terma sciaga 2

Tłok;p1=0,5Mpa;V1=1m3;p2=0,2Mpa;V2=5m3;L1-2;Q1-2. L1-2=V1V2pdV=$\frac{\left( p1 + p2 \right)}{2}\left( V2 - V1 \right)\left\lbrack \text{MJ} \right\rbrack \rightarrow Q1 - 2 = U2 - U1 + L1_{2} \rightarrow U = n*\left( \text{Mcv} \right)*T \rightarrow U2 - U1 = \frac{1}{\kappa - 1}\left\lbrack p2v2 - p1v1 \right\rbrack = \lbrack MJ\rbrack \rightarrow Q1_{2} = U2 - U1 + \kappa = \lbrack MJ\rbrack$. Płyn;V1=0.02m3;p=(0.116/V+0.2)*105  Pa; Pm1 = 0, 5MPa; Pm2 = 0MPa; Pot = 0.1MPa; P1 = 0, 6MPa; P2 = 0, 1MPa;L1-2;Lot1-2;Luż1-2;Lt1-2;N=?$\left( \mathbf{no = 320}\frac{\mathbf{1}}{\mathbf{\min}} \right)\mathbf{\rightarrow}p = pm + pt \rightarrow L1 - 2 = \int_{V1}^{V2}{pdv \rightarrow p1 = \left( \frac{0,116}{V1} + 0,2 \right)*10^{5} = 6*10^{5} \rightarrow \frac{0,116}{V1} + 0,2 = 6 \rightarrow \frac{0,116}{V1} = 5,8 \rightarrow V1 = \frac{0,116}{5,8} = \left\lbrack m3 \right\rbrack \rightarrow}p2 = \left( \frac{0,116}{v2} + 0,2 \right)*10^{5} = 1*10^{5} \rightarrow \frac{0,116}{V2} = 0,8 \rightarrow V2 = \frac{0,116}{0,8} = \left\lbrack m3 \right\rbrack \rightarrow L1 - 2 = \int_{p1}^{p2}{p1 = 0,116*10^{5}\ln\frac{p2}{p1} + 0,2*10^{5}\left( P2 - P1 \right) = \left\lbrack J \right\rbrack \rightarrow Lot = Pot\left( V2 - V1 \right) = 10^{5\ }\left( V2 - V1 \right) = \left\lbrack J \right\rbrack \rightarrow L1 - 2 - Lot1 - 2 = \left\lbrack J \right\rbrack \rightarrow Lt1 - 2 = p1*V1 + L1 - 2 - P2V2 = \left\lbrack J \right\rbrack \rightarrow Ni = Lt1 - 2*n0 \rightarrow n0 = \frac{320}{60\ }}\frac{\mathbf{1}}{\mathbf{s}}\mathbf{Objetosc;}Vz = 5m3;pm1 = 0,5MPa;t1 = 20C;Pot = 0,1MPa;tot = 15C;pm2 = 0,12MPa;t2 = 15C;\mathbf{Vr = ? \rightarrow}m2 = \frac{P1*Vz}{RT1} \rightarrow mr = \frac{Pot*Vr}{\text{Tot}} \rightarrow P2Vz + P2Vr = P1Vz*\frac{T2}{T1} + PotVr\frac{T2}{\text{Tot}} \rightarrow \left( p2 - pot\frac{T2}{\text{Tot}} \right)Vr = p1v2*\frac{T2}{T1} - p2*Vz \rightarrow Vr = Vz*\frac{P1*\frac{T2}{T1} - p2}{p2 - pot*\frac{T2}{\text{Tot}}} = \lbrack m3\rbrack$

