BiaĹ'ka, BIOCHEMIA


Białka

Białka - wielkocząsteczkowe (masa cząsteczkowa od ok. 10 000 do kilku mln Daltonówbiopolimery, a właściwie biologiczne polikondensaty, zbudowane z reszt aminokwasów połączonych ze sobą wiązaniami peptydowymi -CONH-. Występują we wszystkich żywych organizmach orazwirusachSynteza białek odbywa się przy udziale specjalnych organelli komórkowych zwanych rybosomami.

Zazwyczaj liczba reszt aminokwasowych pojedynczego łańcuchapolipeptydowego jest większa niż 100, a cała cząsteczka może być zbudowana z wielu łańcuchów polipeptydowych (podjednostek).

Głównymi pierwiastkami wchodzącymi w skład białek są COHNS, także P oraz niekiedy kationy metali Mn2+Zn2+Mg2+Fe2+Cu2+Co2+ i inne.

Skład ten nie pokrywa się ze składem aminokwasów. Wynika to stąd, że większość białek (są to tzw. białka złożone lub proteidy) ma dołączone do reszt aminokwasowych różne inne cząsteczki. Regułą jest przyłączaniecukrów, a ponadto kowalencyjnie lub za pomocą wiązań wodorowychdołączane może być wiele różnych związków organicznych pełniących funkcje koenzymów oraz jony metali.

Budowa białek

Zsyntetyzowany w komórce łańcuch białkowy przypomina unoszącą się swobodnie w roztworze "nitkę", która może przyjąć dowolny kształt (w biofizyce nazywa się to kłębkiem statystycznym), ale ulega procesowi tzw.zwijania białka (ang. protein folding) tworząc mniej lub bardziej sztywną strukturę przestrzenną, zwaną strukturą lub konformacja białka "natywną". Tylko cząsteczki, które uległy zwinięciu do takiej struktury, mogą pełnić właściwą danemu białku rolę biochemiczną.

Ze względu na skalę przestrzenną pełną strukturę białka można opisać na czterech poziomach:

Właściwości fizykochemiczne

Białka nie posiadają charakterystycznej dla siebie temperatury topnienia. Przy ogrzewaniu w roztworze, a tym bardziej w stanie stałym, ulegają, powyżej pewnej temperatury, nieodwracalnej denaturacji (ścinanie się włókien białka) - zmianie struktury, która czyni białko nieaktywnym biologicznie (codziennym przykładem takiej denaturacji jest smażenie lub gotowanie jajka). Jest to spowodowane nieodwracalną utratą trzeciorzędowej lub czwartorzędowej budowy białka. Z tej przyczyny dla otrzymania suchej, ale niezdenaturowanej próbki danego białka, stosuje się metodę liofilizacji, czyli odparowywania wody lub innych rozpuszczalników z zamrożonej próbki pod zmniejszonym ciśnieniem. Denaturacja białek może również zachodzić pod wpływem soli metali ciężkich, mocnych kwasów izasad, niskocząsteczkowych alkoholialdehydów oraz napromieniowania. Wyjątek stanowią proste białka, które mogą ulegać także procesowi odwrotnemu, tzw. renaturacji - po usunięciu czynnika, który tę denaturację wywołał. Niewielka część białek ulega trwałej denaturacji pod wpływem zwiększonego stężenia soli w roztworze, jednak proces wysalania jest w większości przypadków w pełni odwracalny, dzięki czemu umożliwia izolowanie lub rozdzielanie białek.

Białka są na ogół rozpuszczalne w wodzie. Do białek nierozpuszczalnych w wodzie należą tzw. białka fibrylarne, występujące w skórze, ścięgnach, włosach (kolagenkeratyna) lub mięśniach (miozyna). Niektóre z białek mogą rozpuszczać się w rozcieńczonych kwasach lub zasadach, jeszcze inne w rozpuszczalnikach organicznych. Na rozpuszczalność białek ma wpływ stężenie soli nieorganicznych w roztworze, przy czym małe stężenie soli wpływa dodatnio na rozpuszczalność białek. Jednak przy większym stężeniu następuje uszkodzenie otoczki solwatacyjnej, co powodujewypadanie białek z roztworu. Proces ten nie narusza struktury białka, więc jest odwracalny i nosi nazwę wysalania białek.

