osiowo symetryczny3, SGSP, SGSP, cz.1, hydromechanika, Hydromechanika


SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ

KATEDRA

TECHNIKI

POŻARNICZEJ

LABORATORIUM HYDROMECHANIKI

Ćwiczenie nr: 2

Temat:

Określanie wydatku za pośrednictwem pomiaru rozkładu prędkości w przepływie osiowo - symetrycznym.

Pluton: 1

Imię i nazwisko:

asp. Stanisław Trocki

Grupa: A

Prowadzący:

bryg. mgr inż. Wojciech Zegar

Data wykonania:

16.02.2002r.

Data złożenia:

02.03.2002r.

Ocena:

Cel ćwiczenia:

Celem ćwiczenia jest wyznaczenie wydatku rzeczywistego Qrz oraz wydatku teoretycznego Qt na kryzie korzystając z tabeli pomiarowej uzyskanych wyników, a następnie porównanie tych dwóch wielkości określających współczynnik wydatku kryzy α.

Schemat stanowiska pomiarowego:

Stanowisko pomiarowe składa się z pomiarowej rury poziomej, pionowej rury z kryzą. Przepływ powietrza jest wymuszony wentylatorem odśrodkowym, napędzanym silnikiem elektrycznym. Regulację wydatku uzyskuje się poprzez zmianę położenia regulatora wydatku.

Ciśnienie dynamiczne jest mierzone rurką Prandtla, która jest przesuwana w płaszczyźnie prostopadłej do kierunku przepływu. Do kontroli ustawienia rurki pomiarowej względem ścianki rury służy odpowiednia podziałka. Mikromanometr jest połączony różnicowo z rurką Prandtla. Ciśnienie różnicowe na kryzie jest wskazywane przez drugi mikromanometr.

0x08 graphic


Tabela pomiarów:

Lp.

Położenie rurki Prandtla

R [mm]

Wychylenie się cieczy w manometrze

Lp [mm]

Wychylenie się cieczy na kryzie

Lk [mm]

1

48

144

85

2

45

144

85

3

40

145

84

4

35

147

86

5

30

145

84

6

25

145

84

7

20

142

85

8

15

132

84

9

12

122

85

10

10

130

85

11

8

112

85

12

6

105

85

13

4

100

85

14

2

80

85


Tabela wyników:

Lp.

Obliczone ciśnienie dynamiczne

Pd [Pa]

Obliczona prędkość powietrza

Vpow(R) [m/s]

Obliczony iloczyn

R·Vpow(R) [m2/s]

1

22,03

5,82

0,279

2

22,03

5,82

0,262

3

22,19

5,84

0,234

4

22,49

5,88

0,206

5

22,19

5,84

0,175

6

22,19

5,84

0,146

7

21,73

5,78

0,116

8

20,20

5,57

0,083

9

18,67

5,35

0,064

10

19,89

5,33

0,055

11

18,36

5,31

0,042

12

16,06

4,97

0,030

13

15,30

4,85

0,019

14

12,24

4,33

0,009

Przykładowe obliczenia:

  1. Obliczanie ciśnienia dynamicznego:

Dane: Obliczenia:

Lp = 0,142 [m] pd =Lp · np · ρcm · g

np. = 1/50 = 0,02 pd = 0,142 · 0,02 · 780 · 9,81

ρcm = 780 [kg/m3] pd = 21,73[Pa]

g = 9,81 [m/s2]

Dane: Obliczenia:

Lp = 0,105 [m] pd =Lp · np · ρcm · g

np. = 1/50 = 0,02 pd = 0,105 · 0,02 · 780 · 9,81

ρcm = 780 [kg/m3 ] pd = 16,06 [Pa]

g = 9,81 [m/s2]

  1. Obliczanie prędkości powietrza:

Dane: Obliczenia:

pd = 22,49 [Pa] Vpow(R) = √(2pd/ ρpow)

ρpow = 1,3 [kg/m3] Vpow(R) = 5,88 [m/s]

Dane: Obliczenia:

pd = 16,06 [Pa] Vpow(R) = √(2pd/ ρpow)

ρpow = 1,3 [kg/m3] Vpow(R) = 4,97 [m/s]

  1. Obliczanie iloczynu:

Dane: Obliczenia:

R = 0,035 [m] R·Vpow(R) = 0,206 [m2/s]

