biologia genetyka

Mutacje – czynniki mutagenne, rodzaje mutacji, skutki


Termin "mutacja" do nauki wprowadził Hugo de Vries w roku 1909. Mutacja to zmiana w materiale genetycznym, powstająca samorzutnie lub pod wpływem różnych czynników. Mutacja może być dziedziczona, jeśli nastąpiła w linii komórek płciowych.


Rodzaje mutacji:


1. genowe (punktowe) - zachodzą na odcinku DNA krótszym niż jeden gen; polegają na zmianie właściwej sekwencji nukleotydów (zamianie, wycięciu lub wstawieniu par pojedynczych nukleotydów lub odcinków trochę dłuższych)

2. chromosomowe - dotyczą zmiany struktury chromosomów lub ich liczby


o strukturalne (aberracje) - polegają na zmianie struktury w obrębie jednego chromosomu lub pomiędzy chromosomami niehomologicznymi

o liczbowe (genomowe) - dotyczą zmiany całego genomu, który zostaje zubożony lub powiększony o jeden chromosom lub też zwielokrotniony całkowicie (o całe "n"); są wynikiem zaburzenia procesów podziałowych, konkretnie nieprawidłowego rozejścia się chromosomów


Skutki mutacji mogą być w ogóle niezauważalne, mogą prowadzić do nieznacznej i niegroźnej zmiany fenotypu, a mogą również być przyczyna poważnych zaburzeń oraz śmierci.


Jak już wspomniano, mutacje mogą zachodzić spontanicznie oraz pod wpływem różnych czynników zewnętrznych. Takimi czynnikami mutagennymi są:


o promieniowanie (ultrafiolet, jonizujące)

o wysoka temperatura

o czynniki chemiczne:

+ kwas azotowy (III) - HNO2 - powoduje usunięcie grup aminowych z zasad azotowych, co powoduje np. zamianę cytozyny w uracyl

+ związki alkilujące (np. iperyt i jego pochodne) - powodują dołączanie do zasad azotowych grup alkilowych, co również zmienia ich charakter

+ analogi zasad azotowych (np. bromouracyl) - nie są prawidłowo odczytywane podczas transkrypcji

+ barwniki akrydynowe (np. oranż akrylowy, akryflawina, proflawina) - powodują wstawianie lub wycinanie sekwencji nukleotydowych

+ alkaloidy - np. kolchicyna, blokująca tworzenie wrzeciona podziałowego, co powoduje, że chromosomy nie rozchodzą się podczas podziału

+ sole metali ciężkich

o czynniki metaboliczne (np. brak jonów Mg2+ lub Ca2+)


Najpoważniejszymi w skutkach są mutacje genomowe, czyli takie, które powodują zmianę liczby chromosomów w genomie. W wielu przypadkach są one śmiertelne już na etapie zygoty. Prawidłowy genom komórek autosomalnych zawiera 2n chromosomów, komórki rozrodcze natomiast mają 1n. Organizmy powstałe wskutek mutacji genomowych mają inną liczbę chromosomów:


a) aneuploidy - zmiana dotyczy tylko pojedynczych chromosomów:


o monosomiki - mają o jeden chromosom za mało (2n-1)

o trisomiki - mają o jeden chromosom za dużo (2n+1)


Zaburzenia liczby chromosomów u człowieka - choroby genetyczne


U człowieka aneuploidalność może występować w autosomach oraz w chromosomach płci. W autosomach stwierdzono jedynie trisomie (2n+1), monosomie są letalne:


* zespół Downa - trisomia chromosomu 21 (2n=47) - ludzie z zespołem Downa mają charakterystyczne wygląd; płaska twarz, niski wzrost i skośne szpary oczne. Mają też szczególnie duży język, podniebienie jest wąskie, a w budowie narządów wewnętrznych występują liczne nieprawidłowości, często rozwija się białaczka. Ludzi tych cechuje niedorozwój umysłowy, choć wykazują jednocześnie silny instynkt społeczny, pogodne usposobienie oraz upór

* zespół Patau'a - trisomia chromosomu 13 (2n=47) - silna deformacja płodu: nieprawidłowości w wykształceniu uszu oraz oczu, rozszczepienie wargi, polidaktylia, wady narządów wewnętrznych, niedorozwój umysłowy; śmierć po kilku miesiącach

* zespół Edwardsa - trisomia chromosomu 18 (2n=47) - podobnie jak w przypadku zespołu Patau'a występują liczne silne deformacje fizyczne płodu oraz niedorozwój umysłowy; śmierć we wczesnym okresie życia

