z innymi potrawami, należy je jeść osobno.

  1. Winogrona 13,5% => większość na wina

  2. Jabłka 11,9%

  3. Orzechy kokosowe 9,1%

Palma kokosowa: materiał budowlany, włókno, kopra (suszone bielmo orzecha). Wykorzystywana jest na 99 sposobów.

  1. Mango 4,6%

Uprawiany od 4 tys. Lat w Indiach, zalicza się do 3 najsłynniejszych. Ma też właściwości lecznicze (pędy liście)

  1. Ananas 3,2%

Produkowany do celów przerobowych, zawiera enzym bromelinę, który rozkłada białka.

  1. Gruszki 3,2%

  2. Brzoskwinie 2,5%

  3. Oliwki 1,5% => wykorzystywane przerobowo

Pozostałe gatunki

MOCNE STRONY POLSKIEGO SADOWNICTWA

Wysoka pozycja Polski w światowej i europejskiej produkcji i handlu zagranicznego wielu owoców, a zwłaszcza świeżych owoców miękkich (truskawek, porzeczek, malin, agrestu i wiśni), jabłek, mrożonych owoców oraz koncentratu jabłkowego.

Struktura gospodarstw w zależności od powierzchni uprawy roślin sadowniczych

- drzewa owocowe => ogromne rozdrobnienie. Małe gospodarstwa (0,1 – ) stanowią aż 83 % gospodarstw. Duże (pow. ) tylko 4 %, ale udział w powierzchni uprawy to 42 tys. Ha

- krzewy jagodowe(bez truskawek) => jeszcze większe rozdrobnienie. Gospodarstwa duże (pow. ) stanowią 1% gospodarstw, a ich powierzchni wynosi 26 tys. Ha

- truskawki (plantacje) => Duże plantacje (powierzchnia pow. ) stanowią 1% gospodarstw, powierzchnia produkcyjna 19 tys. Ha

Powierzchnia uprawy roślin sadowniczych

Udział poszczególnych gatunków drzew owocowych w ogólnej powierzchni uprawy drzew owocowych w sadach

Drzewa owocowe

W Polsce są następujące rejony sadownicze:

- woj. mazowieckie

- woj. lubelskie

- woj. łódzkie

- woj. świętokrzyskie

- woj. wielkopolskie.

Sadownictwo nierównomiernie jest rozłożone w Polsce. Pozostałe województwa już nie odgrywają tak ważnej roli w produkcji sadowniczej.

Krzewy owocowe

Rejony uprawy:

- woj. lubelskie

- woj. mazowieckie

- woj. łódzkie

Powierzchnia uprawy drzew owocowych =>

- wzrost powierzchni uprawy jabłoni (od 1996 r.)

- wiśnie => tendencja wzrostowa

- czereśnia => tendencja wzrostowa

- grusza i śliwa => spadek powierzchni uprawy

Powierzchnia jagodowych w 2002 r. =>

- maliny => niewiele zmian

- porzeczki => wzrost

- agrest => spadek

- truskawki => duży spadek, daje się szybko podejmować decyzje o uprawie lub

likwidacji

- pozostałe(leszczyna, aronia) => wzrost

Produkcja owoców w Polsce w 2004 r.

Kierunki zagospodarowania owoców:

spożycie

świeżych

przetwórstwo eksport
jabłka 30 54 16
czereśnie 76 22 2
wiśnie 18 78 4
porzeczki razem 33 58 9
truskawki 14 75 11
gruszki 75 11 14
maliny 18 44 38

Dla przetwórstwa dostarczono 43% wyprodukowanych owoców (1992-2001), z czego:

Owoce przerabia się na:

Opłacalność produkcji:

  1. jabłka => ostatnie lata nieopłacalne. Opłacalne w latach: 1989 (najbardziej), 1994, 1995, 1999. Nie opłacalne w latach: 1992,1993,1996-1998,2000-2003

  2. wiśnie =>ostatnie lata opłacalne. Najgorsze lata: 1992-1995 oraz 2001r., a najlepszy rok 1997.

  3. śliwy =>rożne kształtowanie opłacalności. Problem, bo przetwórstwa nie chcą je skupować.

  4. truskawki => pokazują jak działa rynek, na przemian 2 lata opłacalne, 3 nieopłacalne, 2 lata opłacalne i 3 nieopłacalne

  5. maliny => dobre lata 1992-1995, polska produkcja to owce złej jakości, nie daje się ich zamrażać

  6. porzeczki czarne=>1989r. to niesamowita opłacalność, duże zapotrzebowanie, wzrost technologii (zbiór kombajnowy). Potem spadek, aż do roku 1998r., a następnie znowu wzrost w od 1998-2001

  7. porzeczki czerwone => wzrost opłacalności w ostatnich latach, tendencja wzrostowa.

Spożycie owoców:

Normy spożycia owoców:

- minimalne => 50kg/ rok

- dostateczne=> 60kg/rok

- pełnowartościowe => 74kg/rok

- optymalne=> 88kg/rok

W Polsce 56kg/ mieszkańca / rok

WYKŁAD 2

Wartość odżywcza owoców:

Dzienne zapotrzebowanie dorosłego człowieka:

- wartość kaloryczna pokarmu: 11 720 -13 395 kJ (2800- 3200 kcal)

- białko: 80-

- tłuszcze: 80-

- węglowodany: 440-

- żelazo: 12 mg

- wit. B1: 1,4-1,7 mg

- wit. B2: 1,4-1,7 mg

- wit. C: 70-75 mg (może wzrastać do 3000mg podczas stresu)

- wit PP: 14-17mg

Skład chemiczny owoców:

- 94% truskawka

- 80% brzoskwinie, śliwki,

- 7% orzechy włoskie

- 4% orzechy laskowe

- jabłka: 226 kJ (54kcal/100g)

- truskawki: 167 kJ (40kcal/100g)

- leszczyna: 2884 kJ (689kcal/100g)

- jabłka: 0,4g/100g

- maliny: 1,4 g/100g

- jabłka: 12,6g/100g

- porzeczki czarne: 18,4g/100g

- jabłka: 0,3g/100g

Owoce nie mogą być podstawą, ale uzupełnieniem diety, bo maja dużą wartość dietetyczną

- czarna porzeczka: 250 mg/100g świeżej masy

- truskawka: 70 mg/100g św. m.

- porzeczka czerwona: 60 mg/100g św. m.

- agrest: 50 mg/100g św. m.

- maliny: 24 mg/100g św. m.

- brzoskwinie: 7 mg/100g św. m.

- wiśnie: 6 mg/100g św. m.

- jabłka: 5 mg/100g św. m., w tym odmiany

- morele: 5 mg/100g św. m.

- gruszki: 2 mg/100g św. m.

- śliwki: 2 mg/100g św. m.

- cytryna: 30 mg/100g św. m.

- morele: 0,3-4,8 mg/100g św. m. (o pomarańczowym zabarwieniu skórki maja więcej)

- truskawki, maliny: 0,3 mg/100g św. m.

- brzoskwinie: 0,2 mg/100g św. m.

- śliwki: 0,12 mg/100g św. m.

- agrest, porzeczki: 0,1 mg/100g św. m.

-wiśnie: 0,03 mg/100g św. m.

- jabłka: 0,02 mg/100g św. m.

- gruszki: 0,01 mg/100g św. m.

- morele, brzoskwinie : do 0,8 mg/100g św. m.

- porzeczki, agrest: do 0,8 mg/100g św. m.

- truskawki: do 0,8 mg/100g św. m.

Regulują procesy trawienne, bronią przed nadmiarem i brakiem soków trawiennych. Chronią organizm przed zatruciami metalami ciężkimi, kw. galakturonowy (może się łączyć z tymi metalami). Wpływają na zawartość cukrów, spowalniają wchłanianie cukrów

- owoce mogą działać odkwaszająco. Głownie zawierają kw. cytrynowy, jabłkowy, małe ilości kw. szczawiowego. Zawartość kwasów:

- porzeczki czarne :

Wartość biologiczna owoców

Zawartość substancji wskazujących biologiczną aktywność o stwierdzonym działaniu pozytywnym na zdrowie człowieka.

Sposób określenia:

- zawartość poszczególnych substancji

- ogólna aktywność antyoksydacyjna

Owoce jako żywność funkcjonalna

Żywność, która wykazuje korzystny udokumentowany wpływ na zdrowie ponad ten, który wynika z obecności w niej składników odżywczych tradycyjnie uznawanych za niezbędne.

Żywność funkcjonalna:

- zmniejsza możliwość chorób

- pozytywnie wpływa na organizm człowieka, na jego zdrowie

pozytywnie wpływa na organizm człowieka, na jego zdrowie

WOLNE RODNIKI – atomy tlenu mające jeden elektron za mało lub za dużo o jeden elektor. Wzrost ich związany jest z różnymi chorobami.

ANTYOKSYDANTY – powodują unieszkodliwienie wolnych rodników, same nie stają się wolnymi rodnikami.

Najważniejsze i najbardziej skuteczne antyoksydanty:

  1. wit. C

  2. wit. E

  3. karotenoidy (β-karoten, likopen)

  4. zw. polifenolowe

    • falwonoidy (wit. P)

- flakony i flawonole (rytyna, kwercetyna, kempfred)

- flawonony (hesperydyna, naryngina)

  1. kumaryny (D-limonem)

  2. monoterpeny

  3. fitoestrogeny

Kwercetyna => działa antyoksydacyjnie, dużo mają jej jabłka, więcej niż zielona herbata

Likopen => koncentrat pomidorowy (29,3 mg/100g) zawiera go bardzo dużo, a świeżę pomidory bardzo mało (3mg/100g)

POJEMNOŚĆ UTLENIAJĄCA – to suma aktywności antyoksydantów

Metody:

TEAC: suma aktywności antyutleniaczy stosunku do syntetycznego koferolu

- borówka wysoka 30µmol Troloxu/g

- czosnek 23,2µmol Troloxu/g

- czerwone wino 12,3µmol Troloxu/g

- brokuły 9,5µmol Troloxu/g

- pomarańcza 7,5µmol Troloxu/g

- winogrono białe 7,4µmol Troloxu/g

- banany 2,2 µmol Troloxu/g

- rośliny jagodowe

Przy niektórych owocach więcej Troloxu w świeżych owocach w porównaniu do soku, np. ananas, pomarańcza. Bywa też odwrotnie np. winogrono czerwone. Czasem zawartość w soku i owocach prawie taka sama np. jabłka

Czynniki wpływające na zawartość biologiczną owoców

  1. Odmiana

- Jabłoń

- Śliwa

  1. Warunki atmosferyczne

Zawartość wit. C i polifenoli w borówce wysokiej zależy od warunków pogodowych

  1. Warunki uprawy

Uprawa jabłoni wyłącznie na nawozach organicznych powoduje obniżenie się związków o aktywności antyoksydacyjnej

  1. Położenie owocu w koronie drzewa

    1. kw. p-kumatylochinowy itp.

- owoce wewnątrz – najwięcej

- owoce ze szczytu – najmniej

  1. związki fenolowe

- owoce z pędów jednorocznych – najwięcej

- owoce z krótkopędów – najmniej

  1. florydzyna

- owoce z szczytu pędu jednorocznego- najwięcej

- owoce boczne na pędach jednorocznym – najmniej

  1. Warunki przechowywania

Przechowywanie w kontrolowanej atmosferze nie wpływa lub wpływa w niewielkim stopniu na zawartość flawoidów.

Dodatkowe składowanie owoców po przechowywaniu w temperaturze 16 ° C powoduje gwałtowny wzrost związków o aktywności antyoksydacyjnej w skórce.

WYKŁAD 3

Odporność gat. na niską temp.

- jabłonie

- wiśnie -25 do

- czereśnie, grusze, śliwy

- brzoskwinie -20 do

- mogą uszkodzić pąki kwiatowe, kwiaty lub zawiązki owoców

- w obrębie terenów nizinnych i wyżynnych pojawiają się najczęściej w zachodniej części kraju

- Dolny Śląsk, Niz. Szczecińska => mogą występować do połowy IV

- ok. Gdańska => do końca V

- szczególnie narażone są gatunki wcześnie kwitnące (porzeczki czarne i rośliny pestkowe-morele brzoskwinie)

- południe=> duże

- zachód=> b.duże

-Małopolska=>b.małe

Wymagania cieplne niektórych odmian jabłoni

Średnie temp. w okresie wegetacji

- Jonagold, Gulden Delicious

- Jonatan

-McIntosh

-Antonówka

Zwykle odmiany późne – pochodzące z ciepłych krajów wymagają okresu wegetacji 220-250 dni, dlatego nie mogą być uprawiane w Polsce.

Np. Antonówka 170-190 dni

Jonagold 190-210 dni

Dolny Śląsk => średnie temp. 8,3°C, opady 592 mm/rok

  1. Usłonecznienie

Rośliny wymagają jakiegoś (większego lub mniejszego usłonecznienia)

Jabłonie=> % pełnego usłonecznienia

-do dobrego wzrostu 50%

-do zawiązywania pąków kwiatowych 25-30%

-do zawiązywania się owoców 10-15%

-do wzrostu owoców 50%

-do wytworzenia rumieńca na owocach 40-50%

-do dojrzewania owoców 30%

Nasz klimat zapewnia ledwie średnie warunki usłonecznienia, jednak można zauważyć różnice między poszczególnymi rejonami kraju.