Białka posiadają zdolność wiązania cząsteczek wody. Efekt ten nazywamyhydratacją. Nawet po otrzymaniu próbki suchego białka zawiera ona związane cząsteczki wody.

Białka, ze względu na obecność zasadowych grup NH2 oraz kwasowych COOH mają charakter obojnaczy - w zależności od pHroztworu będą zachowywały się jak kwasy (w roztworze zasadowym) lub jak zasady (w roztworze kwaśnym). Dzięki temu białka mogą pełnić rolę bufora stabilizującego pH, np. krwi. Różnica pH nie może być jednak znaczna, gdyż białko może ulec denaturacji. Wypadkowy ładunek białka zależy od ilości aminokwasów kwaśnych i zasadowych w cząsteczce. Wartość pH, w której ładunki dodatnie i ujemne aminokwasów równoważą się nazywany jest punktem izoelektrycznym białka.

Białka odgrywają zasadniczą rolę we wszystkich procesach biologicznych. Biorą udział w katalizowaniu wielu przemian w układach biologicznych (enzymy są białkami), uczestniczą w transporcie wielu małych cząsteczek i jonów (np. 1 cząsteczka hemoglobiny przenosząca 4 cząsteczki tlenu), służą jako przeciwciała oraz biorą udział w przekazywaniu impulsów nerwowych jako białka receptorowe. Białka pełnią także funkcję mechaniczno-strukturalną. Wszystkie białka zbudowane są z aminokwasów. Niektóre białka zawierają nietypowe, rzadko spotykane aminokwasy, które uzupełniają ich podstawowy zestaw. Wiele aminokwasów (zazwyczaj ponad 100) połączonych ze sobą wiązaniami peptydowymi tworzy łańcuch polipeptydowy, w którym można wyróżnić dwa odmienne końce. Na jednym końcu łańcucha znajduje się niezablokowana grupa aminowa (tzw. N-koniec), na drugim niezablokowana grupa karboksylowa (C-koniec).

Podział białek

Istnieje wiele kryteriów podziału białek.

Ze względu na budowę i skład, dzielimy białka na proste i złożone.
Białka proste (proteiny) zbudowane są wyłącznie z aminokwasów. Dzielimy je na następujące grupy:

  1. protaminy - są silnie zasadowe, charakteryzują się dużą zawartością argininy oraz brakiem aminokwasów zawierających siarkę. Są dobrze rozpuszczalne w wodzie. Najbardziej znanymi protaminami są: klupeina, salmina, cyprynina, ezocyna, gallina.

  2. histony - podobnie jak protaminy są silnie zasadowe i dobrze rozpuszczają się w wodzie; składniki jąder komórkowych (w połączeniu z kwasem deoksyrybonukleinowym), czyli są obecne także w erytroblastach. W ich skład wchodzi duża ilość takich aminokwasów jak lizyna i arginina.

  3. albuminy - białka obojętne, spełniające szereg ważnych funkcji biologicznych: są enzymamihormonami i innymi biologicznie czynnymi związkami. Dobrze rozpuszczają się w wodzie i rozcieńczonych roztworach soli, łatwo ulegają koagulacji. Znajdują się w tkance mięśniowejosoczu krwi i mleku.

  4. globuliny -w ich skład wchodzą wszystkie aminokwasy białkowe, z tym że kwas asparaginowy i kwas glutaminowy w większych ilościach; w odróżnieniu od albumin są źle rozpuszczalne w wodzie, natomiast dobrze w rozcieńczonych roztworach soli; posiadają podobne właściwości do nich. Występują w dużych ilościach w płynach ustrojowych i tkance mięśniowej.

  5. prolaminy - są to typowe białka roślinne, występują w nasionach. Charakterystyczną właściwością jest zdolność rozpuszczania się w 70% etanolu.