Ciśnienie;p1=0.1MPa;t1=20c;Δτ1=14;Δτ2=24;m=idem;p2=0.3Mpa;t2=50c;t3=90c;P3=?->$\frac{\mathbf{m}\mathbf{1}\mathbf{R}}{\mathbf{V}}\mathbf{=}\frac{\mathbf{P}\mathbf{1}}{\mathbf{T}\mathbf{1}}\mathbf{\rightarrow}P2 = \frac{P1*T2}{T1} + \left( \frac{\text{mR}}{V} \right)\tau 1*T2 \rightarrow \frac{\text{mR}}{V} \rightarrow \frac{P2 - P1*\frac{T2}{T1}}{\tau 1*T2} \rightarrow P1 = \frac{m1}{V}RT1 \rightarrow P2 = \left( \frac{m1}{V}R + \frac{m}{V}R*\tau 1 \right)T2 \rightarrow P3 \rightarrow P1*\frac{T3}{T1} + \frac{P2 - P1\frac{T2}{T1}}{\tau 1}*\left( \tau 1 + \tau 2 \right)*T3\lbrack Pa\rbrack$;Objetosc(1);V=300l;tO2=27c;pm=6.5bar;pot=0.1MPa;n,m,Vn?;->$p = pm + pot = 6.5*10^{5} + 10^{5}Pa = \left\lbrack \text{MPa} \right\rbrack \rightarrow pV = n\left( \text{MR} \right)T \rightarrow T = t + 273,15 \rightarrow T = 27 + 273,15 = \left\lbrack K \right\rbrack \rightarrow n = \frac{\text{pV}}{\left( \text{MR} \right)T} = \left\lbrack \text{kmol} \right\rbrack \rightarrow m = n*M = \left\lbrack \text{kg} \right\rbrack \rightarrow Vn = V*\frac{P}{\text{pn}}*\frac{\text{Tn}}{T} = \left\lbrack nm3 \right\rbrack;\mathbf{Szyb\ gazowy;}\Delta Vn = 5*10^{5}mm3\ CH4;p1 = 4.52MPa;p2 = 4.38MPa;T = idem;V = idem;\mathbf{Vn2,nm3? \rightarrow}\left\{ p1*V = n1\left( \text{MR} \right)T;p2*V = n2\left( \text{MR} \right)T;n1 - n2 = \Delta n \right\} \rightarrow \left\{ \frac{P1}{P2} = \frac{n1}{n2};n1 - n2 = \Delta n \right\} \rightarrow n2*\frac{P1}{P2} - n2 = \Delta n \rightarrow n2 = \frac{\text{Δn}}{\frac{P1}{P2} - 1} \rightarrow Vn = n\left( \text{MV} \right)n \rightarrow \left( \text{MV} \right)n = \frac{\left( \text{MR} \right)\text{Tn}}{\text{pn}} = \left\lbrack \frac{nm3}{\text{kmol}} \right\rbrack \rightarrow Vn2 = \frac{\text{ΔVn}}{\frac{P1}{P2}\_ 1} = \ldots 10^{6}\left\lbrack nm3 \right\rbrack \rightarrow n = \frac{\text{Vn}}{\left( \text{MV} \right)n} = \ldots 10^{5}\left\lbrack \text{kmol} \right\rbrack \rightarrow m = n*M = \ldots 10^{6}$[kg]

Entalpia:V=5m3,p=pot=0.1MPa,κ=1.4,t1=20C,Q1-2=8*10J;ΔU;H1-2;t;Δn. pV=mRT->m=$\frac{\text{pV}}{\text{RT}} \rightarrow dm = \frac{- pv}{RT^{2}}dt \rightarrow u = Cv*T \rightarrow dU = d\left( m*u \right) = m*du + u*dm = \frac{\text{PV}}{\text{RT}}*cv*dt + cv*T\left( \frac{- pv}{\text{RT}^{2}} \right)dt = 0 \rightarrow dQ = dU + dH \rightarrow dv = 0 \rightarrow \int_{1}^{2}{dQ = \int_{1}^{2}{dH \rightarrow Q1 - 2 = H1 - 2 = 8*10^{5}J \rightarrow dH = - h*dm = cp*T*\frac{\text{pV}}{10^{5}}*dT = \frac{\kappa}{\kappa - 1}*p*V*dT \rightarrow h = cp*T \rightarrow m = \frac{\text{pv}}{\text{RT}} \rightarrow dm = - \frac{\text{PV}}{\text{RT}^{2}}*dT \rightarrow H1 - 2 = \int_{1}^{2}{dH = \int_{T1}^{T2}{\frac{\kappa}{\kappa - 1}*p*v*\frac{\text{dT}}{T} = \frac{\kappa}{\kappa - 1}*p*v*ln\frac{T2}{T1} = \frac{\kappa}{\kappa - 1}*pV*ln\frac{n1}{n2} \rightarrow n1 = \frac{p1v1}{\left( \text{MR} \right)T1} \rightarrow \Delta n = n1 - n2 \rightarrow H1 - 2 = \Delta n\left( \text{Mcp} \right)T \rightarrow \left( \text{Mcp} \right) = \frac{\kappa}{\kappa - 1}*\left( \text{MR} \right) \rightarrow t = \frac{H1 - 2}{\Delta n*(Mcp)}}}}}$


Wyszukiwarka

Podobne podstrony:
terma ściąga, Księgozbiór, Studia, Pozostałe
terma sciaga
Terma sciaga
terma sciaga ostatnia jebana kurwa pierdolona szmata zajebana (1)
terma sciaga(1)
terma ściaga(1)
terma teoria sciaga v3
sciaga terma scianka plaska
sciaga terma
Sciaga terma 3 (2)
sciaga terma
Ściąga terma
ściąga terma
1 sciaga ppt
metro sciaga id 296943 Nieznany
ŚCIĄGA HYDROLOGIA
AM2(sciaga) kolos1 id 58845 Nieznany

więcej podobnych podstron