Ilość godzin słonecznych w ciągu dnia:

- Gdynia 10,1 h

- Wrocław 9,35 h

- Katowice 7,6 h

Oparzenia słoneczne owoców:

-czynniki sprzyjające

-zapobieganie

WYKŁAD 3 15.03.2005

Oparzenia słoneczne owoców

Czynniki sprzyjające:

- przebieg pogody

- odmiany o intensywnym kolorze rumieńca

- bezpośrednie działanie promieni słonecznych (wystawienie owoców)

- cięcie letnie (usuwanie nadmiaru pędów)

- mała zawartość Ca w owocach

Zapobieganie:

- siatki przeciwgradowe (ochrona przed promieniowaniem UV)

- opryski drzew glinka kaolinową

OPADY

Ilość i rozkład opadów:

- tereny górskie 900-

- rejony podgórskie 700-

- rejony Krakowa, Rzeszowa, na Pomorzu Zachodnim 600-

- Wielkopolska, Kujawy

Drzewa owocowe najlepiej rosną w rejonach, gdzie opady wynoszą min. 600 mm/rok

Suma opadów w okresie wegetacyjnym

- średnia suma opadów w okresie wegetacyjnym wynosi w Polsce (w rejonie warszawskim , w rejonie bielskim )

- mało opadów:

* kwiecień sprzyja rozwojowi drzew owocowych (obniża się lustro wody gruntowej, mniejsze stężenie CO2, dobry rozwój korzeni, mniej opadów)

* maj częste i długie opady sprzyjają infekcji liści przez parch jabłoni oraz gorsze zapylenie (podmokłe)

* wrzesień i październik słoneczna pogoda i brak opadów sprzyjają dobremu wybarwieniu owoców

- obfite opady latem i jesienią połączone z wysoka temperaturą powodują przedłużony wzrost drzew mniejsza wytrzymałość na mróz, nie przygotowanie na zimowanie

- truskawki i maliny mają płytki system korzeniowy opady powinny być rozłożone w czasie i nie w trakcie zbioru – są porażenia przez szarą pleśń

- czereśnie –obfite opady w okresie dojrzewania (od połowy czerwca do końca lipca)- sprzyjają pękaniu owoców

Poza cechami negatywnymi opady są potrzebne !! (nad sadem rozciągane są folie, gdy opady SA zbyt intensywne)

OPADY ŚNIEGU

- pokrywa śnieżna chroni glebę przed zamarznięciem i system korzeniowy przed uszkodzeniami (wymarznięciem), np. gdy była ostra zima truskawki przezimowały pod śniegiem

OPADY GRADU

- powodują największe uszkodzenia w okresie maj – wrzesień

- zakłada się siatki przeciwgradowe

- powodują wgłębienia, miąższ skorkowaciały pod skórką,

WIATR

Korzystne działanie:

- łagodny wiatr 5-9 m/s szybsze osuszanie liści i zawiązków owoców

Negatywne działanie:

- przyspieszenie parowania i większa transpiracja (brak wody)

- w zimie występuje nadmierna transpiracja (wysusza tkanki drzew owocowych, obniżenie wytrzymałości na mróz)

- podczas kwitnienia wiatr utrudnia przenoszenie pyłków przez pszczoły (znamiona i szyjka słupa ulega wysuszeniu)

- utrudnia chemiczne zwalczanie chorób, chwastów, szkodników

- łamanie gałęzi drzew owocowych

- uszkodzenia okulantów w szkółkach

- zwiewanie śniegu z sadu w zimie

- strącanie owoców z drzew

- zastoisko mrozowe powietrze zimniejsze jest cięższe niż cieplejsze , ze zboczy wzgórza zsuwa się w dolinę ( na dnie doliny gromadzi się zimne powietrze)

- inwersja temperatur w nocy ziemia traci ciepło

CZYNNIKI TOPOGRAFICZNE

a) ukształtowanie terenu inwersja temperatur (do nad powierzchnię gleby, w noc bezchmurną i bez wiatru)

* dzień słońce nagrzewa ziemię, warstwa powietrza nad gleba nagrzewa się, unosi do góry i oziębia (im wyżej tym chłodniej)

* noc powierzchnia ziemi traci ciepło przez promieniowanie, powietrze nad ziemią oziębia się (im bliżej ziemi tym chłodniej)

Gdy postawimy ogrodzenie nie przepuszczające zimnego powietrza

- za sadem powstaje zastoisko mrozowe

- przed sadem brak zastoiska

Wykorzystanie zapory spiętrzającej zimne powietrze (podobna głębokość a inna temperatura im szersza kotlina to więcej zimnego powietrza może się zsunąć)

Temperatura powietrza w zależności od miejsca pomiaru.

Jeśli na stoku jest ujście zimnego powietrza to nie występuje przemarzanie !!

b) Wystawa – nachylenie zbocza

- skłon południowy temperatura na wysokości na powierzchni ziemi zbocza południowego jest większa o ok. 15% niż zbocza północnego, lepsze wybarwienie owoców, wczesne odmiany dojrzewają szybciej, ale gleba szybciej wysycha, większe ryzyko przymrozków

- truskawki wystawa południowa jest cenna do uprawy najwcześniejszych odmian, dobra wystawa dla malin i winorośli

* południowy stok ogrzewanie gleby na wiosnę śnieg topnieje, rośliny rozpoczynają wzrost szybsze kwitnienie większe uszkodzenia przymrozkowi

- skłon północny zbyt zimny, najmniej usłoneczniony, wilgotny, dla sadów nieprzydatny

- skłon wschodni i zachodni wartość pośrednia pomiędzy północnym i południowym

* skłon wschodni rankiem pada tam najwięcej promieni słonecznych, cieplnych, nagle nagrzewanie się gleby i roślin na przedwiośniu, gwałtownie odmarzanie i topnienie śniegu powoduje uszkodzenia mrozowe

* skłon zachodni niewielkie skrajności temperatury minimalnej i maksymalnej, gleba płyciej przemarza

c) kąt nachylenia zbocza górna granica – kąt nachylenia zbocza 200 (nie na plantacjach do zbioru kombajnowego, utrudnione wykonywanie zabiegów, można tarasować

CZYNNIKI GLEBOWE.

Przydatność poszczególnych gleb do uprawy roślin sadowniczych:

a) klasyfikacja genetyczna (odrzucenie stanowiska pod sady gdy nawet 1 z czynników wypada negatywnie)

- gleby mineralne zbyt płytkie

- gleby wapniowe (rędziny, pararędziny) można sadzić pestkowe (śliwy); nie sadzić grusz, truskawek i malin !!

- gleby czarnoziemne dobre dla drzew owocowych jeśli woda gruntowa nie jest zbyt płytko

- gleby bielicowe zależy czy są piaszczyste, czy nie występuje w nich orsztynek. i zbyt wysoki poziom wody gruntowej (zacieki)

mady występują w dolinach rzek - woda gruntowa może tam być wysoko, charakteryzują się niższa temperaturą zimą i wiosną niż na wyższych brzegach doliny

* bagienne nieprzydatne

b) skład granulometryczny

- im więcej części spławianych, tym gleba lepsza pod sad (ale do pewnej granicy!!)

- glina bardzo ciężka jest tak przesycona wodą, że zawiera zbyt mało tlenu potrzebnego do oddychania korzeni

- gdy zbyt mało jest części spławianych (gleby lekkie) to nie można ich wykorzystać pod sad (złe są piaski luźne i słabogliniaste)

+++ pełna przydatność

++ pewne ograniczenia

+ duże ograniczenia

Rędziny śliwy, porzeczki, jabłoń, wiśnie, czereśnie (grusz nie wolno!!)

Czarnoziemy średnie, mocne – można wszystko uprawiać, lekkie – czereśnia, wiśnia, truskawka, malina, porzeczki, jabłoń, grusza, śliwa (+)

Gleby ciężkie jabłoń, grusza (+), śliwa (++), czereśnia (+), nic nie ma (+++), truskawka (++)

Wiśnia rośnie na wszystkich glebach !!

Mady lekkie wiśnia, malina, czereśnia – TAK, śliwa, jabłoń, truskawka – NIE

Brunatne, mady, pseudobielice można wszystkie rośliny na średnich i mocnych, na ciężkich nie wolno uprawić truskawki, porzeczki czerwonej i czarnej, maliny, czereśni, jabłoni

c) bonitacja gruntów

- pod sad nie nadają się w większości gleby klasy V (I-IV tak)

Odkrywka gleb:

- głębokość 100- (jagodowe )

- 1 odkrywka na lub na 1-

- termin kwiecień – maj

Cel odkrywki gleb:

- określenie warstw nieprzepuszczalnych, warstwa orsztynku

- ustalenie poziomu wody gruntowej

- warunki powietrzno – wodne i oglejenie

- pobranie prób do analiz rolniczych – ustalenie nawożenia

Poziom wody gruntowej drzewa owocowe źle rosną na glebie, w której poziom wody gruntowej jest wysoki (w warstwie gleby trwale przesyconej wodą korzenie się nie rozwijają z powodu braku tlenu). Szkodliwe jest zalanie korzeni późną wiosną i latem, gdy temperatura jest wysoka i oddychanie beztlenowe jest najbardziej groźne.

System korzeniowy nie może rosnąć w wodzie !! (np. gdy poziom wody gruntowej jest to nie można uprawiać jabłoni na podkładce karłowej, a jeśli jest to można)

- woda gruntowa to nie źródło wody dla roślin (czasem podsiąk) okresowe zalewanie – źle

Jak kwalifikować glebę i teren pod sad ??

- wykluczamy grunty orne klasy IV i większość klasy V

- z gleb lekkich eliminujemy gleby piaskowe całkowite z gleb piaskowych niecałkowitych, piaski luźne i piaski słabogliniaste

- na podstawie klasyfikacji genetycznej gleb, wyłączamy gleby zabagienne i bagienne

- zastoiska mrozowe

- pas gradowy

- wykonujemy odkrywkę glebową (woda gruntowa, poziom oglejenia, warstwa orsztynku)

Zmęczenie gleby – CHOROBA REPLANTACYJNA

- choroba replantacji w sadzie polega na ograniczeniu wzrostu i owocowania, a nawet zamieranie drzew sadzonych po tych samych lub po drzewach pokrewnych gatunków

* gatunki wrażliwe: brzoskwinia, jabłoń, wiśnia, czereśnia, truskawka, porzeczka

OBJAWY:

- nadziemne części roślin skrócenie międzywęźli pędów

- zgrubienie liści

- korzenie nekrozy, zanik włośników

- późne wejście w okres owocowania (po kilku latach)

- zmniejszenie owoców

PRZYCZYNY:

- czynniki abiotyczne zła struktura gleby, nierównowaga pokarmowa, brak i nadmiar wilgoci, fitotoksyny

- czynniki biotyczne obecność bakterii, promieniowców, grzybów, nicieni

WYKŁAD 4 22.03.2005

Choroba replantacji cd.

Choroba o charakterze niespecyficznym, jeżeli przyczyna są nicienie rodzaju PRATYLENCHUS (np. Pratylenchus penetrans – Korzeniak szkodliwy).

* Nicienie drobne mikroorganizmy długości ok.

- występują w glebie, tkance korowej roślin

- przy dużym namnożeniu nicieni tkanka korowa zamiera w korzeniach

- nicienie niszczą włośniki (utrudniają pobór wody i składników pokarmowych)

- zaburzenia w systemie fitohormonalnym w korzeniach akumulacja dużych ilości auksyn – opóźnione wejście drzew w stan spoczynku zimowego, większa wrażliwość na uszkodzenia mrozowe.

Czynniki wpływające na rozwój nicieni:

- typ gleby (lekkie)

- ilość substancji organicznej w glebie

- tolerancja gatunków i odmian

- system uprawy

- warunki klimatyczne

Sposoby zmniejszania ilości nicieni:

- kontrola, wymiana gleby

- preparat nicieniobójczy TEMIK 10G, ALIETTE 80P

Choroba o charakterze specyficznym, jeżeli przyczyną są:

- grzyby z rodzaju PYTHIUM, PHYTOPHTORA

- bakterie z rodzaju PSEUDOMONAS

- promieniowce ACTINOMYCES

Thielaviopsis basicola – choroba replantacyjna u wiśni

negatywny wpływ na rośliny zaburzenia równowagi

nowoposadzone biologicznej

produkcja substancji

fitotoksycznych

wydzieliny korzeniowe dynamiczny rozwój

obumierające korzenie saprofitycznych mikroorganizmów

glebowych

MONOKULTURA

Metoda stwierdzenia choroby replantacyjnej:

- test biologiczny tam gdzie podejrzenie pobieramy próbki gleby po wykarczowaniu z 10 różnych punktów do głębokości (łącznie ). Glebę dzielimy na 3 części:

* 1 się suszy

* 2 paruje

* 3 – kontrola

Glebą tą napełnia się doniczki i wysadza siewki jabłoni (o 2 liściach). Po 6-8 tygodniach występują różnice i stwierdzamy różnice wzrostu i przyczyny.

