7 W INDUK, Elektrotechnika AGH, Semestr II letni 2012-2013, Fizyka II - Laboratorium, laborki, Laborki sprawozdania, FIZYKA LABORATORIUM


Politechnika Śląska Gliwice 29.03.1999r.

Wydział Elektryczny

Kierunek EiT

Ćwiczenie laboratoryjne z fizyki

Pomiary indukcyjności i pojemności metodą techniczną.

Grupa T2 sekcja I

Tomasz Hauser

Paweł Łoskot

  1. Wprowadzenie.

Zjawisko samoindukcji polega na wzbudzaniu prądu indukcyjnego w obwodzie, w którym następują zmiany natężenia prądu płynącego ze źródła. Zmiany natężenia prądu powodują zmiany indukcji magnetycznej, a te z kolei powodują zmiany strumienia magnetycznego. Na skutek zjawiska samoindukcji w obwodzie elektrycznym oprócz prądu płynącego ze źródła przez obwód przepływa prąd samoindukcji. Powstaje siła elektromotoryczna samoindukcji:

0x01 graphic

przeciwstawiająca się zmianom natężenia prądu pierwotnego płynącego ze źródła (reguła Lentza). L oznacza współczynnik samoindukcji (indukcyjność) przewodnika, 0x01 graphic
- szybkość zmian natężenia prądu. L zależy tu od długości przewodnika (znajdującego się w obwodzie) lub liczby zwojów oraz obecności ferromagnetycznego rdzenia.

Siła elektromotoryczna samoindukcji wywołuje pewien opór samoindukcji Rs, który wraz z oporem omowym R przewodnika stanowi właściwy opór w tym obwodzie. Opór łączny obwodu jest równy:

0x01 graphic

f - częstość zmian prądu na sekundę.

więc

0x01 graphic

Tak wygląda opór dla obwodu zawierającego przewodnik i cewkę.

W obwodzie zawierającym kondensator opór łączny jest równy:

0x01 graphic

gdzie C jest pojemnością kondensatora.

W obwodzie prądu zmiennego zawierającym i cewkę i kondensator opór całkowity jest równy:

0x01 graphic

Natężenie prądu płynącego w tych obwodach zgodnie z prawem Ohma można zapisać wzorem:

0x01 graphic

  1. Przebieg ćwiczenia.

  1. Łączymy obwód według schematu na rysunku 1.

  2. Mierzymy zmiany napięcia i prądu na cewce przy napięciu zasilającym zmieniającym się w granicach 0[V] - 2[V] co 0,2[V]. Wyniki zamieszczamy w tabeli nr. 1,

  3. Łączymy obwód według schematu na rysunku 2.

  4. Mierzymy zmiany napięcia i prądu na cewce z rdzeniem i bez rdzenia przy napięciu zasilającym zmieniającym się w granicach 0[V] - 6[V] co 0,5[V]. Wyniki zamieszczamy w tabeli nr. 2,3.

  5. Łączymy obwód według schematu na rysunku 3.

  6. Mierzymy zmiany napięcia i prądu dla kondensatorów C1 , C2 , C3 oraz dla ich połączenia szeregowego i równoległego, przy napięciu zasilającym zmieniającym się w granicach 0[V] - 6[V]. Wyniki zamieszczamy w tabeli nr. 4,5,6,7,8.

  1. Spis przyrządów.

  1. Schematy układów pomiarowych.

0x01 graphic

Rys. 1.

0x01 graphic

Rys. 2.

0x01 graphic

Rys. 3.

  1. Tabele pomiarowe.

Tabela nr.1 (cewka)

Lp.

U [V]

I [mA]

1

0,0

0,00

2

0,2

4,66

3

0,4

9,23

4

0,6

14,02

5

0,8

18,68

6

1,0

24,16

7

1,2

27,90

8

1,4

32,30

9

1,6

37,10

10

1,8

41,65

11

2,0

46,00

Tabela nr. 2 (cewka bez rdzenia) Tabela nr. 3 (cewka z rdzeniem)

Lp.

