Przepływ cieczy, równanie ciągłości, równanie Bernoulliego, przykładowe zastosowania.
Cechy strumienia płynu idealnego
- stacjonarny
- bezwirowy (brak ruchu obrotowego)
- nieściśliwy
- nielepki (brak tarcia wewnętrznego)
Linie prądu płynu idealnego
- wszystkie cząstki płynu poruszają się po jednym torze
- prędkość cząstek płynu jest zawsze styczna do linii prądu
- linie prądu nie poruszają się ze sobą
Przez każdy punkt w płynie przechodzi linia prądu
Przepływ turbulentny - tworzą się wiry, wzrasta współczynnik oporu)
Przepływ laminarny - linie prądu są ciągłe
Przykłady: dym papierosa (zmiana przepływu z laminarnego na turbulentny), samochód (musi być przepływ laminarny), woda płynąca z kranu.
Liczba Reynoldsa
ρ - gęstość płynu
v - prędkość charakterystyczna (średnia w przekroju)
d - wymiar charakterystyczny
µ - lepkość dynamiczna płynu
Przepływ przez rury okrągłe: w praktyce inżynierskiej przyjmuje się na ogół następujące kryteria dla rur okrągłych:
- Re<2400 przepływ laminarny (uporządkowany, warstwowy, stabilny)
- 2400<Re<10000 przepływ przejściowy (częściowo turbulentny)
- Re>10000 przepływ turbulentny (burzliwy)
Równanie ciągłości dla płynu idealnego
Objętość przepływającej cieczy w czasie Δt
ΔV=SΔl=SvΔt
Masa przepływającej cieczy wynosi
Δm=ρΔV=ρSVΔt
Stosując to równanie dla obu końców rury mamy ρ1S1V1Δt=ρ2S2V2Δt
Masy te muszą być sobie równe ρ1S1V1=ρ2S2V2=const
Dla stałych gęstości ρ1=ρ2 (ciecz nieściśliwa) mamy zatem: S1V1=S2V2
Energia mechaniczna elementu „rurki” cieczy w pierwszym i drugim położeniu
Praca wykonana przez ciśnienie w cieczy w pierwszym i drugim położeniu
Zmiana energii mechanicznej fragmentu „rurki” jest równa przyrostowi pracy
ΔE=E2-E1=-ΔW=W1-W2
Z prawa ciągłości ΔV1=ΔV2=ΔV
Ostatecznie prawo Bernoulliego wygląda:
Suma ciśnienia statycznego, kinematycznego i hydraulicznego w każdym miejscu strumienia jest stała.
Wykorzystywane w zwężce Venturiego, palniku Bunsena
Wypływ cieczy ze zbiornika