Ograniczanie choroby replantacji:

- unikać sadzenia drzew po sobie

- przerwa 4-5 lat, uprawa roślin motylkowych na zielony nawóz

- głęboka orka

- wysoka dawka obornika

- sadzenie drzew w duże dołki wypełnione świeżą ziemią

- rośliny okrywowe: Aksamitka (Tagetes patula), Kostrzewa czerwona (Festuca rubra)

- stosowanie pozytywnej mikroflory – preparaty bakteryjne Agrobacterium agrobacter – ograniczają występowanie fitotoksycznych grzybów.

Czynniki ekonomiczne:

Warunki ekonomiczne rozwoju sadowniczego:

- warunki zbytu bliskość rynku zbytu (uprawa owoców deserowych), zakłady przemysłu owocowo-warzywnego kontraktacja – rozwój bazy surowcowej

- jakość dróg dojazdowych (owoce deserowe)

- dostęp siły roboczej – przy zbiorze ręcznym

- wielkość i kształt pola długość ogrodzenia zależy od kształtu pola 200m x 200m długość ogrodzenia 800m; 1000m x 40m długość ogrodzenia 2080m

ZAKŁADANIE SADU

1) Projektowanie kwater

Ogrodzenie i osłony pozawietrzne:

- ogrodzenie chroni przed zwierzyną łowną (zające); wysokość (obfite opady śniegu – ); betonowe słupki co , dół siatki w ziemi, drut ocynkowany grubości , oczka max ;

- osłony zakładane na pień służą przed uszkodzeniami

- osłona przeciwwietrzna:

* 2 rzędy drzew, jeżeli 1 rząd to drzewa co

* gatunek szybko rsnący, piramidalne korony (olcha, sosna, topola czarna, lipa, klon, robinia)

* dostosowany do klimatu

* wytrzymały na warunki klimatyczne

* odporne na choroby, szkodniki

Osłona ta chroni na 200,300m lub na odległość równą 20 x wysokość drzew

Projektowanie KWATER

Kwatera to jednostka produkcyjna sadu, o takich samych lub podobnych wymaganiach co do środowiska i zabiegów

- mniejsze sady 0,5 – wielkość kwater

- drogi pionowe i poziome, równoległe , prostopadłe

- 200 – kierunek pn-pd długość rzędu, naświetlanie, itp.

2) Rozmieszczenie zapylaczy

Warunki zapylenia:

- gatunki obcopylne (jabłoń, grusza, czereśnia, leszczyna) pyłek z innych odmian

- gatunki samopylne (brzoskwinie, wiśnie, porzeczki, truskawki, maliny) pyłek tej samej odmiany

* śliwa gatunek samopylny, obcopylny, częściowo samopylny

* morela samopylne (Harcom – nie)

* orzech włoski samopylny, ale wymaga zapylenia krzyżowego

Siła wzrostu podobna siła wzrostu w kwaterze, rozstawa musi być równa w całej kwaterze

Odporność na choroby odmiany o podobnych wymaganiach, żeby nie opryskiwać ze względu na tą maksymalnie wrażliwą

Termin zbioru owoców po zbiorze zabiegi, zwalczanie szkodnika

3) Rozmieszczenie zapylaczy w kwaterze

- 50% drzew odmiana A

- 50% drzew odmiana B po 2 kolejne rzędy, gdzie się zapylają wzajemnie

AA BB AA BB

AA BB AA BB
AA BB AA BB

- 89% A, 11% B co 3 drzewo w co 3 rzędzie ( wzajemnie się zapylają)

A A A A

B A A B

A A A A

B A A B

- odmiana B zapyla A, ale A nie zapyla B, odmiana C zapyla B i jest zapylana przez A lub B

A B A 80% A

A C A 10% B 2 odmiany zapylające w 1 rzędzie

A B A 10% C

Kwatery jednoodmianowe jabłoni jako zapylacze jabłoni ozdobnych (Malus Hopa, Golden Hornet)

4) Wybór rozstawy zależy od:

- siły wzrostu

- szerokości narzędzi uprawowych (uliczka robocza )

- sposobu formowania koron drzew (wrzecionowa, kulista, itd.)

np. 4 x 3 4 - odległość między rzędami; 3 – odległość drzew w rzędzie

Zła rozsada mniejszy plon, gęsto trzeba ciąć – mniej plonu (konkurencja), rzadko mało

Sady II wojna światowa 10 x

lata 60-te 7 x lub 6 x (4/7 drzew/ha)

lata 70-te sady szpalerowe 5/7 - 666 drzew/ha

lata 90-te 333 – 3333 drzew/ha

* system pasowy super gęste sady wrzecionowe, odległość 3-2,5 x 0,3-0,75 (sady w Tyrolu)

* system jedno- i wielorzędowy; trzyrzędowy wrzecionowo 3 +0,75 +0,75 x 1m; dwurzędowy 4+1 x 1- 2000 – 4000 drzew/ha; trzyrzędowy 3,5 + 0,8-1 + 0,8-1 x 1- 3922-5882 drzew/ha - niepolecany, bo:

- utrudnione zabiegi agrotechniczne – środkowy rząd nigdy nie jest dobrze pielęgnowany (oprysk), utrudniony zbiór, duże plony

JABŁONIE

Podkładka Odmiany słabo rosnące Odmiany silnie rosnące
superkarłowa 3,5 x 0,5-1,0* 3,5 x 1,0-1,5
karłowa 3,5 x 1-1,5 3,5 x 1,5-2,0
półkarłowa 4,0 x 1,5-2,0 4,0 x 2-3,0*

* najgęściej

GRUSZE

Podkładka Słabo rosnące Średnio rosnące Silnie rosnące
grusza kaukaska 4 x 1,5-2,0 4 x 2,0-2,5 4 x 2,5-3,0
pigwa 4 x 1,25-1,75 4 x 1,5-2,0 4 x 1,75-2,25

ŚLIWY

- 4 x 2,0- odmiany silnie rosnące

- 3,5 x 2,0- odmiany słabo rosnące

- 3,5 x na Węgierce Wangenheima i formowanie koron wrzecionowych

WIŚNIE

Podkładka Słabo rosnące Silnie rosnące
czereśnia ptasia 4,5 x 2,5 5,0 x 3,0
antypka 4,0 x 2,5 5,0 x 2,5

CZEREŚNIE

Czereśnia ptasia

(forma prawie naturalna)

Czereśnia ptasia

(forma wrzecionowa lub szpalerowa)

Podkładki karłowe (Gisela 5) (forma wrzecionowa)
6,0 x 4,0 5,0 x 3,0-4,0 4,0 x 3,0

BRZOSKWINIE

Drzewa szczepione na Brzoskwini Mandżurskiej i Siberian C Drzewa szczepione na brzoskwini Rakoniewickiej Siewka Rakoniewicka mnożona z nasion
4,0-4,5 x 2,5-3,5 4,5-5,0 x 3,0-3,5 4,0-5,0 x 3,0-4,0

MORELE

Silnie rosnące 5,0 x 4,0

PORZECZKA

Forma wolnostojaca Forma szpalerowa Zbiór maszynowy Porzeczka czarna Porzeczka czerwona
2,0 x 2,0 lub 3,0 x 1,2-1,3 2,0-2,5 x 0,7-1,0 3,5-4,2 - szer między rzędami 40- w rzędzie 40- w rzędzie

MALINY

Słabo krzewiące się Silnie krzewiące się
Szpaler pojedynczy 2,5 x 0,3 2,5 x 0,5
Szpaler podwójny 3,0 x 0,3 3,0 x 0,5

5) Przygotowanie gleby pod sad

- przedplon zboża, rzepak, wieloletnie motylkowe

- głęboka orka 40-

- obornik 40 t/ha, K2O, P2O5

- zwalczanie chwastów trwałych

Przygotowanie gleby przed założeniem sadu

I - brak chwastów, obornik

kwiecień – nawozy P + K, ½ dawki obornika

maj – sierpień ziemniaki, warzywa

wrzesień – październik ½ dawki obornika, głęboka orka, kultywatorowanie

listopad – sadzenie

Przedplon – wykorzystanie – zajmie dużo czasu i możemy po nim dać obornik

II – chwasty, obornik

Przedplon musi szybko wzejść, aby usunąć chwasty

maj – połowa lipca zboża ozime, rzepak ozimy, strączkowe na ziarno

sierpień – podorywka, bronowanie

wrzesień – herbicydy

październik – kultywatorowanie, nawożenie P, K, głęboka orka

listopad – sadzenie

Obornik pod przedplon !!

Wykład 5 5.04.2005

Gleba bez chwastów trwałych, obornika brak

IV, V, VI, połowa VII – zboża ozime lub rzepak ozimy, strączkowe na ziarno

2 połowa VII, VIII – podorywka, bronowanie, N,P,K, wysiew gorczycy

IX, X – wałowanie gorczycy, głęboka orka, kultywatorowanie

XI – sadzenie

Gleba zachwaszczona, brak obornika

IV, V – podorywka i bronowanie

V, VI – talerzowanie

VI, VII – stosowanie herbicydów

VII, VIII – nawożenie NPK, wysiew gorczycy

IX, X – wałowanie gorczycy

IX, X, XI – głęboka orka

X - kultywator

XI – sadzenie

Te sposoby nie dotyczą przygotowania gleby pod truskawki

TERMIN SADZENIA DRZEW I KRZEWÓW

JESIEŃ - zalety: wzrost korzeni, dostępność materiału szkółkarskiego

Wady: duże ryzyko uszkodzeń mrozowych, nie zakończony wzrost wegetatywny

WIOSNA – wady: konieczność podlewania, ograniczony czas na sadzenie

Technika sadzenia:

- materiał przesuszony kora pomarszczona, korzenie ciemne; uratować przesuszony materiał moczyć system korzeniowy przez kilka dni w wodzie; nie podwijamy systemu korzeniowego, gleba wokół drzew dobrze ubita

- dlatego, aby odmiana szlachetna nie wydawała korzeni; miejsce okulizacji nad ziemia, ustawione w kierunku najczęściej wiejących wiatrów (okolice Wrocławia – strona zachodnia)

Sadzenie drzew:

Ręcznie w 2 osoby – 6-10 drzew/roboczogodzina;

Sadzenie pod bruzdownik – 6666 drzew/roboczogodzina

Sadzenie z użyciem świdra w 3 osoby – 27 drzew/ roboczogodzina

Sadzenie z użyciem sadzarki w 3 osoby - 167 drzew/ roboczogodzina

Sadzenie drzew w redliny:

ETAPY: 1. wykonanie konstrukcji podtrzymującej

2. ustawienie drzew na powierzchni ziemi

3. przymocowanie drzew do drutów

4. obsypanie drzew (30-40cm)

WADY: a) konieczność posiadania obsypnika

b) konstrukcja podtrzymująca musi być wykonana przed sadzeniem

c) konieczność wyrównania międzyrzędzi po obsypaniu

d) możliwość przesychania systemów korzeniowego w czasie sadzenia

e) ryzyko przemarznięcia korzeni w bezśnieżne zimy

f) silne przesychanie gleby – narażenie drzew na suszę

g) intensywne pobieranie przez młode drzewa składników mineralnych z gleby (zwłaszcza K)

ZALETY: a) możliwość uprawy jabłoni przy wysokim poziomie wody gruntowej

b) szybsze obsychanie gleby po obfitych opadach

c) stworzenie warunków do intensywniejszego wzrostu drzew w pierwszych latach po posadzeniu, a w kolejnych osłabienie wzrostu

d) poprawa owocowania drzew w pierwszych latach po posadzeniu

e) mniejsze nakłady i łatwiejsza praca ręczna przy sadzeniu

PIELĘGNACJA DRZEW PO POSADZENIU:

- co najmniej od pnia drzewka, ma ograniczyć parowanie z gleby

- ma wpływać na system korzeniowy drzewka

- utrzymywanie odpowiedniej temperatury

- spowodować powolne uwalnianie składników pokarmowych

- ograniczenie dysproporcji między systemem korzeniowym a częścią nadziemną (ułatwione przyjmowanie się drzew)

- próba uformowania korony

- dobre warunki do przyjmowania

- drzewa na podkładkach silnie rosnących można prowadzić bez konstrukcji

Systemy wykonania konstrukcji:

- impregnowane paliki przy każdym drzewku, sposób bardzo dobry, trwały, ale drogi

- betonowe słupki i druty do nich mocowane, tyczki, paliki drewniane, bambusowe przy każdym drzewku

- betonowe słupki, 2 druty, ale czasem nawet 4-5 drutów brak palików, co obniża koszty; problemem może być przesuwanie się drzew

WYKŁAD 6 12.04.2005

UPRAWA GLEBY W SADZIE

Cele pielęgnacji gleby w sadzie:

Podział systemów uprawy gleby w sadzie:

1. Ugór herbicydowy

zalety:

wady:

Objawy uszkodzeń po zastosowaniu herbicydów:

Basta – nekrozy w miejscu zetknięcia się środka z tkanką roślinną

Azotop – jasne przebarwienia brzegów liści – chloroza brzegów liści

Roundup – zahamowanie wzrostu, liście zdeformowane o wydłużonych blaszkach, zwijające się do wew.