Vpow(R) = 5,88 [m/s]

Dane: Obliczenia:

R = 0,006 [m] R·Vpow(R) = 0,030 [m2/s]

Vpow(R) = 4,97 [m/s]

  1. Obliczenie pola trójkąta z wykresu:

Dane: Obliczenia:

d = 24 [cm] F = 1/2 · d · h

h = 14,5 [cm] F = 174 [cm2]

  1. Obliczanie wydatku rzeczywistego:

Obliczenie κ z wykresu:

x → 1 cm = 0,002 [m] κ = x · y = 0,00004 [m3/s/cm2]

y → 1 cm = 0,02 [m2/s]

Dane: Obliczenie:

Π = 3,14 Qrz = 2 · Π · F · κ

F = 174 [cm2] Qrz = 0,0437 [m3/s]

κ = 0,00004 [m3/s/cm2]

6. Obliczenia dla kryzy:

► obliczenie średniego wychylenia na kryzie:

Lśr = 85 [mm]

► obliczenie ciśnienia różnicowego na kryzie:

Dane: Obliczenia:

Lkśr = 0,085 [m] p = Lkśr · nk · ρcm · g

nk = 1/10 = 0,1 p = 65,0 [Pa]

ρcm = 780 [kg/m3]

g = 9,81 [m/s2]

► obliczenie modułu kryzy:

Dane: Obliczenie:

dk = 0,0756 [m] m = ( dk/dr)2

dr = 0,096 [m] m = 0,62

  1. Obliczanie wydatku teoretycznego:

Dane: Obliczenie:

m = 0,62 Qt = [1/√(1-m2)]·[(Πdk2)/4]·[√(2p/ ρpow)]

Π = 3,14 Qt = 0,057 [m3/s]

dk = 0,0756 [m]

p = 65,0 [Pa]

ρpow 1,3 [kg/m3]

  1. Obliczenie współczynnika wydatku kryzy:

Dane: Obliczenie:

Qrz = 0,0437 [m3/s] α = Qrz/Qt

Qt = 0,057 [m3/s] α = 0,76

Wnioski:

Obliczony wydatek rzeczywisty Qrz = 0,0437w porównaniu z wydatkiem teoretycznym Qt = 0,057 jest mniejszy. Różnica między dwoma wydatkami (rzeczywistym a teoretycznym) spowodowana jest:



Wyszukiwarka

Podobne podstrony:
przepływ osiowo symetryczny6, SGSP, SGSP, cz.1, hydromechanika, Hydromechanika
Przepływ osiowo symetryczn4, SGSP, SGSP, cz.1, hydromechanika, Hydromechanika
12 jarek, SGSP, SGSP, cz.1, hydromechanika, Hydromechanika
charakterystyk pomp wirowych odśrodkowych, SGSP, SGSP, cz.1, hydromechanika, Hydromechanika
ćw 9, SGSP, SGSP, cz.1, hydromechanika, hydra
cwiczenie 9 hydra brzoza krzywusek, SGSP, SGSP, cz.1, hydromechanika, hydra
zadania hydra, SGSP, SGSP, cz.1, hydromechanika, Hydromechanika
Hyromechanika lab, SGSP, SGSP, cz.1, hydromechanika, Hydromechanika
tabelka wynikowa do ćw 9, SGSP, SGSP, cz.1, hydromechanika, Hydromechanika
HYDRA ściąga, SGSP, SGSP, cz.1, hydromechanika, Hydromechanika
C11, SGSP, SGSP, cz.1, hydromechanika, Hydromechanika, instrukcje stare
hydra tabelka, SGSP, SGSP, cz.1, hydromechanika, Hydromechanika
c12, SGSP, SGSP, cz.1, hydromechanika, Hydromechanika, instrukcje stare
Sciąga przepływ, SGSP, SGSP, cz.1, hydromechanika, Hydromechanika
HYDRA ściąga2, SGSP, SGSP, cz.1, hydromechanika, Hydromechanika
PAGÓREK, SGSP, SGSP, cz.1, hydromechanika, Hydromechanika
Hydromechanika, SGSP, SGSP, cz.1, hydromechanika, Hydromechanika
charak pomp wirowych, SGSP, SGSP, cz.1, hydromechanika, Hydromechanika

więcej podobnych podstron