am 1(2), Informatyka i Ekonometria SGGW, Semestr 1, Analiza Matematyczna, materialy od starszych rocznikow Analiza


Konspekt wykładu 1 A. Jóźwikowska

FUNKCJE

Niech X, Y będą dwoma niepustymi zbiorami.

Def. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi x ze zbioru X dokładnie jednego elementu y ze zbioru Y.

Piszemy:

0x01 graphic
lub 0x01 graphic
.

Czytamy: f odwzorowuje zbiór X w zbiór Y.

Zbiór X nazywamy dziedziną funkcji f i oznaczamy Df.

Zbiór

0x01 graphic

nazywamy zbiorem wartości funkcji f .

Jeżeli 0x01 graphic
, to zbiór

0x01 graphic

nazywamy obrazem zbioru A.

Jeżeli 0x01 graphic
, to zbiór

0x01 graphic

nazywamy przeciwobrazem zbioru B.

Obcięciem lub zawężeniem funkcji 0x01 graphic
do zbioru 0x01 graphic
nazywamy funkcję 0x01 graphic
równą funkcji f na zbiorze A tzn. określoną wzorem 0x01 graphic
dla 0x01 graphic
.

Iniekcja, Suriekcja, Bijekcja

Niech 0x01 graphic
.

1. Jeżeli

0x01 graphic

to funkcję f nazywamy różnowartościową lub iniekcją.

Warunek ten jest logicznie równoważny z warunkiem:

Jeżeli 0x01 graphic
.

2. Jeżeli 0x01 graphic
, to funkcję f nazywamy odwzorowaniem zbiór X na zbiór Y lub suriekcją, piszemy 0x01 graphic
.

c) 0x01 graphic
i jest różnowartościowa, to funkcję f nazywamy odwzorowaniem wzajemnie jednoznacznym lub bijekcją.

Jeżeli 0x01 graphic
i 0x01 graphic
, to funkcję nazywamy liczbową lub funkcją rzeczywistą jednej zmiennej rzeczywistej, krótko funkcją jednej zmiennej.

WŁASNOŚCI FUNKCJI JEDNEJ ZMIENNEJ

Niech 0x01 graphic
, 0x01 graphic
, 0x01 graphic
,0x01 graphic
.

Zbiór0x01 graphic
nazywamy wykresem funkcji f.

Przypomnienie

0x01 graphic

ILOCZYN KARTEZJAŃSKI

Niech A i B będą dowolnymi niepustymi zbiorami.

Iloczynem kartezjańskim 0x01 graphic
zbiorów A i B nazywamy zbiór par uporządkowanych 0x01 graphic
takich, że 0x01 graphic
i 0x01 graphic

0x01 graphic

0x01 graphic

Funkcję f nazywamy:

Rosnącą [malejącą] w zbiorze A wtedy tylko wtedy, gdy

0x01 graphic
0x01 graphic

Niemalejącą [nierosnącą] w zbiorze A wtedy tylko wtedy, gdy

0x01 graphic
0x01 graphic

Ograniczoną w zbiorze A wtedy tylko wtedy, gdy

0x01 graphic
0x01 graphic

Różnowartościową w zbiorze A wtedy tylko wtedy, gdy

0x01 graphic

równoważnie warunek można zapisać

0x01 graphic

Parzystą wtedy tylko wtedy, gdy 0x01 graphic

Nieparzystą wtedy tylko wtedy, gdy 0x01 graphic

Okresową wtedy tylko wtedy, gdy

0x01 graphic
0x01 graphic

FUNKCJA ZŁOŻONA

Niech X, U,Y będą niepustymi podzbiorami zbioru R.

Niech 0x01 graphic
oraz0x01 graphic
.

Funkcję 0x01 graphic
określoną wzorem

0x01 graphic

nazywamy funkcją złożoną z funkcji h i g lub superpozycją funkcji h i g (symbol 0x01 graphic
).