  6. gluteliny - podobnie jak prolaminy - to typowe białka roślinne; posiadają zdolność rozpuszczania się w rozcieńczonych kwasach i zasadach.

  7. skleroproteiny - białka charakteryzujące się dużą zawartością cysteiny i aminokwasów zasadowych oraz kolagenu i elastyny, a także proliny i hydroksyproliny, nierozpuszczalne w wodzie i rozcieńczonych roztworach soli. Są to typowe białka o budowie włóknistej, dzięki temu pełnią funkcje podporowe. Do tej grupy białek należy keratyna.

Białka złożone (dawniej - proteidy):

  1. chromoproteiny - złożone z białek prostych i grupy prostetycznej - barwnika. Należą tu hemoproteidy (hemoglobina,mioglobinacytochromy, katalaza, peroksydaza) zawierające układ hemowy oraz flawoproteiny.

  2. fosfoproteiny - zawierają około 1% fosforu w postaci reszt kwasu fosforowego. Do tych białek należą: kazeina mleka, witelinażółtka jaj, ichtulina ikry ryb.

  3. nukleoproteiny - składają się z białek zasadowych i kwasów nukleinowych. Rybonukleoproteimy są zlokalizowane przede wszystkim w cytoplazmie: w rybosomach, mikrosomach i mitochondriach, w niewielkich ilościach także w jądrach komórkowych, a poza jądrem tylko w mitochondriach. Wirusy są zbudowane prawie wyłącznie z nukleoproteidów.

  4. lipidoproteiny - połączenia białek z tłuszczami prostymi lub złożonymi, np. sterydami, kwasami tłuszczowymi. Lipoproteidy są nośnikami cholesterolu (LDL, HDL, VLDL). Wchodzą na przykład w skład błony komórkowej.

  5. glikoproteiny - ich grupę prostetyczną stanowią cukry, należą tu m.in. mukopolisacharydy (ślina). Glikoproteidy występują też w substancji ocznej i płynie torebek stawowych.

  6. metaloproteiny - zawierają jako grupę prostetyczną atomy metalu (miedź, cynk, żelazo, wapń, magnez, molibden, kobalt). Atomy metalu stanowią grupę czynną wielu enzymów.

Białka dzielimy również ze względu na właściwości odżywcze - wyróżnia się białka doborowe i niedoborowe.

Funkcja białek

Białka mają następujące funkcje:

Trawienie białek

Trawienie białek zaczyna się dopiero w żołądku, gdzie komórki główne komórek gruczołowych żołądka wydzielają nieczynny enzym pepsynogen. Komórki okładzinowe wydzielają kwas solny, w obecności którego pepsynogen przekształca się w postać czynną - pepsynę. W jelicie cienkim działają trypsyna i chymotrypsyna, które rozkładają cząsteczki polipeptydów do tripeptydów i dipeptydów. Te z kolei rozkładane są przez peptydazyściany jelita cienkiego do aminokwasów, które zostają wchłaniane do krwi i żyłą wrotną wędrują do wątroby. Stamtąd większość aminokwasów dalej dostaje się z krwią do komórek ciała. Nadwyżka pozbawiana jest reszt aminowych, przez co powstaje amoniak i ketokwasy. Amoniak przekształcany jest w mniej toksyczny mocznik, który z krwią odtransportowywany jest do nerek. Natomiast ketokwasy mogą zostać wykorzystane do syntezy cukrów i niektórych aminokwasów, zużyte na cele energetyczne bądź przekształcone w tłuszcze zapasowe.

Źródła białek

Dobrymi źródłami białek są: mięsojajaorzechyzbożarośliny strączkowe oraz nabiał, jak mleko czy ser (na przykład parmezanzawiera aż ok. 40% białka).