Chwastox – skracanie pędów, brak turgoru

Betanal Progress – na truskawkach, żółknięcie liści, zasychanie brzegów blaszki liściowej

Podział środków chwastobójczych

  1. doglebowe: Azotop, Casoron, Devrinol, Lonrex, Goal, Goltrix, Kerb, Stomp

  2. dolistne:

kontaktowe:Basta, Reglone

układowe:Agil, Chwastox, Fusilade, Lontrel, Perenal, Roundup, Starane

  1. chwasty jednoliścienne: Agil, Fusilade, Torga

  2. chwasty dwuliścienne: Chwastox, Goal, Lontrel, Perenal, Starane

niszczenie chwastów przed założeniem plantacji: Roundup – glifosat

Roundup:

Substancja aktywna: glifosat

Preparat dolistny o działaniu układowym, zwalcza 1 i 2-liścienne, 1, 2-roczne i wieloletnie, nie zalega w glebie, stosowanie w okresie wegetacji możliwe późną jesienią.

Dawka: 3-8 l/ha >5l/ha przy zwalczaniu chwastów trwałych

Przy wspomagaczach: siarczan amonu 5- + 3- Roundup

Adbios + 3- Roundup

Basta:

Substancja aktywna: glifostat amonowy

Preparat dolistny o działaniu kontaktowym, 1- i wieloletnie, nie zalega w glebie

Dawka: 3-6 l/ha

Siarczan amonu 5-

Azotop

Subs. aktywna: symazyna

Preparat doglebowy, wnika przez korzenie, zwalcza wiele gatunków chwastów 1- i 2-liściennych, 1- i wieloletnich w fazie kiełkowania, zalega w glebie przez 6-18 miesięcy, stosowany wczesną wiosną lub jesienią.

Dawka: 0,5 – 3 kg/ha

Do 2007 r.

Casoron

Subs. aktywna: dichlobenil

Preparat doglebowy, zwalcza 1- i 2-liścienne, 1- i wieloletnie, zalega w glebie 3-6 miesiecy, stosowany wczesna wiosną.

Dawka: 40-100 kg/ha

Chwastox extra

Substancja aktywna: kwas chlorofenoksyoctowy

Preparat dolistny o działaniu układowym, wnika przez liście, zwalcza 2-liścienne, 1-roczne i wieloletnie, zalega 6-8 tygodni

Dawka: 3-3,5 l/ha

Roundup + Chwastox extra

Kerb

Preparat doglebowy o działaniu układowym, zwalcza chwasty 1-liścienne oraz nieliczne 2-liścienne, działa w niskich temp. Zalega w glebie 6 miesięcy, stosowany jesienią.

Dawka: 2-5 kg/ha

ZWALCZANIE CHWASTÓW W SADZIE

Wiosna:

okres wegetacji:

jesień:

Stosowanie herbicydów zależy od zachwaszczenia, jakości herbicydu i gatunków chwastów.

Niszczenie perzu i silnego zadarnienia:

ZWALCZANIE CHWASTÓW W JAGODNIKACH

I rok po założeniu plantacji:

Wiosna:

plantacje owocujące:

okres wegetacji:

po kwitnieniu lub zbiorze owoców:

ZWALCZANIE CHWASTÓW NA PLANTACJACH TRUSKAWEK

Nowo założona:

7-10 dni po posadzeniu:

10-12 dni po posadzeniu

14 dni po posadzeniu

1 miesiąc po posadzeniu

na chwasty 1-liścienne:

plantacje owocujące:

do kwitnienia lub po zbiorze

wiosną lub jesienią

po zbiorze

SPOSOBY NANOSZENIA HERBICYDÓW W RZĘDY DRZEW

Warunki stosowania herbicydów:

(od czego zależy dawka herbicydów stosowanych w sadach)

ilość cieczy roboczej: 200 – 300 l/ha

preparaty zawierające glifosat:

100-150 l/ha – rozpylacze drobnokropliste

200-300 l/ha – rozpylacze średniokropliste

preparaty doglebowe

Herbicydy wnikające do chwastów przez liście i korzenie – stosować na młode siewki chwastów – po kilka liści lub na czystą glebę.

Dawki preparatów doglebowych zależą od:

herbicydy dolistne

Chwastox – kilka liści właściwych, a chwasty wieloletnie przed ich kwitnieniem

Basta, roundup, reglone, avans – podczas całej wegetacji

Dawki herbicydów dolistnych zależą:

ROZKŁAD HERBICYDÓW W GLEBIE

Herbicydy wchodzą w różne zależności z adiabatycznymi i biotycznymi składnikami środowiska:

Proces fotochemiczny, chemiczny, mikrobiologiczny

Przemiany o charakterze kometabolicznym

Wymaga źródła energii przypadkowa mikrobiologiczna transpiracja zachodząca przy udziale

Peryferycznych ...

Sposoby eliminujące stosowanie herbicydów:

Sposoby ograniczenia stosowania herbicydów:

WYKŁAD 7 26.04.2005

Sposoby ograniczające stosowanie herbicydów:

-wąskie pasy ugoru herbicydowego

-odpowiedni dobór herbicydów

-stosowanie wspomagaczy-zwiększają skuteczność herbicydów

-ugór herbicydowy do połowy lata, potem swobodny wzrost chwastów

Uprawa mechaniczna:

-podcinanie drzew do głębokości 5cm.

-uszkodzenie systemu korzeniowego drzew

-erozja gleby

-trudności z wykonaniem tego zabiegu w okresie suszy, zaleta: niskie koszty

Termiczne niszczenie chwastów:

-wysoka temperatura: promienie podczerwieni, mikrofale, laser, para pod ciśnieniem, prąd elektryczny, palniki gazowe,

-niska temperatura: ciekły azot, ciekły CO2

Ściółki organiczne:

1) materiały uzyskane do ściółkowanie:

-słoma

-kora

-kompost

-skoszona trawa z międzyrzędzi

-rozdrobnione pnie i konary drzew

-trociny

2) materiały stosowane w doświadczalnictwie:

-igły z drzew iglastych

-odpad z biurowych niszconek dokumentów

-przekompostowane owoce

-podłoże po uprawie pieczarek

Zalety ściółek organicznych:

-ściółka sprzyja większej wilgotności gleby

-mniejsze wahania temperatury gleby: a) zimą- ochrona przed przemarzaniem,

b) wiosną- nie nagrzewa się tak

-ochrona systemu korzeniowego przed n

-obornik: bardzo drogi, i bdb. niską temperaturą

-zmniejszają ryzyko erozji

-wpływają korzystnie na strukturę gleby ( wiatr, woda deszczowa- nie działa bezpośrednio na glebę)

-wpływa korzystnie na zawartość materii organicznej, zwiększenie liczebności organizmów glebowych, większa aktywność mikrobiologiczna- większa liczba dżdżownic

-wpływają korzystnie na wzrost i owocowanie drzew

Wady ściółek organicznych:

-woda wsiąka w ściółkę i niewielkie opady deszczu mogą nie wsiąknąć w glebę

-większa wilgotność gleby może sprzyjać występowaniu niektórych chorób up.: zgnilizny pierścieniowej podstawy pnia

-większe ryzyko wystąpienia uszkodzeń powodowanych przez gryzonie

-sorpcja biologiczna azotu- działalność mikroorganizmów rozkładających N może prowadzić do okresowego obniżania się zawartości azotu w glebie

-ściółki na zakwaszenie gleby

-chwasty trwale przerastają ściółkę

-mała trwałość ściółki (co 3 lata trzeba ściółkę uzupełniać)

-wysokie koszty stosowania, duża ilość używanego materiału grubości ściółki 10-20 cm3 w pasie 1m: 300-320m3 kory lub 8 ton słomy

Ściółki syntetyczne:

Materiały używane do ściółkowania:

-czarna folia

-włóknina

-agrotkanina - materiał b. trwały

Zalety:

-ograniczają ewapotranspirację i wpływ na większą zawartość wody w glebie

-większa wytrzymałość niż ściółek organicznych (agrotkanina, czarna folia)

Wady:

-gleba pod ściółką syntetyczną silniej się nagrzewa a temp. Podlega większym wahaniom

-wysokie koszty

-trudności w dostarczeniu nawozów (w młodych sadach

-podrywanie ściółek przez wiatr

-uszkodzenia mechaniczne: czarna folia, włóknina pracownicy zbierający owoce niszczą te ściółki

Żywe ściółki:

-stosujemy takie rośliny, aby nie przerastały roślin uprawnych

Plon odmian jabłoni:

-Elstar – duża przemienność owocowania, dlatego ściółka bardzo dobrze wpływałaby na plonowanie, najlepiej wpływałaby na owocowanie kora sosnowa i regulowała owocowanie

Brzoskwinie owocują na pędach jednorocznych i dlatego ściółki powodowały wzrost plonu

Koszty a nadwyżka produkcji stosowanie ściółek np.. w brzoskwiniach może być powodem lepszej produkcyjności drzew.

UTRZYMANIE GLEBY W MIĘDZYRZĘDZIACH

- czarny ugór mechaniczny

- czarny ugór mechaniczny + rośliny okrywowe

- murawa

Nie wolno tu stosować ugoru herbicydowego, jedynie w jagodowych ugór herbicydowy na całej powierzchni.

Charakterystyka sposobów utrzymywania gleby w międzyrzędziach, chwasty niszczy się systematyczną uprawą mechaniczną stosując np. bronę talerzową, średnio co 2 tyg.

Czarny ugór mechaniczny dodajemy obornik 30-40 t/ha

Zalety:

-dobre zaopatrzenie roślin w wodę

-dobre przewietrzanie gleby

-eliminowanie szkodliwych gryzoni

-mniejsza powierzchnia wypromieniowania ciepła w okresie przymrozków

Wady:

- pogorszenie struktury gleby

- głębsze przemarzanie gleby

- trudniejsze utrzymanie śniegu

- niszczenie korzeni

- utrudniony wjazd do sadu po opadach

- zniszczenie liczebności pasożytniczych i drapieżnych owadów

- wysokie koszty zastosowania

- tworzą się koleiny

- erozja gleby

- wypłukiwanie składników mineralnych

- możliwość przedłużania wzrostu drzew ( zbyt późne wejście w okres spoczynku )

Czarny ugór mechaniczny + rośliny okrywowe:

- do połowy lipca czarny ugór mechaniczny, w połowie lipca wysiew rośliny okrywowej gorczyca biała, rzepak jary, facelia, rzepik; termin przeorania: najlepiej wiosna, jesień- gdy ryzyko wystąpienia gryzoni

Zalety:

- nagromadzenie się w glebie wody i azotanów

- wzbogacenie gleby w substancję organiczną

- hamuje proces wypłukiwania z gleby składników mineralnych

- konkurują z drzewami o wodę, składniki mineralne późnym latem i jesienią

- nieprzebrana zatrzymują śnieg

Wady:

- po długotrwałym stosowaniu obniża się żyzność gleb

- wiosną utrudniony wjazd

- duże koszty

- erozja gleby

Murawa- w międzyrzędziach

Mieszanka traw: życica trwała , kostrzewa czerwona 11kg, wiechlina łąkowa 9kg gatunki płytko się korzeniące nie wydające wysokiego porostu

Zalety:

- możliwość nie nawożenia obornikiem

- poprawa właściwości fizycznych gleby

- zmniejszenie ugniatania gleby przez ciągniki

- ochrona gleby przed erozją

- możliwość przejazdu ciężkim sprzętem

- niskie koszty i łatwość pielęgnacji murawy

- płytkie przemarzanie gleby

- zwiększenie przyswajalności niektórych składników glebowych

- sprzyja wybarwieniu się owoców jesienią murawa ogranicza poziom azotu w glebie, a duża zawartość azotu ogranicza intensywność rumieńca

- łatwiejsze wejście drzew w okres spoczynku zimowego

Wady:

- duże zużycie wody

- duże zapotrzebowanie i intensywne pobieranie składników pokarmowych

- większa powierzchnia wypromieniowania ciepła

- sprzyjające warunki do rozwoju gryzoni

Termin wysiewu:

  1. 2-4 lata przed sadzeniem, potem zniszczyć herbicydem murawę w rzędach

  2. Wysiew murawy w co 2 międzyrzędziu

Pielęgnacja murawy:

- kosimy 7-10 razy w sezonie, kiedy osiągnie wysokość .