Funkcję h nazywamy funkcją wewnętrzną, g funkcją zewnętrzną.

FUNKCJA ODWROTNA

Niech f będzie funkcją różnowartościową przekształcającą zbiór X na zbiór Y 0x01 graphic
.

tzn. f jest odwzorowaniem wzajemnie jednoznacznym (bijekcją) zbioru X na zbór Y.

Funkcję 0x01 graphic
0x01 graphic
określoną następująco

0x01 graphic

nazywamy funkcją odwrotną do funkcji f.

Zachodzi równość

0x01 graphic
0x01 graphic

0x01 graphic
0x01 graphic

Funkcje f i0x01 graphic
nazywamy wzajemnie odwrotnymi.

Wykresy funkcji wzajemnie odwrotnych umieszczone w układzie XOY są symetryczne względem prostej0x01 graphic
.

Funkcje cyklometryczne (kołowe)

Funkcję odwrotną do zawężenia funkcji sinus do przedziału 0x01 graphic
nazywamy arcussinus i oznaczamy arcsin.

0x01 graphic
0x01 graphic
0x01 graphic
, 0x01 graphic

0x01 graphic
0x01 graphic

Funkcję odwrotną do zawężenia funkcji cosinus do przedziału 0x01 graphic
nazywamy arcuscosinus i oznaczamy arccos.

Funkcję odwrotną do zawężenia funkcji tangens do przedziału 0x01 graphic
nazywamy arcustangens i oznaczamy arctg.

Funkcję odwrotną do zawężenia funkcji cotangens do przedziału 0x01 graphic
nazywamy arcuscotangens i oznaczamy arcctg.

Prawdziwe są tożsamości

0x01 graphic
dla 0x01 graphic

0x01 graphic
dla 0x01 graphic

0x01 graphic
dla 0x01 graphic

0x01 graphic
dla 0x01 graphic

0x01 graphic
dla 0x01 graphic

4



Wyszukiwarka

Podobne podstrony:
Wyklad7ALG2001, Informatyka i Ekonometria SGGW, Semestr 1, Algebra Liniowa, materialy od starszych r
Wyklad8ALG2001, Informatyka i Ekonometria SGGW, Semestr 1, Algebra Liniowa, materialy od starszych r
Wyklad2ALG2001a, Informatyka i Ekonometria SGGW, Semestr 1, Algebra Liniowa, materialy od starszych
Wyklad5ALG2001, Informatyka i Ekonometria SGGW, Semestr 1, Algebra Liniowa, materialy od starszych r
ALGEBRA tu szuka kolosa, Informatyka i Ekonometria SGGW, Semestr 1, Algebra Liniowa, materialy od s
Wyklad6ALG2001, Informatyka i Ekonometria SGGW, Semestr 1, Algebra Liniowa, materialy od starszych r
Egzamin z algebry, Informatyka i Ekonometria SGGW, Semestr 1, Algebra Liniowa, materialy od starszyc
am 2, Informatyka i Ekonometria SGGW, Semestr 1, Analiza Matematyczna, materialy od starszych roczni
am4 Szeregi liczbowe, Informatyka i Ekonometria SGGW, Semestr 1, Analiza Matematyczna, materialy od
27112009, Informatyka i Ekonometria SGGW, Semestr 1, Analiza Matematyczna, materialy od starszych ro
Egzamin ANA1 04092000, Informatyka i Ekonometria SGGW, Semestr 1, Analiza Matematyczna, materialy od
analiza (2), Informatyka i Ekonometria SGGW, Semestr 1, Analiza Matematyczna, materialy od starszych
am2.kol1, Informatyka i Ekonometria SGGW, Semestr 1, Analiza Matematyczna, materialy od starszych ro
PD ćw13, Informatyka i Ekonometria SGGW, Semestr 1, Analiza Matematyczna, materialy od starszych roc

więcej podobnych podstron