Białka są to zasadnicze elementy budowy wszystkich tkanek ustroju człowieka oraz wielu związków takich jak: enzymy, hormony, przeciwciała. Białka regulują procesy przemiany materii i wiele funkcji ustroju, zapewniając prawidłowy stan i funkcjonowanie naszego organizmu. Odpowiednie ilości białek decydują o normalnym wzroście i rozwoju człowieka,regeneracji wydalanych lub uszkodzonych tkanek. Białka są to związki wielkocząsteczkowe zbudowane są z aminokwasów. Istnieje około 20 aminokwasów, a 8 z nich, zwanych niezbędnymi lub egzogennymi, zawartych jest w białku pochodzenia zwierzęcego, które przyjmujemy w pożywieniu. Tylko niektóre produkty żywnościowe pochodzenia roślinnego zawierają 8 niezbędnych aminokwasów. dlatego też istotna jest różnorodność przyjmowanych pokarmów.


Funkcje


Zapotrzebowanie

Białka powinny dostarczać 10-14% wartości energetycznej dziennej racji pokarmowej dorosłego człowieka. Powinno to być białko pełnowartościowe zawierające 8 niezbędnych aminokwasów.


Dzienny poziom zalecanego spożycia Białka dla różnych grup ludności* przy założeniu wartości odżywczej białka 90%

Grupy ludności

Ogółem [g]

[%] energii z białka

Dzieci 1-3 lat

45

14

Dzieci 4-6 lat

55

13

Dzieci 7-9 lat

65

13

Chłopcy 10-12 lat

75

12

Dziewczęta 10-12 lat

75

13

Młodzież męska 13-15 lat

95

12-13

Młodzież męska 16-20 lat

100

11-13

Młodzież żeńska 13-15 lat

85

12-13

Młodzież żeńska 16-20 lat

80

12-13

Mężczyźni 21-64 lat praca lekka

75

11-12

Mężczyźni 21-64 lat praca umiarkowana

85

11-12

Mężczyźni 21-64 lat praca ciężka

95

10-11

Mężczyźni 21-64 lat praca bardzo ciężka

100

9-10

Kobiety 21-59 lat praca lekka

70

12-13

Kobiety 21-59 lat praca umiarkowana

80

11-13

Kobiety 21-59 lat praca ciężka

90

11-12

Kobiety ciężarne (II połowa ciąży)

95

14

Kobiety karmiące

110

13

Mężczyźni 65-75 lat

70

12

Mężczyźni powyżej 75 lat

65

12

Kobiety 60-75 lat

70

13

Kobiety powyżej 75 lat

65

13


*(według Szczygieł A. i inni: Normy żywienia IŻŻ, zaktualizowane w 1980 r. Żyw. Człow. i Metab., 10, 2, 143, 1983.)



Białko pełnowartościowe

Białko pełnowartościowe zawiera wszystkie niezbędne 8 aminokwasów, w odpowiedniej proporcji. Takie białka są powoli absorbowane w organiźmie i efektywnie wykorzystywane. Białka występujące w żywności pochodzenia zwierzęcego odznaczają się większą wartością biologiczną niż białka roślinne, ubogie w jeden lub kilka niezbędnych aminokwasów. Za najbardziej optymalne pod względem składu aminokwasowego uważane jest białko całego jajka. Brak choćby jednego aminokwasu egzogennego determinuje nie możność wchłonięcia białka. Aby posiłki były pełnowartościowe należy zestawiać ze sobą produkty zawierające białko częściowo lub niepełnowartościowe. 

Aminokwasy egzogenne (niezbędne):



Aminokwasy endogenne:


Podział, źródła

Białka dzielimy na białka proste i białka złożone

Białka proste


Białka złożone


Albuminy

Białka rozpuszczalne w wodzie i rozcieńczonych roztworach soli. Szeroko rozpowszechnione w przyrodzie: znajdują się w surowicy krwi, w limfie, mleku, jajach, mięśniach kręgowców (mioalbumina, miogen), w nasionach roślin strączkowych (legumina w grochu) i zbóż (leukosina w jęczmieniu, życie i pszenicy).

Globuliny
Białka nierozpuszczalne w czystej wodzie, ale rozpuszczają się w rozcieńczonych roztworach soli obojętnych. Bardzo łatwo ulegają ścięciu (denaturacji). Do białek tych należą globuliny surowicy krwi, globulina mleka, fibrynogen osocza, miozyn mięśni, tyreoglobulina (hormon tarczycy), tuberyna (z ziemniaków). Do globulin należą też ciała odpornościowe (immunoglobuliny).