U [V]

I [mA]

Lp.

U [V]

I [mA]

1

0,00

0,00

1

0,00

0,00

2

0,49

8,37

2

0,53

2,85

3

0,97

15,05

3

0,98

4,93

4

1,49

22,69

4

1,47

7,20

5

1,95

29,63

5

1,99

9,60

6

2,46

36,94

6

2,51

12,00

7

2,99

44,88

7

3,03

14,46

8

3,56

53,31

8

3,56

16,88

9

3,97

59,63

9

4,04

19,10

10

4,51

67,67

10

4,47

21,08

11

5,00

74,81

11

5,04

23,06

12

5,53

82,40

12

5,45

25,54

13

5,99

89,67

13

5,99

27,93

Tabela nr. 4 (Kondensator C1)

Lp.

U [V]

I [mA]

1

0,00

0,0000

2

0,54

0,0121

3

1,04

0,0215

4

1,49

0,0305

5

2,00

0,0410

6

2,49

0,0513

7

3,00

0,0610

8

3,55

0,0729

9

4,07

0,0841

10

4,57

0,0940

11

4,97

0,1023

12

5,49

0,1133

13

6,04

0,1250

Tabela nr. 5 (Kondensator C2 ) Tabela nr. 6 (Kondensator C3)

Lp.

U [V]

I [mA]

Lp.

U [V]

I [mA]

1

0,00

0,0000

1

0,00

0,00

2

0,53

0,0848

2

0,56

0,06

3

0,95

0,1374

3

1,01

0,21

4

1,46

0,2056

4

1,49

0,37

5

1,99

0,2814

5

2,00

0,54

6

2,47

0,3447

6

2,49

0,70

7

3,01

0,4119

7

3,01

0,86

8

3,46

0,4819

8

3,53

1,02

9

3,98

0,5563

9

4,01

1,18

10

4,48

0,6252

10

4,45

1,31

11

5,04

0,7007

11

5,05

1,48

12

5,53

0,7704

12

5,50

1,64

13

6,00

0,8376

13

6,04

1,79

Tabela nr. 7 (Szeregowo) Tabela nr. 8 (Równolegle)

Lp.

U [V]

I [mA]

Lp.

U [V]

I [mA]

1

0,00

0,0000

1

0,00

0,0000

2

0,51

0,0093

2

0,54

0,2835

3

1,00

0,0167

3

1,00

0,4818

4

1,46

0,0244

4

1,49

0,7066

5

2,00

0,0337

5

2,04

0,9711

6

2,49

0,0419

6

2,46

1,11

7

3,00

0,0509

7

3,01

1,36

8

3,49

0,0590

8

3,53

1,60

9

4,00

0,0681

9

4,04

1,83

10

4,50

0,0766

10

4,55

2,06

11

4,98

0,0846

11

4,99

2,27

12

5,48

0,0935

12

5,50

2,50

13

6,00

0,1021

13

6,00

2,73

  1. Opracowanie wyników pomiarowych.

Na podstawie charakterystyki prądowo napięciowej cewki widać, że jej rezystancja zależy w sposób liniowy od przyłożonego napięcia. Można więc obliczyć ją ze wzoru R=U/I . Metodą regresji liniowej wyznaczamy współczynniki a, b prostej najbardziej zbliżonej do przebiegu otrzymanego w wyniku pomiarów. Otrzymujemy następujące wartości:

a = 23,06[10-3/Ω] b = 0,18[mA]

I = aU + b

Rezystancja cewki wynosi:

R = 43,03 ± 0,39 [Ω]

Podobnie jak w przypadku zasilania cewki prądem stałym, jej charakterystyka ma charakter liniowy. Impedancję cewki można więc obliczyć ze wzoru Z=U/I . Metodą regresji liniowej wyznaczamy współczynniki a, b prostej najbardziej zbliżonej do przebiegu otrzymanego w wyniku pomiarów. Otrzymujemy następujące wartości:

Dla cewki bez rdzenia:

a = 14,85[10-3/Ω] b = 0,55[mA]

Dla cewki z rdzeniem:

a = 4,61[10-3/Ω] b = 0,35[mA]

I = aU + b

Impedancja cewki wynosi:

Dla cewki bez rdzenia:

Z = 66,84 ± 0,24 [Ω]

Dla cewki z rdzeniem:

Z = 213,68 ± 1,92 [Ω]

Ze wzoru 0x01 graphic
obliczamy współczynnik samoindukcji:

0x01 graphic

gdzie f = 50 Hz.