WYKŁAD 8 10.05.2005

WYBRANE ZAGADNIENIA Z NAWOŻENIA ROŚLIN SADOWNICZYCH

Na potrzeby nawożenia mają wpływ następujące cechy roślin sadowniczych:

- są to rośliny, które korzenią się głębiej niż inne rośliny uprawne i dlatego mają korzystać ze składników pokarmowych zawartych w różnych poziomach gleby

- część pobranych składników mineralnych, z których budowane są kwiaty, zawiązki, liście czy pędy, wraca do gleby, a z plonem wynoszona jest z sadu stosunkowo nieduża ilość

Obieg składników pokarmowych w glebie:

Gleba: N,P,K wnikają do korzeni wiązkami przewodzącymi przemieszczaja się do górnej części rośliny część wraca z powrotem do gleby, a reszta jest wynoszona z plonem: owoce- 18kg/ha N, 2kg/ha P, 40kg/ha K

Roczne zużycie mikroelementów ( w kg/ha) w sadzie jabłoniowym

ścięte pędy 11, 8kg N 2,3kg P 3,6kg K
opadłe kwiaty i zawiązki 11,9kg N 1,7kg P 14,8kg K
opadłe liście 46,7kg N 3,3kg P 52,8kg K
wbudowane w cz. drzewa 18,4kg N 4,2kg P 14,3kg K
wymieszana z owocami 20,8kg N 6,3kg P 56,6kg K
110,5t/ha 17,8kg/ha 141,7 kg/ha

Deliciur 44,8 t/ha

Metoda wizualna określenia potrzeb nawozowych roślin sadowniczych:

Niedobór N – liście małe i cienkie, o zabarwieniu jasno zielonym lub żółtawym. Jednoroczne przyrosty są krótkie i cienkie. Drzewa kwitną obficie, ale zawiązują mało owoców.

Nadmiar N – zbyt silny wzrost drzew, mniejszy rumieniec, owoce źle się przechowują

Niedobór K – zahamowanie wzrostu, cienkie przyrosty, liście małe, plamy nekrotyczne ( różne w zależności od gatunku)

Niedobór Mg – pierwsze objawy na starszych liściach w postaci chlorozy

Niedobór Zn – chloroza między nerwami na młodych liściach, liście mniej wyrośnięte, węższe

Niedobór Fe – chloroza na młodych i potem na starszych liściach, kolor żółty, oprócz nerwów które pozostają zielone

Niedobór Mn – chloroza brzegów i pomiędzy żyłkami, najpierw na starszych liściach

Niedobór B – ograniczony wzrost roślin na wiosnę, na owocach, w ich środku i na powierzchni pojawiają się kolorowe plamy.

Zasady wapnowania:

Trzeba pamiętać o:

- decyzja na podstawie analizy wierzchniej warstwy gleby (0-20)

- dawka nawozów do odczynu i rodzaju gleby

- działanie powolne, powtórne wapnowanie po 4 latach

- próbki gleby osobno pobieramy spod pasów ugoru herbicydowego i z pod murawy. Możliwe jest zastosowanie większych dawek nawozów, w pasach wzdłuż rzędów roślin

- na glebach lekkich o składzie granulometrycznym piasków nie należy stosować wapna w formie tlenkowej, bo może nastąpić krótkotrwały wzrost ph

- można z nawozami wapnowymi wprowadzać metale ciężkie, i jest to możliwe jeśli nawóz posiada certyfikat, który wykazuje, że nie nastąpiło przekroczenie norm

- truskawki źle reagują na świeżo wapnowaną glebę

- ze względu na możliwość wprowadzenia łącznie z nawozami metali ciężkich, stosować nawozy pochodzące z litych skał

- zasady nawożenia zabraniają stosowania nawozów wapniowych, łącznie z nawozami fosforowymi i obornikiem.

Odczyn gleby odpowiedni dla roślin

pHKCl

6,7 - 7,1 czereśnie, wiśnie, śliwy, morele, brzoskwinie, winorośl,

orzech włoski

6,2 - 6,7 jabłonie, grusze, porzeczki

5,2 - 6,2 agrest, maliny, truskawki

< 5 (3,5 – 4) borówka wysoka

Silne zakwaszenie gleb utrudnia pobieranie makroskładników N,P,K,Mg,Ca

Silne zakwaszenie gleb ułatwia pobieranie mikroskładników i metali ciężkich Zn,Cu,Co,Pb

Maksymalne dawki nawozów wapniowych lub wapniowo-magnezowych stosowanych w sadach i na plantacjach jagodowych:

Odczyn gleby

pHKCl

Gleba o zawartości części spławianych
< 20%
Dawka CaO lub CaO + MgO kg/ha
Do 4,5 1500
4,6 – 5,5 750
5,6 – 6,0* 500

* w tym zakresie pH celowe jest stosowanie tylko wapna magnezowego , jeżeli jednocześnie zawartość magnezu w glebie jest niska lub średnia albo gdy K :Mg w glebie jest bardzo wysoki lub wysoki.

Interpretacja wyników analiz gleby:

Określamy klasę zasobności danego składnika w glebie

Poszczególne klasy zasobności oznaczają:

- zasobność niska wskazuje na potrzebę wzmożonego nawożenia

- zasobność średnia oznacza potrzebę nawożenia średnimi dawkami w celu utrzymania zasobności na poziomie dolnej granicy klasy wysokiej

- zasobność wysoka nawożenie składnikiem jest zbędne

Zawartość składnika dla wszystkich rodzajów gleb w warstwie ornej jest większa niż w podornej

Liczby graniczne dla K klasa zasobności zależy od głębokości warstwy oraz od składu granulometrycznego

Nawożenie Mg dawki w g/m2 (MgSO4 stosowane przy pH > 6)

Stosunek K:Mg bardzo wysoki - 6, wysoki – 3,5-6, poprawny – 3,5

Wysoka i bardzo wysoka wartość K:Mg w glebie decyduje o potrzebie nawożenia Mg, nawet gdy zawartość Mg jest w przedziale wysokim

Interpretacja wyników analiz liści:

- zakres wysoki nawożenie tym składnikiem jest zbędne lub niewskazane. Przy wysokiej zawartości K należy zaniechać nawożenie na kilka lat

- zakres optymalny zalecać można nawożenie N lub K (analogicznie do zawartości średniej K) przy optymalnej zawartości Mg, B, Mn, nie zaleca się nawożenia

- zakres niski potrzeba nawożenia tak jak przy niskiej zasobności gleby w dany składnik

- zakres deficytowy równocześnie objawy niedoboru, to oznacza nie tylko wzmożone nawożenie doglebowe ale i konieczność nawożenia dolistnego (N, Mg, B, Mn)

Znaczenie różnych metod w diagnostyce stanu odżywienia roślin sadowniczych różnymi składnikami mineralnymi

Ocena wizualna Analiza gleby Analiza liści
N +++ + (próchnica) ?
K + +++ ++
Mg ++ ++ (głębsze warstwy) ++
P - + -
Fe +++ ++ (pH) -
Ca + - +++ (analiza owoców)
B + + +++ (analiza owoców)

+++ bardzo duża przydatność metody

++ duża przydatność

+ niewielka przydatność

- brak przydatności

? przydatność dyskusyjna

DAWKI ORIENTACYJNE NAWOZÓW

Przed założeniem sadu (kg/ha)

N K2O MgO P2O5 Obornik t/ha
- Do 200 * Do 200 40

Przed założeniem plantacji jagodowej

N K2O MgO P2O5 Obornik t/ha
- Do 200, tylko truskawki i maliny 120 * Do 100 40

* nawożenie Mg tylko w formie wapna magnezowego, jego dawka zależy od pH i składu granulometrycznego gleby

Sady młode (1-3 lata), wszystkie gatunki

N K2O MgO P2O5 Obornik t/ha
10-20g/m2 50-80kg/ha 6-12g/m2 - 15-30t/ha

K2O jeżeli zastosowanie K przed założeniem sadu, to nawożenie trzeba rozpocząć od 3 roku po posadzeniu sadu

MgO dotyczy MgSO4 a nie wapna magnezowego

Obornik w młodych sadach należy obornik stosować do ściółkowania gleby wokół drzew

Sady owocujące (od 4 roku), i wszystkie gatunki (kg/ha)

N K2O MgO P2O5 Obornik t/ha
50-80 60-100 * - -

Plantacje jagodowe (kg/ha)

N K2O P2O5 Obornik t/ha
porzeczki 80-100 100-150 - -
agrest 80-100 100-150 - -
maliny 50-80 50-80 - -
Truskawki (nawożenie po zbiorze, K2O tak jak przy sadach młodych)
* 1rok 40-80 - - -
*lata następne 30-50 - - -

Nawożenie organiczne:

Przed założeniem sadu należy przyorać około 40 t obornika na ha. Wyższych dawek nie należy stosować ze względu na ochronę środowiska

Średnica nawożonej powierzchni

A = 1,5 x B

Nawozy azotowe i MgSO4 rozsiewa się albo wokół młodych drzew indywidualnie albo pasami wzdłuż rzędów

NAWOŻENIE DOLISTNE gdy:

- ograniczone są możliwości normalnego pobierania składników z gleby, np., w czasie długotrwałej, zimnej wiosny, suszy, po przemarznięciu, podtopieniu

- przy widocznych objawach niedoboru

NAWOŻENIE POZAKORZENIOWE

N mocznik 0,5% w fazie wzrostów pędów, 0,5% (zabiegi standardowe- ogranicza przezimowanie parcha liści jabłoni, zabieg fitosanitarny, rozkład liści) jesienią po zbiorze owoców

Mg MgSO4 2% (uwodniony), 0,1% (bezwodny) – 4-5 oprysków, po kwitnieniu co 10-14 dni

Fe siarczan żelazawy 0,3-0,5%, 2-3 opryski w fazie wzrostu pędów

B Boralis 0,5% pod koniec kwietnia i powtórnie w fazie formowania zawiązków owocowych

Ca CaCl2 0,5% (zabieg standardowy), 6-8 tyg. przed zbiorem owoców

WYKŁAD 9 17.05.2005

USZKODZENIA MROZOWE ROŚLIN SADOWNICZYCH

* Powstawanie uszkodzeń wywołanych ujemna temperatura. Głównym czynnikiem uszkadzającym tkankę roślinna są kryształki lodu powstające w roślinie w wyniku działania niskiej temperatury.

Mechanizmy obronne

Lód w przestworach międzykomórkowych

Lód w komórkach temp.

Śmierć komórek

Mechanizmy obronne:

- opóźnienie wyrównania temperatury tkanki z temperaturą otoczenia (łuski na pąkach – warstwy korka)

- unikanie zamarzania treści komórki

* obniżenie temperatury zamarzania substancje rozpuszczone w soku komórkowym obniżają punkt zamarzania soku komórkowego, zamarzanie w temperaturze -3 ÷ - 4oC

* przechadzanie wody mimo obniżenia temperatury woda w komórkach nie zamarza, możliwe jest utrzymanie wody w stanie cieczy do temperatury -39oC, a w przypadku domieszek mineralnych lub organicznych do temperatury -42oC. Po przekroczeniu tej granicy następuje samorzutnie tworzenie rodników lodu. Przyspieszenie tworzenia rodników lodu powoduje cięcie, stan zdrowotny roślin. W przechłodzonej wodzie może powstawać lód w wyższej temperaturze jeżeli w tej wodzie znajduje się jakiś wolny rodnik: bakterie, zarodniki grzybów. Temperatura samorzutnej krystalizacji lodu jest charakterystyczna dla danego gatunku i zależna od organu rośliny

* odwodnienie komórek w procesie hartowania

hartowanie – przystosowanie rośliny do znoszenia temperatury < 0oC, współdziałanie czynników:

- światło

- temperatura

- intensywność wzrostu

- plonowanie

W roślinie zachodzą zmiany doprowadzające do uzyskania wyższej odporności na niższe temperatury.

Zmiany zachodzące w hartowanej roślinie:

A) obniżenie temperatury (chłodniejsze noce 2 połowa lata)

- zahamowanie wzrostu

- obniżanie zawartości wody w roślinie

B) zwiększenie stężenia soku komórkowego

C) zmiana struktury błon komórkowych

D) błony komórkowe uzyskują zdolność do szybkiego przepuszczania wody ze środka komórek do przestrzeni międzykomórkowych

* Zmiany w roślinie:

- lód w przestrzeniach międzykomórkowych

- odciąganie wody z komórek

- powiększa się ilość lodu w przestrzeniach międzykomórkowych

- komórki tracące wodę staja się mniejsze

- zagęszcza się w nich sok komórkowy

- obniża się temperatura zamarzania treści komórkowych

* Etapy hartowania roślin:

- wczesna jesień

o gromadzeni produktów fotosyntezy, zatrzymanie wzrostu na skutek zmiany widma światła słonecznego absorbowanego przez fitochrom (barwnik odgrywający rolę w inicjacji kwitnienia) i następuje uruchomienie w liściach syntezy substancji stymulujących wzrost odporności

- późna jesień

o synteza enzymów, zmiany strukturalne białek, błon cytoplazmatycznych, odwodnienie komórek, zagęszczenie treści komórkowej

- zima

Czynniki modyfikujące odporność roślin na uszkodzenia mrozowe:

Od czego zależy wielkość uszkodzeń mrozowych?