* zespół Klinefeltera - dodatkowy chromosom X (2n+XXY)- mężczyźni o wyglądzie normalnym, jednak są bezpłodni (niedorozwój jąder) oraz mają obniżony poziom inteligencji

* dodatkowy chromosom X u kobiet (2n+XXX) - kobiety takie mają obniżoną inteligencję oraz zaburzenia cyklu miesiączkowego

* zespół Turnera - brak jednego chromosomu X (2n+X_)- kobiety takie mają bardzo niski wzrost oraz niewykształcone prawidłowo narządy płciowe, co powoduje bezpłodność


b) euploidy - liczba chromosomów jest zwielokrotniona całkowicie, o całe "n":


o autopoliploidy - organizmy takie powstają, kiedy chromosomy z różnych przyczyn nie rozchodzą się podczas podziału mitotycznego lub mejotycznego, lub kiedy liczba chromosomów się podwaja, a podział jądra nie zachodzi (tzw. endomitoza). Efekt taki można również wywołać za pomocą kolchicyny, która blokuje tworzenie się wrzeciona podziałowego. W wyniku tych zaburzeń powstaje osobnik całkowicie poliploidalny lub wykształcają się poliploidalne tkanki. Zjawisko to często występuje u roślin. Osobniki takie mogą się rozmnażać, w wyniku czego powstają nowe kombinacje genomowe, np. jeśli wykształcone zostaną nieprawidłowe gamety 2n, to powstanie zygota 4n (tetraploidalna). Prawidłowa gameta takiego osobnika (2n) może połączyć się z prawidłową gametą innego (1n), w wyniku czego powstanie osobnik triploidalny (3n). Komórki zawierające większą ilość chromosomów są większe, co wykorzystują rolnicy, tworząc poliploidalne odmiany zbóż (np. pszenicy, kukurydzy) w celu uzyskania większych plonów.


Poliploidalne rośliny


* ma miejsce powiększenie objętości komórek, co powoduje gigantyzm organów; nie wszystkie organy jednak wykazują takie samo powiększenie

* występuje mniejsza liczba aparatów szparkowych, co zmniejsza powierzchnię transpiracji, a to z kolei czyni rośliny bardziej odpornymi na suszę

* najbardziej korzystne do uprawy są rośliny tetraploidalne (4n), większa liczba chromosomów powoduje już zaburzenia w wykształcaniu organów


Poliploidalne zwierzęta


* zazwyczaj zwierzęce poliploidy zamierają na etapie zygoty lub we wczesnym stadium życia, a jeśli nie, to ich funkcjonowanie jest w znacznym stopniu upośledzone


o allopoliploidy - są to osobniki powstałe w wyniku połączenia genomów różnych gatunków; jeśli połączą się gamety o diploidalnej liczbie chromosomów (2n), powstanie tetraploidalny amfiploid. Osobniki będące takimi hybrydami są zazwyczaj niezdolne do normalnego funkcjonowania i rozrodu. Wyjątek stanowi tutaj muł, który wprawdzie jest bezpłodny, ale za to bardziej żywotny niż każdy z gatunków rodzicielskich


Wyszukiwarka

Podobne podstrony:
cykle robaków, ~FARMACJA, I rok, biologia z genetyką
II prawo Mendla, Biologia, genetyka (butator)
Biologia Genetyka
biologia genetyka
genetyka podstawowe wiadomości, Nauka, biologia, genetyka
porównanie komórek prokariotycznej i eukariotycznej, Farmacja UMB, Biologia z genetyką, Ćwiczenia
BIOLOGIA WYKŁAD II, Kosmetologia UMED Łódź I rok, Biologia i genetyka
spisac biologia 5 genetyka
BIOLOGIA I GENETYKA wykład 1
GENETYKA, Szkoła, Biologia, genetyka, gen prezentacje, Najnowsze odkrycia w dziedzinie genetykiFigur
biologia genetyka, Biologia
opracowane pyt z bioli, farmacja, I sem, egzamin z biologii i genetyki i kolokwia
Genetyka - test A i B, biologia, genetyka
biologia genetyka jako nauka
tresci zadan - cw 3-6, Biologia, genetyka
Zagadnienia z Biologii-cz1, biologia z genetyką
Biologia genetyka pojęcia, mendel
biologia genetyka, do szkoły, ściągi
Biologia forum 2, farmacja, I sem, egzamin z biologii i genetyki i kolokwia