Gluteliny  
Rozpuszczalne w rozcieńczonych roztworach kwasów i zasad, a nierozpuszczalne w wodzie i roztworach soli. Zawierają znaczne ilości aminokwasu - kwasu glutaminowego i glutaminy oraz proliny. Występują w nasionach roślin dwuliściennych, ale w największych ilościach w ziarnach zbóż (glutelina w pszenicy).

Prolaminy
Prolaminy zwane też są gliadynami. Rozpuszczają się w 70-80% alkoholi. Występują wyłącznie w ziarnach zbóż.

Skleroproteiny
Występują tylko w organizmach zwierzęcych, głównie w tkankach podporowych i ochraniających. Należą tu przede wszystkim białka tkanki łącznej (kolagen, elastyna), włosów i części zrogowociałych (keratyna). Nie rozpuszczają się ani w wodzie, ani w rozcieńczonych roztworach kwasów i ługów. Skleroproteiny są odporne na działanie enzymów proteolitycznych przewodu pokarmowego ludzi.

Histony  
Zasadowe białka jąder komórkowych, w których występują w połączeniach z kwasami nukleinowymi, tworząc nukleoproteidy. Histony są dobrze rozpuszczalne w wodzie i w rozcieńczonych roztworach kwasów.

Protaminy  
Białka silnie zasadowe. Wystepują w plemnikach ryb, gdzie tworzą połączenia z kwasami nukleinowymi. Nie zawierają aminokwasów siarkowych (metionina, cysteina), są dobrze rozpuszczalne w roztworach kwasów.

Chromoproteidy  
Złożone z białek prostych i grupy prostetycznej - barwnika. Należą tu hemoproteidy (hemoglobina, mioglobina, cytochromy, katalaza, peroksydaza) zawierające układ hemowy oraz flawoproteidy.

Fosfoproteidy 
Zawierają około 1% fosforu w postaci reszt kwasu fosforowego. Do tych białek należą: kazeina mleka, witelina żółtka jaj, ichtulina ikry ryb.

Nukleoproteidy 
Składają się z białek zasadowych i kwasów nukleinowych. Rybonukleoproteidy są zlokalizowane przede wszystkim w cytoplaźmie: w rybosomach, mikrosomach i mitochondriach, w niewielkich ilościach także w jądrach komórkowych, a poza jądrem tylko w mitochondriach. Wirusy są zbudowane prawie wyłącznie z nukleoproteidów. 

Lipoproteidy 
Połączenia białek z tłuszczami prostymi lub złożonymi, sterydami. Lipoproteidy są nośnikami cholesterolu (LDL, HDL, VLDL).

Glikoproteidy  
Grupę prostetyczną stanowią cukry, należą tu min mukopolisacharydy (ślina). Glikoproteidy występują też w substancji ocznej i płynie torebek stawowych.

Metaloproteidy  
Zawierają jako grupę prostetyczną atomy metalu (miedź, cynk, żelazo, wapń, magnez). Atomy metalu stanowią grupę czynną wielu enzymów.


Ciekawostki



Wyszukiwarka

Podobne podstrony:
biaĹ ka osocza 09 03
Biochemia aminokwasy, peptydy i bia éka
11 BIOCHEMIA horyzontalny transfer genów
NADCI NIENIE WROTNE, KA
Biochemia z biofizyką Seminarium 2
Podstawy biochemii
08 BIOCHEMIA mechanizmy adaptac mikroor ANG 2id 7389 ppt
BIOCHEMICZNE EFEKTY STRESU (2B)
Biochemia, ATP
biochemia krwi 45
ENZYMY prezentacja biochemia
biochemia stresu
04 BIOCHEMIA
05 BIOCHEMIA Zw wysokoenergetyczne ATP
Biochemia 4 Lipidy
Biochemia TZ wyklad 12 integracja metabolizmu low

więcej podobnych podstron