1) gatunku

Uszeregowanie gatunku ze względu na odporność na niską temperaturę

- jabłoń, wiśnia, grusza, śliwa, morela, czereśnia, brzoskwinia

- agrest, porzeczki czerwone, porzeczki czarne, malina, truskawka

2) odmiany

- bardziej odporne na mróz są te, które zimą 1986/87 przetrzymały temperaturę -41oC (Antonówka, Melba, Lobo, Cortland, McIntosh)

- mało wytrzymałe (Golden Delicious, Boskop)

Staranny dobór odmian może w dużym stopniu zmniejszyć ryzyko uszkodzeń mrozowych.

3) od stanu zahartowania rośliny

* stan spoczynku zimowego

- spoczynek właściwy powodowany jest przyczynami wewnętrznymi rośliny. Roślina przechodzi w ten stan gdy:

o zmiana długości dnia

o obniżenie temperatury otoczenia

o zakończenie wzrostu wegetacyjnego

- spoczynek wymuszony kiedy roślina otrzyma odpowiednią ilość jednostek chłodu, przechodzi ze stanu spoczynku właściwego w stan spoczynku wymuszonego, ma wtedy podatność na zmiany warunków otoczenia (skoki temperatury)

4) sezonowych zmian temperatury

5) szybkości obniżania się temperatury gdy szybkość spadku temperatury jest większa od 8oC/h – możliwość powstawania uszkodzeń się zwiększa

6) wrażliwość poszczególnych części drzewa – w zależności od pory roku inna cześć rośliny jest najbardziej wrażliwa na niską temperaturę (jesienią niezdrewniałe młode pędy, rozwidlenia konarów; zimą pień, konary w części)

7) wrażliwość poszczególnych tkanek

- aktywny wzrost – miazga

- w okresie zimowym – rdzeń pędu, później najmłodsze warstwy drzewa i kory, najbardziej wytrzymała jest miazga (ważne w procesach regeneracyjnych)

8) wybór właściwego stanowiska pod względem ukształtowania terenu i warunków glebowych

- drzewa z zastoisk mrozowych

9) podkładka, przewodnia

- wrażliwe – niektóre pigwy MA, MC, Pixi, Siewka Rakoniewicka

- odporne – Antonówka, Az, Antypka

Przemarznięcie systemu korzeniowego zależy też od:

- typu gleby – na glebach lekkich system korzeniowy jest bardziej narażony na przemarzanie

Wpływ podkładki na odmianę szlachetną – zdania mocno podzielone !!

- przeważa pogląd że podkładki mogą mieć dodatni wpływ na podwyższenie odporności na mróz odmian na nich rosnących

- po ostrej zimie 1986/87 zanalizowano zależność między podkładką a wzrostem odporności na niskie temperatury części szlachetnej

* Poznań – nie stwierdzono wyraźnych zależności

* z ISIK (w Prusach)

- na podkładkach M27, P2, P1 – regeneracja przebiegła źle

- na podkładkach P14, M9, P16, P22, M26 – wiele odmian wykazało dodatni wpływ na regenerację

PRZEWODNIA – nie stwierdzono różnic w odporności pędów odmiany w zależności od szczepionej przewodniej. Przewodnia podnosi wytrzymałość całego drzewa ze względu na to że pień i rozwidlenia konarów nie są uszkadzane przez mróz, nieuszkodzony pień lepiej zaopatruje koronę drzewa w wodę i składniki pokarmowe.

10) nawożenie i nawadnianie

- przenawożenie N lub zbyt późne nawożenie N obniża odporność drzew

- zahamowanie optymalnego poziomu odżywienia drzew może prowadzić do osłabienia wytrzymałości drzew na niską temperaturę. Opóźnione i niewłaściwe nawadnianie może mieć negatywny wpływ na termin kończenia wzrosty drzew, proces drewnienia pędów i hartowania, a tym samym na odporność pędów na niską temperaturę

11) uprawa gleby

- wszystkie uprawki nie później niż na 2 tyg przed kwitnieniem, mniejsza powierzchnia parowania ciepła; ściółkowanie rzędów drzew korą

12) ochrona sadu

- zachowanie normalnej liczby liści na drzewie – przedwczesna defoliacja obniża odporność na niskie temperatury

- obniżenie liczby zarodników chorób czy bakterii wewnątrz organizmu – ograniczenie powstawania lodu w komórkach poprzez mniejszą ilość potencjalnych rodników lodu

13) poziom plonowania

- nadmierne plonowanie obniża odporność na niską temperaturę. Prowadzi do obniżenia stężenia soku komórkowego, co wywołuje podwyższenie temperatury spontanicznej krystalizacji lodu w komórkach i obniżenie odporności drzewa

- wcześniejszy zbiór większa szansa na uzupełnienie zapasów substancji odżywczych potrzebnych do procesu hartowania

- późny zbiór większe ryzyko uszkodzeń mrozowych

14) cięcie sadu

- w niewłaściwym terminie

* przerywa ciągłość barier ochronnych

* powoduje wnikanie lodu w głąb tkanek

* zwiększa powierzchnię styku lodu na konarach z przechłodzoną wodą w tkankach

Zaleca się cięcie kiedy minie obawa wystąpienia temperatury -10oC

Klasyfikacja i metody oceny uszkodzeń:

- typy uszkodzeń

* rany zgorzelinowe pnia i konarów przedwiośnie

* uszkodzenia mrozowe korzeni

- korzenie wytrzymują do -12 - -15oC

- poziom odporności korzeni jest o 10oC niższy i występuje stosunku do kory z opóźnieniem 1-2 tyg przy temperaturze gleby -8oC, w grudniu spowodowała zbicie korzeni

* przemarznięcia pędów jednorocznych

* zabicie całych konarów lub części drzewa

* podłużne spękania pni w środku zimy, przy dużych i gwałtownych spadkach temperatury. Powstają w wyniku nagłego kurczenia się pod wpływem chłodu zewnętrznych tkanek pnia, podczas gdy tkanki wewnętrzne nie pomniejszają swojej objętości

* wiosenne przemarzanie pąków kwiatowych i kwiatów

- najbardziej narażone na niską temperaturę są:

o młode zawiązki

o kwiaty

o pąki kwiatowe

- najczęściej przez przymrozki uszkadzane są kwiaty:

o leszczyny, moreli, brzoskwini, czereśni, czarnej porzeczki gatunki wcześnie kwitnące, dlatego podatne na uszkodzenia, choć mają dużą odporność na mróz

- % zawiązanych owoców dla zapewnienia dobrego plonu

o jabłoń 10%

o pestkowe 30-40%

Metody oceny uszkodzeń wywołanych ujemną temperaturą

- należy obrać korę i przeciąć ją na pół obserwując tkanki. Jeśli miazga jest biała tzn. że jest zdrowa i nie nastąpiło przemarznięcie

Test przeżyciowy:

  1. pęd nieuszkodzony

  2. lekkie uszkodzenia nasady pąków, przebarwienia punktowe w drewnie lub rdzeniu

  3. pędy mają większość pąków uszkodzonych lub zabitych rdzeń i drewno są ciemne, miazga i kora są żywe, mają jednak punktowe przebarwienia nekrotyczne

  4. zabite pąki, drewno i rdzeń, nieliczne partie miazgi łyka są żywe

  5. pęd ciemno brązowy zabite wszystkie tkanki

Granica 3 pkt. granica wytrzymałości i tolerancji na niską temperaturę (oznacza T50) jest to silne uszkodzenie pędów z możliwością regeneracji i odzyskania po kilku latach pełnej zdolności produktywnej – drzew nie usuwamy z sadu – stwierdzamy że odbudowanie korony drzew z uszkodzeniami III

Granica 4 pkt. rośliny nie rokują już nadziei na regenerację i powrót do normalnej produkcji

Pobieranie próbki pędów do określenia stopnia uszkodzenia

- po 4 pędy z 10-20 drzew z tej samej odmiany rosnących w różnych miejscach kwatery, pędy przenosimy do pomieszczeń i po wstawieniu ich do wody (do wysokości 10-20 cm) przetrzymuje się 14 dni, a potem przecina i ocenia

Postępowanie z drzewami uszkodzonymi przez mróz:

  1. całkowicie zmarznięte usuwamy, przy uzupełnianiu wypadów należy wykopać znacznie większy otwór niż przy normalnym sadzeniu (głębokość 60 cm i średnica 1 m), dołek napełnić glebą z między rzędzie

  2. częściowo uszkodzone

- utrzymywanie warunków sprzyjających regeneracji

* silne nawożenie N (zwiększone o 100%) przed i po kwitnieniu

* cięcie – przycięcie ułatwi przewodzenie wody, późna wiosna dokładne określenie przemarzniętych części drzewa, obniża się koronę do 1,5-2m, pobudzenie do wybicia pędów z pąków śpiących

* nawadnianie – w okresie wiosennej suszy (zwłaszcza maju)

WYKŁAD 10 24.05.2005

Postępowanie z drzewami przy podłużnym spękaniu pnia: należy zabezpieczyć ranę, nie wymaga leczenia

Leczenie ran zgorzelinowych: ranę oczyścić i zabezpieczyć przed wysychaniem

Szczepienie mostowe:

- stworzenie dróg przewodzenia skł.pok i wody nad raną,

wykonanie: zrazy dłuższe o 10-15cm od rany przybijamy cienkimi gwoździkami i smarujemy maścią. Przy dłuższej ranie wszczepiamy kilka zrazów oddalonych nie więcej jak 5-10cm

metody: użycie zrazów, wykorzystanie odrostów korzeniowych, posadzenie obok uszkodzonego drzewa 1-rocznego okólanta i wszczepienie go bezpośrednio pod ranę – w przypadku, gdy przemarzł też system korzeniowy

zabiegi zmniejszające niebezpieczeństwo uszkodzeń mrozowych:

bielenie pni i konarów – zapobiega zgorzelinom mrozowym

stosowanie przewodniej;

zapobieganie uszkodzeniom mrozowym:

zadymianie – mało skuteczne: brak materiałów do spalania, duża zależność od wiatru, trudne do wykonania w dużych sadach

piana ciśnieniowa – nowa metoda; niska cena środka pianotwórczego, wykonujemy przy temp>5°C, trzyma się 2 dni, możliwość poparzenia zawiązków

opryskiwanie subst.chem: retardanty, krioprotektanty

mieszanie powietrza – skuteczne gdy jest zróżnicowana temperatura górna i dolna, stosujemy maszt, śmigło, napęd

ogrzewanie – metoda zabroniona w krajach UE; spalamy: brykiet, gaz, olej opałowy

zamgławianie wodą – przez deszczowanie na powierzchnię kwiatu pokrytą lodem, zamarzająca woda oddaje ciepło; muszą być spełnione warunki:

  1. rozpoczęcie nawadniania zanim temperatura spadnie poniżej 0°C

  2. deszczowanie przez cały okres obniżania temperatury

wady:

  1. duże zużycie wody (2-4,5mm/h)

  2. możliwość uszkodzenia drzew (korona musi być podcięta bo może się połamać)

NAWADNIANIE ROŚLIN SADOWNICZYCH

Zaopatrzenie w wodę dla potrzeb sadownictwa w Polsce:

Polska ma małe zasoby wodne, w bilansie wodnym 97% to opady

Źródła wody dla sadownictwa:

Wody powierzchniowe,

Wody podziemne: gruntowe płytkie (zmienna ilość soli min, mikroorg)

Gruntowe głębokie (występujące sole min tworzą osady a te zatykają kroplowniki)

Jakość wody:

Musi być wolna od bakterii chorobotwórczych, pierwiastków szkodliwych, metala ciężkich toksycznych dla roślin

Wymagania wodne roślin sadowniczych:

Rośliny sadownicze potrzebują powyżej 600mm wody rocznie, w tym 370mm w okresie wegetacji

Znaczenie nawadniania:

  1. nawadnianie spełnia funkcję uzupełniającą; w 1 kolejności należy zadbać o: dobór odmian, pielęgnację roślin, ochronę roślin.