Otrzymujemy:

0x01 graphic

Dla C1:

a = 0,021[10-3/Ω] b = 0

Dla C2:

a = 0,138[10-3/Ω] b = 0,004[mA]

Dla C3 :

a = 0,309[10-3/Ω] b = -0,072[mA]

Dla szeregowego połączenia kondensatorów C1 , C2 , C3 :

a = 0,017[10-3/Ω] b = 0

Dla równoległego połączenia kondensatorów C1 , C2 , C3 :

a = 0,449[10-3/Ω] b = 0,024[mA]

I = aU + b

Reaktancje poszczególnych kondensatorów wynoszą odpowiednio:Dla kondensatora C1 :

X=47619,05 ± 198,72 []

Dla kondensatora C2 :

X=7204,61± 40,83 []

Dla kondensatora C3 :

X=3394,43 ± 63,31 []

Dla kondensatorów C1 , C2 , C3 połączonych szeregowo:

X=58823,53 ± 221,31 []

Dla kondensatorów C1 , C2 , C3 połączonych równolegle:

X=2203,61 ± 82,11 []

Na podstawie tych danych obliczyliśmy pojemności według wzoru:

0x01 graphic

otrzymujemy:

C1 = 66,85 nF

C2 = 441,81 nF

C3 = 937,74 nF

C1 , C2 , C3 szeregowo = 54,11 nF

C1 , C2 , C3 równolegle = 1,44 μF

  1. Analiza błędów.

Błędy liczymy metodą różniczki zupełnej. Błędy obliczenia impedancji cewek i reaktancji kondensatorów wykonaliśmy używając programu komputerowego.

dla cewki bez rdzenia:

0x01 graphic
1,31[mH]

dla cewki z rdzeniem:

0x01 graphic
6,24[mH]

0x01 graphic

Dla kondensatora C1 :

ΔC1= 0,28 [nF]

Dla kondensatora C2 :

ΔC2= 2,50 [nF]

Dla kondensatora C3 :

ΔC3= 17,49 [nF]

Dla kondensatorów C1 , C2 , C3 połączonych szeregowo:

ΔCs= 0,20 [nF]

Dla kondensatorów C1 , C2 , C3 połączonych równolegle:

ΔCr= 0,05 [μF]

  1. Wnioski i uwagi.

Po wykonaniu obliczeń indukcyjności, pojemności, rezystancji i impedancji oraz po uwzględnieniu błędu otrzymaliśmy następujące wartości:

R = 43,03 ± 0,39 [Ω]

Bez rdzenia:

Z = 66,84 ± 0,24 [Ω], L = 162,81 ± 1,31 [mH]

Z rdzeniem:

Z = 213,68 ± 1,92 [Ω], L = 666,23 ± 6,24 [mH]

Kondensatora C1 :

C1= 66,85 ± 0,28 [nF], X = 47619,05 ± 198,72 [Ω]

Kondensatora C2 :

C2= 441,81 ± 2,50 [nF], X = 7204,61 ± 40,83 [Ω]

Kondensatora C3 :

C3= 937,74 ± 17,49 [nF], X = 3394,43 ± 63,31 [Ω]

Dla kondensatorów C1 , C2 , C3 połączonych szeregowo:

Cs= 54,11 ± 0,20 [nF], X = 58823,53 ± 221,31 [Ω]

Dla kondensatorów C1 , C2 , C3 połączonych równolegle:

Cr= 1,44 ± 0,05 [μF], X = 2203,61 ± 82,11 [Ω]

W celu dodatkowego sprawdzenia poprawności wyznaczenia pojemności kondensatorów sprawdziliśmy czy zachodzą zależności 1/Cs=1/C1+1/C2+1/C3 oraz Cr=C1+C2+C3, wynikające z szeregowego i równoległego połączenia tych elementów. Otrzymaliśmy następujące wyniki:

1/Cs=1/C1+1/C2+1/C3

1/54,11.10-9=1/54,68.10-9

54,11 [nF] = 54,68 [nF]

Cr=C1+C2+C3

1,44 [μF] = 1,45 [μF]

Zgodność wyników świadczy o prawidłowym wyznaczeniu badanych pojemności.

Charakterystyka cewki zasilanej prądem stałym ma charakter liniowy, co zgadza się z przewidywaniami teoretycznymi według których element ten w takich warunkach pracy zachowuje się jak rezystor. Charakterystyki cewki zasilanej prądem zmiennym również mają charakter liniowy. Wynika to z tego, że była ona badana przy stałej częstotliwości. Po porównaniu cewki z rdzeniem i bez widać, że cewka z rdzenie ma większą impedancję. Na charakterystykach prądowo napięciowych kondesatorów widać, że ich reaktancjaa ściśle zależy od pojemności. Ze wzrotem pojemności maleje reaktancjaa.

Pomiary indukcyjności i pojemności metodą techniczną

- -



Wyszukiwarka

Podobne podstrony:
7 W INDUK MOJE , Elektrotechnika AGH, Semestr II letni 2012-2013, Fizyka II - Laboratorium, laborki,
Lepkość-sciaga, Elektrotechnika AGH, Semestr II letni 2012-2013, Fizyka II - Laboratorium, laborki,
Nr ćwiczenia5 moje, Elektrotechnika AGH, Semestr II letni 2012-2013, Fizyka II - Laboratorium, labor
[4]tabelka, Elektrotechnika AGH, Semestr II letni 2012-2013, Fizyka II - Laboratorium, laborki, labo
[8]konspekt new, Elektrotechnika AGH, Semestr II letni 2012-2013, Fizyka II - Laboratorium, laborki,
FIZYK~47, Elektrotechnika AGH, Semestr II letni 2012-2013, Fizyka II - Laboratorium, laborki, Fizyka
3 W LEPKO CIECZY, Elektrotechnika AGH, Semestr II letni 2012-2013, Fizyka II - Laboratorium, labor
[3]opracowanie v1.0, Elektrotechnika AGH, Semestr II letni 2012-2013, Fizyka II - Laboratorium, labo
kospekt12, Elektrotechnika AGH, Semestr II letni 2012-2013, Fizyka II - Laboratorium, 12 Wyznaczanie
PUZON, Elektrotechnika AGH, Semestr II letni 2012-2013, Fizyka II - Laboratorium, laborki, Laborki s
cw8 wyniki, Elektrotechnika AGH, Semestr II letni 2012-2013, Fizyka II - Laboratorium, laborki, labo
[4]opracowanie, Elektrotechnika AGH, Semestr II letni 2012-2013, Fizyka II - Laboratorium, laborki,
mostek Wheatstone'a(1), Elektrotechnika AGH, Semestr II letni 2012-2013, Fizyka II - Laboratorium, l
za, Elektrotechnika AGH, Semestr II letni 2012-2013, Fizyka II - Laboratorium, laborki, laborki fizy
konspekt nr8, Elektrotechnika AGH, Semestr II letni 2012-2013, Fizyka II - Laboratorium, laborki, Fi
[7]opracowanie, Elektrotechnika AGH, Semestr II letni 2012-2013, Fizyka II - Laboratorium, laborki,
konspekt 8, Elektrotechnika AGH, Semestr II letni 2012-2013, Fizyka II - Laboratorium, laborki, Fizy

więcej podobnych podstron