  2. nawadnianie to ostatni czynnik podnoszący plony

wymagania wodne roślin owocowych:

najmniejsze: wiśnie, morele

średnie: porzeczki czerwone i białe

duże: porzeczki czarne, agrest, maliny

największe: poziomki, truskawki

reakcja na nawadnianie w zależności od podkładki zależy od:

siły wzrostu – brak reakcji na nawadnianie;

systemu korzeniowego – jest reakcja: drzewa o płytkim systemie korzeniowym owocują lepiej

przewodzenie wody przez połączenie podkładka – odmiana – brak reakcji

niedobór wody w glebie zależy od:

opadów, temperatury powietrza, pojemności wodnej gleby, głebokości systemu korzeniowego roślin, systemu uprawy, gęstości sadzenia

częstość i wielkość dawek nawadniania zależy od:

kryteriów roślinnych, atmosferycznych, glebowych

kryteria roślinne – opiera się na zjawisku utraty turgoru przy braku wody

kryteria atmosferyczne – oparte na podstawowych danych pogodowych i obliczenia na ich podstawie ewapotranspiracji potencjalnej*

kryteria glebowe – metody pomiarów dynamiki wilgotności gleby (transjometryczna, suszarkowo – wagowa)

*ewapotranspiracja – łączna suma strat wody z gleby i roślin, wynika z transpiracji i ewaporacji (parowania wody z powierzchni gleby)

zależy od: - warunków atm (temp i wilgotności powietrza)

WYKŁAD 11 31.05.2005

Rodzaje wody w glebie:

- związana chemicznie – składowa różnych roślin, niedostępna dla roślin

- higroskopowa – pochłaniana przez cząstki glebowe pary wodnej z powietrza 1,5-2,0 HPa

- błonkowata – wokół wody higroskopowej otaczającej cząstki gleby, siły do 1,5 MPa

- kapilarna – podstawowe źródło wody dla roślin, utrzymywana do 1,0 MPa

- grawitacyjna

Siła ssąca gleby – siła z jaką woda jest utrzymywana w glebie. Zależy od wielkości przestworów glebowych:

- woda grawitacyjna > 8 mikronów

- woda dostępna dla roślin 0,2-8 mikronów

- woda niedostępna < 0,2 mikronów

Pojemność wodna gleby – zdolność zatrzymywania wody w glebie

- max pojemność wodna – gdy zostają nasycone wszystkie przestwory

- polowa pojemność wodna

- wilgotność więdnięcia

Znając siłę ssącą gleby można określić zawartość wody w %

Warunki idealne dla roślin – przy warunkach polowej pojemności wodnej

Metody pomiarów dynamiki wilgotności gleby

  1. metoda suszarkowo-wagowa próbki gleby pobrane za pomocą świdra glebowego waży się i suszy w 105oC i ponownie waży. Wilgotność oblicza się w % wagowych lub objętościowych. Zalety: bardzo dokładna. Wady: mała reprezentatywność próbki glebowej, duża pracochłonność otrzymania wyników z opóźnieniem

  2. metody pozwalające na ciągłe pomiary metoda tensometryczna – bezpośrednie pomiary siły ssącej gleb

TENSJOMETR – przyrząd do pomiaru wielkości potencjału wodnego gleby. Składa się z:

- ceramicznego oczka przepuszczającego wodę

- manometru wskazującego siłę ssącą gleby granicach 0,08 MPa, co odpowiada w przybliżeniu ok. 50% wody dostępnej dla roślin w glebie ciężkiej; ok. 90% w glebie lekkiej

Sposób pomiaru:

- tensometr napełnia się wodą destylowaną i zanurza w wodzie, aby ustalić wartość położenia zerowego

- w przypadku drzew owocowych tensometr umieszcza się na głębokości 30-

FITOMONITORING – ustalenie potrzeb nawadniania na podstawie obserwacji parametrów obrazujących stan fizjologiczny rośliny oraz warunków w jakich przebywa

W systemie fotomonitoringu ocenie poddaje się:

- wzrost owoców

- wzrost pędów

- temperatura liści

- temperatura owoców

- transpiracja

- wymiana CO2

- wilgotność gleby

- temperatura powietrza

- wilgotność powietrza

- nasłonecznienie

- prędkość wiatru

Wpływ nawadniania na rośliny sadownicze:

- wpływ nawadniania na wysokość plonu:

W naszych warunkach klimatycznych stwierdzono, że dzięki nawadnianiu możliwe jest zwiększenie plonu:

średnio max

jabłonie 27% 43%

wiśnie 27% 58%

śliwy 34% 73%

brzoskwinie 23% 138%

truskawki 12% 23%

maliny 36% 77%

Nawadnianie roślin sadowniczych zwiększa plon średnio o 30%

Wzrost plony jest efektem:

* powiększania się masy jednego owocu

* wpływ nawadniania na zakładanie pąków kwiatowych

- wpływ nawadniania na jakość plonu

Nawadnianie w przeważającej większości przeprowadzonych badań w Polsce miało wpływ na wzrost masy owoców

Nawadnianie może wpłynąć na występowanie chorób grzybowych (truskawki – wzrost ilości owoców porażonych szarą pleśnią)

Następnie działania nawadniania na rośliny sadownicze

ROŚLINY NAWADNIANE

Silny wzrost wegetatywny Większa liczba liści

Większa liczba punktów, Więcej składników pokarmowych

w których mogą tworzyć się

pąki kwiatowe

większa liczba zawiązanych

pąków kwiatowych. Obfite

kwitnienie w roku następnym

Wady:

- duże zużycie wody

- pracochłonność i duże koszty instalacji

- zraszanie liści – choroby grzybowe

- możliwość zwiększenia spływów powierzchniowych przy ukształtowaniu terenu sprzyjającym erozji gleby

- pogorszenie struktury gleby

Ustalanie dawek odlewowych zależy od:

- gleby

- rośliny

- głębokości zalegania systemu korzeniowego

Zadanie:

Obliczyć dawkę wody i czas deszczowania rośliny sadowniczej; główna masa korzeni znajduje się na głębokości , w celu uzyskania wilgotności poziomie PPW

Wilgotność gleby – 10%

Wilgotność gleby przy PPW – 18%

Gęstość objętościowa gleby – 1,3

Wydajność zraszacza – 6mm/h

Ilość wody dostępnej na 1 m2`w celu podwyższenia wilgotności do PPW = 100 dm2 (1m2) x 5 dm (głębokość) x 1,3 (gęstość gleby) x 8% = 52 dm3 =

Czas deszczowania = 52 mm: 6mm/h = 8,6h

Dawki polewania zależą od gatunku. Dla danego gatunku zależą od gleby (im cięższa tym większe), głębokości zalegania systemu korzeniowego (im głębszy tym większe).

dla truskawki dla gruszy

Nawadnianie, deszczowanie podkoronowe – stałe rurociągi, rozłożone wzdłuż rzędów. Przy każdym drzewie zamontowany jest mini zraszacz rozpylający wodę

NAWADNIANIE KROPLOWE

Dostępna jest woda w sposób ciągły tylko do pewnej części systemu korzeniowego

Linie kroplownicze różnią się od siebie:

- budowa kroplownika (z kompensacją ciśnienia lub bez)

- wydatkiem wody (0,57 – 4,0 l/ha)

- rozstawą rozpylaczy (10 – )

- grubością ścianek przewodu

Zalety:

- małe zużycie wody (do wyprodukowania 1t jabłek potrzeba wody przy nawodnieniu kroplowym, a nawodnieniu deszczownianym

- niskie koszty instalacji deszczowni nadkoronowej 100% kosztów, 60% podkoronowej, kroplowe nawadnianie 20%

- mała pracochłonność w czasie eksploatacji

Zbyt intensywne nawadnianie

Opóźnienie zahamowania wzrostu

Negatywny wpływ na zróżnicowanie się pąków oraz wejście w stan spoczynku zimowego

- w przypadku roślin zakładających pąki kwiatowe na pędach jednorocznych (wiśnie), silne i liczne przyrosty gwarantują dobry plon w przyszłym roku. Jednak u jabłoni o kwitnieniu w następnym roku decyduje liczba krótkopędów, a nie silnych przyrostów jednorocznych

- zahamowanie wzrostu z powodu braku wody czy składników pokarmowych nie sprzyja różnicowaniu się pąków kwiatowych. Dlatego mimo intensywniejszego wzrostu drzew nawadnianych w okresie suszy możemy spodziewać się lepszego ich kwitnienia w porównaniu do drzew, które w wyniku deficytu wody mocno ograniczają wzrost

NAWADNIANIE A ODCZYN GLEBY:

Woda + Ca++ Mg++ HCO3++

↓ truskawki pH 5,5 – 6,2

↓ ↓

HCO3+ + H = H2O + CO2 → chloroza żelazowa

wzrost pH gleby

gleba

SYSTEMY NAWODNIEŃ GLEBY

- nawadnianie zalewowe

- nawadnianie kroplowe

- nawadnianie deszczowniane

* nadkoronowe

* podkoronowe

Nawadnianie deszczowniane:

Deszczownia składa się z:

  1. agregatu pompowego

  2. rurociągów rozprowadzonych podziemnie i rurociąg powierzchniowy

  3. zraszaczy

- obrotowe

* mały zasięg, średnica <

* małe natężenie opadu <

* średnica dysz 3-

* średni zasięg średnica 20-

* natężenie opadu 6-, dysze 6-

Podział deszczowni:

  1. stałe – wszystkie elementy oprócz zraszaczy są stałe

Wady i zalety nawadniania deszczownianego:

Zalety:

- pozwala na równomierne nawilżanie powierzchni

- możliwość dokładnego wyznaczenia dawki wody na jednostkę powierzchni

- możliwość wykonania lustracji do ochrony przed przymrozkami

Wady:

- duża podatność na uszkodzenia mechaniczne

- problemy z utrzymaniem równomiernego wypływu wody z emiterów

- konieczność dokładnego filtrowania wody zwłaszcza z wytrącających się w emiterach związków żelaza

Regulowanie owocowania:

Kwitnienie i owocowanie roślin sadowniczych

Zawiązywanie pąków kwiatowych

Dwa etapy:

  1. inicjacja (indukcja) – jakościowa transformacja merystemów pąka bez wyraźnych objawów zewnętrznych

Lato Zima Wiosna

zawiązywanie kwitnienie

pąków

Pierwszym objawem różnicowania się pąka kwiatowego jest spłaszczanie wierzchołka wzrostu, który przybiera kształt brodawkowaty

Przyrastające komórki stożka wzrostu zaczynają formować zaczątki łusek okrywających i liści, a następnie działki kielicha, płatki korony, pręciki i słupki. Wszystkie elementy kwiatu można dostrzec po 2-3 tyg. od początku dyfe……..

Terminy tworzenia pąków kwiatowych: (odstępstwa mogą występować do kilku tygodni)

- jabłoń, grusza, wiśnia, czereśnia LIPIEC

- śliwy, morele, brzoskwinie KONIEC LIPCA/POCZĄTEK SIERPNIA

- porzeczki, agrest KONIEC SIERPNIA

- malina WRZESIEŃ – GRUDZIEŃ

- truskawka WRZESIEŃ

Warunki wpływające na termin tworzenia się pąków kwiatowych

- nawożenie

- cięcie

- nawadnianie

Czynniki wpływające na różnicowanie się pąków kwiatowych

- światło

- długość dnia (czas naświetlania roślin)

- intensywność nasłonecznienia

Z roślin sadowniczych na długość dnia reagują truskawki (rośliny dnia krótkiego)

Odmiany powtarzające truskawek są roślinami obojętnymi na długość dnia lub roślinami dnia długiego.

Intensywność nasłonecznienia:

U roślin sadowniczych pąki kwiatowe tworzą się intensywniej na zewnętrznej nasłonecznionej części korony ponieważ:

- brak światła ogranicza fotosyntezę i zmniejsza produkcję asymilatów niezbędnych do zapoczątkowania procesów generatywnych

- w liściach zacienionych jest więcej auksyn, które ograniczenie pąków kwiatowych (pod wpływem światła dochodzi do rozkładu auksyn)

Czynniki wpływające na różnicowanie się pąków kwiatowych:

- przebieg pogody (pod wpływem ciepła rozwój pąków może być zatrzymany, a nawet uwsteczniony, aby rośliny mogły wejść w stan spoczynku)

- intensywność wzrostu

* pąki nie tworzą się na pędach silnie rosnących, lecz dopiero po zakończeni fazy intensywnego wzrostu

* silnie rosnący pęd wytwarza w stożku wzrostu regulatory (auksyny, gibereliny), które hamują tworzenie się pąków kwiatowych w kątach liści

* rosnące stożki wzrostu zużywają dużo składników pokarmowych

- stosunek węglowodanów do azotu w tkankach może mieć wpływ na tworzenie się pąków kwiatowych

WYKŁAD 12 7.06.2005

METODY OGRANICZANIA DOPŁYWU ASYMILATÓW:

- obrączkowanie

- przyginanie pędów

Czynniki zmniejszające wzrost sprzyjają tworzeniu paków kwiatowych

  1. mutanty krótkopędowe

  2. podkładka, wstawka skarlająca

  3. uprawa i nawożenie

  4. cięcie, przyginanie pędów

  5. stosowanie regulatorów wzrostu

REGALIS 10WG – syntetyczny inhibitor giberelin, oprysk w dawce 0,75 – 2kg, gdy nowe przyrosty mają ok. 5cm i tworzyły 3-5 nowych liści

CZYNNIKI WPŁYWAJĄCE NA RÓŻNICOWANIE SIĘ PĄKÓW KWIATOWYCH:

  1. rozmiary drzewa

a) intensywny wzrost całego drzewa przyspiesza tworzenie pąków kwiatowych młodych drzew

b) intensywnie rosnący pęd hamuje tworzenie się pąków kwiatowych tylko w obrębie tego pędu i nie działa napędy słabo rosnące które znajdują się w sąsiedztwie

I rok drzewa po posadzeniu – dobre warunki wzrostu, mało pąków kwiatowych, dużo długopędów

II rok po posadzeniu – drzewa mają dużo pąków liściowych ale nie ze wszystkich powstają długopędy, część przekształca się w krótkopędy

Zjawisko dominacji wierzchołkowej – najczęściej 2-3 szczytowe pąki na każdym pędzie mają zdolność do ponownego wydawania silnych przyrostów

  1. plonowanie drzew

nasiona są bogate w substancje hormonalne: auksyny, gibereliny; przedostają się one w owocach do pędów i pąków i działają na proces tworzenia się pąków kwiatowych

dowody:

- pąki kwiatowe nie tworzą się na tych krótkopędach które mają owoce, ale na krótkopędach nie owocujących

KWITNIENIE ROŚLIN SADOWNICZYCH

rośliny sadownicze są: 1-pienne, o kwiatach 2-płciowych, rozdzielnopłciowych, 2-pienne

Warunki zapylenia kwiatów:

odmiany, które nie nadają się na zapylacze:

  1. odmiany triploidalne – mało żywotny pyłek

  2. odmiany intersterylne – nie zapylają się nawzajem

  3. mutanty – zmiany w genotypie są mało istotne więc żadna odmiana macierzysta nie może się zapylić ich pyłkiem

podział gatunków sadowniczych:

obcopylne: jabłoń, grusza, czereśnia, borówka amerykańska, leszczyna

samopylne: wiśnia, porzeczka, truskawki, maliny, agrest, morela, brzoskwinia

śliwa – odmiany samopylne i obcopylne

wykorzystanie jabłoni ozdobnych jako zapylaczy:

korzyść: utrzymanie 1 odmianowych kwater – ułatwia zbiór

wymagania: okres kwitnienia (dostosowany do kwitnienia odmiany zapylanej)

odporność na choroby

podobna morfologia kwiatów (barwa)

odmiany jabłoni ozdobnych przydatnych do zapylenia: Dolgo, Wintergold

okres efektywnego zapylenia kwiatu – czas, w którym kwiat może przyjąć pyłek i zostać zapłodniony. Zależy od żywotności woreczka zalążkowego, czasu wzrostu łagiewki pyłkowej krótszy od czasu kwitnienia. OBLICZANIE: odejmujemy od czasu żywotności woreczka zalążkowego czas wzrostu łagiewki pyłkowej.

Warunki niesprzyjające zapłodnieniu kwiatów:

a) niska temperatura – wzrost łagiewki pyłkowej jest b.wolny w temp.5-, wzrasta w temp.13°C

b) słaba żywotność pyłku – np. z powodu zabiegów chemicznych

Terminy kwitnienia:

leszczyna – 3dekada III

morela – połowa IV

agrest, porzeczka – 3 dekada IV

brzoskwinia, czereśnia – koniec IV

wiśnia, śliwa, orzech włoski – początek V

partenokarpia – powstawanie owoców bez zapylenia lub zapłodnienia, takie owoce nie mają nasion

pod wpływem zapylenia i zapłodnienia następuje uaktywnienie się w zalążni substancji hormonalnych stymulujących dopływ składników pokarmowych do zawiązka owocowego i zapobiegających powstawaniu warstwy komórkowej odcinających szypułkę, by rozwój owoców był prawidłowy konieczne jest wykształcenie nasion w zalążni

Opadanie zawiązków:

  1. pierwsze intensywne zrzucanie zawiązków – zaraz po kwitnieniu

  2. drugie intensywne zrzucanie zawiązków – 4-6 tygodni po kwitnieniu

Regulowanie owocowania:

owocowanie zbyt wczesne – w przypadku słabych drzew, nie rozrośniętych, nie jest pożądane owocowanie w 1 czy 2 roku po posadzeniu, dotyczy to drzew na podkładkach M9,P22. owoce hamują rozrastanie koron a to powoduje utrudnianie formowania, słabe wypełnienie przestrzeni w sadzie, słabsze owocowanie w latach następnych

zapobieganie: ręczne usuwanie kwiatów, chemiczny oprysk NAA

owocowanie zbyt późne – przyczyny: odmiany późno wschodzące w owocowanie, silnie rosnące podkładki, silne cięcie młodych drzew

przeciwdziałanie: zastosowanie rozgałęzionych okulantów, podkładek karłowych, przyginanie pędów, oprysk retardantami, obrączkowanie pnia lub konarów

owocowanie nieregularne – owocowanie przemienne to wrodzona cecha niektórych odmian.

Podział ze względu na regularność owocowania:

owocujące corocznie – nie tworzą pąków kwiatowych na wszystkich pędach i dzięki temu część pędów w koronie owocuje

owocujące przemiennie – tworzą pąki kwiatowe na wszystkich pędach, obficie kwitną i obficie zawiązują owoce

WYKŁAD 13 14.06.2005

Cykl przemiennego owocowania

obfite kwitnienie obfite owocowanie

dużo wytworzonych brak odpoczywających

pąków kwiatowych krótkopędów

dużo odpoczywających brak pąków

krótkopędów kwiatowych

brak owocowania

ZABIEGI REGULUJĄCE PRZEMIENNE OWOCOWANIA

Zabiegi agrotechniczne sprzyjające wzrostowi pędów:

- uprawa gleby

- nawożenie

- cięcie

Większa liczba młodych pędów przyrastająca corocznie tworzy rezerwę owoconośną na rok następny

Przerzedzanie zawiązków:

Cel: zapewnienie regularnego corocznego owocowania, poprawia jakość owoców

Przerzedzanie zawiązków polega na zapobieganiu zawiązywania lub usuwaniu nadmiernej ilości owoców, których drzewo nie jest w stanie prawidłowo wyżywić. Jednocześnie owoce te mogłyby przeszkodzić w zakładaniu pąków kwiatowych na rok następny.

Przerzedzanie chemiczne:

Pomonit R – 10 zawiera NAA

Pomonit Extra 110SL zawiera NAA i mocznik

Pomonit 505SL NAA z trójetanoloaminą i mocznik

Pomonit super 050SL

Bioprzerzedzacz 060 SL

Paturyl

BA – cytokinina

Warunki modyfikujące działanie środków przerzedzających zawiązki owocowe:

Trudno przerzedzić zawiązki, gdy:

1.owoce są w dobrze nasłonecznionych miejscach korony

2. drzewa rosną silnie, tworzą 30-45cm długopędy

3. drzewa są starsze ale dobrze owocujące

4. występuje słabe kwitnienie lub słabe zawiązywanie owoców z wyjątkiem drzew młodych

5. pędy owocujące rosną poziomo

6. na drzewach zwykle dobrze zapylających się występują szkodniki

7. owoce występują pojedynczo na któtkopędach

8. w przypadku odmian trudnych do przerzedzenia lub mutantów krótkopędowych silnie zawiązujących owoce

9. istnieją idealne warunki do wzrostu owoców przed i po przerzedzaniu

10. niska wilgotność powietrza przed i po oprysku powoduje szybkie wysychanie zastosowanej cieczy

11. intensywność kwitnienia jest słaba a stosunek liści do owoców jest wysoki

Łatwo przerzedzić zawiązki, gdy:

1. krótkopędy są na gałęziach zacienionych

2. drzewa rosną w warunkach nieodpowiedniej wilgotności i nawożenia

3. system korzeniowy drzew jest uszkodzony

4. kwitnienie jest obfite szczególnie gdy to drzewa obficie owocujące w roku poprzednim

5. drzewa są młode i posiadają dużo silnych rosnących pionowo pędów

6. odmiany są skłonne do naturalnego zrzucania owoców

7. owoce zawiązują się gronami

8. krótki okres kwitnienia

9. przed i po oprysku jest wysoka temperatura i duża wilgotność powietrza

10. występuje dłuższy okres pochmurnej pogody przed i po oprysku

11. kwiatostany są uszkodzone przez niskie temperatury

Przerzedzanie ręczne:

TERMIN: 6 tygodni po kwitnieniu po drugiej fali normalnego opadania zawiązków

TECHNIKA: zawiązki usuwamy bez szypułek – ułatwia to leczenie ran, usunięte zawiązki odrzucamy poza koronę – nie mogą opadać i uderzać w zawiązki pozostawione

Odległość od 1 do2: 15-20cm,

Wiele odmian wymaga usuwania zawiązków z przyrostów jednorocznych ponieważ tam tworzą się znacznie gorsze owoce niż na drewnie 2-3 letnim

Przerzedzanie zawiązków ręczne – morele, brzoskwinie

Ręczne i chemiczne – jabłonie, śliwy, grusze

Nie przerzedzamy wiśni i czereśni

ZBIÓR OWOCÓW

Zmiany fiz-chem w dojrzewających owocach:

  1. wielkość owoców

  2. jędrność owoców

  3. barwa owoców

  4. warstwa odcinająca

  5. wzrost poziomu cukrów

zmiany fizjologiczne:

  1. oddychanie

  2. wydzielanie etyleny

  3. transpiracja

ODDYCHANIE:KLIMAKTERYKA – związana ze zmianami zachodzącymi w owocach. Pojawia się w momencie przejścia owoców ze stanu niedojrzałości w fazę dojrzewania, starzenia się, rozpadu i śmierci

WYDZIELANIE ETYLENU:ETYLEN – hormon dojrzewania; w okresie przed zbiorem ilość etylenu nie przekracza 0,1ppm kiedy następuje wzrost zawartości etylenu w przestrzeniach międzykomórkowych i w komorach nasiennych do 1ppm ma miejsce autokatalityczny wzrost produkcji etylenu który daje początek klimakterycznej produkcji etylenu

W owocach klimakterycznych gdy znajdują się w fazie przedklimakterycznej etylen może wywołać wzrost oddychania. Po odcięciu dopływu etylenu nie zostaje przywrócone tępo oddychania. Przykłady: jabłka, morele, gruszki, brzoskwinie, śliwki

Owoce nieklimakteryczne odcięcie dopływu etylenu powoduje ustabilizowanie się intensywności oddychania na poziomie poprzedzającym zastosowanie etylenu. Przykłady: maliny, truskawki, wiśnie, czereśnie, winogrona

TRANSPIRACJA szparkowa i kutykularna; zależy od nalotu woskowego; po zbiorze owoc nie uzupełnia strat wody

SPOSOBY WYZNACZANIA DOJRZAŁOŚCI OWOCÓW

OWOCE ZEBRANE ZBYT WCZEŚNIE:

  1. nie osiągają właściwych walorów smakowych

  2. są mniejsze

  3. mała ilość cukrów, wysoka ilość chlorofilu, słaby rumieniec

  4. zwiększona intensywność transpiracji

  5. są podatne na choroby fizjologiczne

OWOCE ZEBRANE ZBYT PÓŹNO:

  1. duża wielkość

  2. lepsze wybarwienie

  3. szybsze przejrzewanie, krótsza zdolność przechowywania

  4. wrażliwość na uszkodzenia

  5. pokrycie skórki zwartą warstwą wosku

  6. występowanie chorób grzybowych

  7. większa podatność na choroby fizjologiczne

metody określenia terminu zbioru

pomiar stężenia etylenu: dokonujemy pomiaru w chromatografie gazowym z defektorem płomieniowym jonizacyjnym, gdy z 10 4 owoce > 0,1ppm to przeprowadzamy zbiór

pomiar czasu potrzebnego do wywołania autokatalitycznego wzrostu produkcji etylenu przez owoce zamknięte w hermetycznym naczyniu

liczba godzin*0,125=liczba dni do zbioru, na podstawie 2pomiarów rysujemy wykres i z niego odczytujemy termin zbioru

test skrobiowy:

próba owoców

pobieramy próby 4-6tygodni przed przewidywaną datą zbioru

wybieramy 3 drzewa z każdej odmiany

z różnych miejsc korony zbieramy 10-20 jabłek

powtarzamy co 5dni

temperatura w teście ponad

obserwujemy wybarwienie owoców roztworem, odczyty z tablic

używamy: 30g jodku potasu rozpuszczamy 30ml wody, dodajemy 2,5gkrystalicznego jodu, rozcieńczamy z wodą do 1l


Wyszukiwarka

Podobne podstrony:
Sady i Trybunaly
122 Organy wladzy Rzeczypospolitej sady i trybunalyid 13886 ppt
16 quasi sądy ingarden
sady, ogrodnictwo VII semestr, Od Mateusza S, materiały sggw, SGGW materiały 7 semestr
sady
sady wyklady
sady egzaminacyjna sciagaweczka same najpotrzebniejsze
Ustroj polityczny, sady i trybunaly
sady wyklady, Ogrodnictwo, Semestr V, Sadownictwo - Pomologia
Sądy i sprawy systematyka
Sady W Zycie L Wittgensteina (2)
Odzwierciedlenie programu Pozytywizmu warszawskiego w literaturze epoki i sądy pisarzy o jego realiz
Odzwierciedlenie programu pozytywizmu warszawskiego w literaturze epoki i sądy pisarzy o jego realiz
Sady, Sadownictwo 3 częsć 2 semestru, Zapobieganie-1 odpowiednie stanowisko-unikać terenów nisko poł
Sady, Sady ĆW.5, McIntosh- odm
TL-Ingardenowskie[1][1].quasi-sady, Teoria literatury

więcej podobnych podstron