492 Rozwiązania i odpowiedzi
18.128. / = ln |e* + 5|. 18.129.
I = x-ln |2e* + l|+Ve2*T4er+j x>0, x^l ; / = ln |ln x|.
/ = Jc((In |x|)2 —2 ln |x|+2). / = i(2 + 5x)(ln |2 + 5jc| —1).
/= _1 (ln |x|+l).
18.130. / = ln 18.131.
18.132. / = i ,/5 arcsin (s/| ex). 18.133.
18.134. I=-e~x(x3 + 3x2+6x+6). 18.135.
18.136. / = xln |x2 + l| — 2x + 2 arctgx . 18.137.
18.138. / = jeln |^ + Vjc2+1|-7jc2 + 1 . 18.139.
18.140. /=arctg(ln |jc|). 18.141.
DO ROZDZIAŁU XIX
19.5. |
/ = |
CłH*2 — 4|]»-iln^. |
19.6. |
ri xT n [= — arctg— ' = —. L a a Jo 4« |
19.7. |
/ = |
[-^]> |
19.8. |
1 = tło arctg lxY-'ls = |
r 1-2x1° , , |
I = [arcsin — l)]i = i71 | |||
19.9. |
/ = |
r[ln JT^!,"8'"5' |
19.10. |
18.142. / = i(4 + 3;c)3ln |a| — ^ ln |jc|— 1 6at-6at2 — jc3
18.143. / = jPf4ln|A2 +3|—^(-jx4 —3a2 + 91n|x2 +3|).
18.144. /=— (x——).
In a \ ln aj
19.11. / = [- jV3 + 4jr-4jr2+arcsin-i(l -2x)]J = 1 -2 .
19.12. 7=[4N/5arcsiny^y5]y^V=2.N/5(arcsin 1 -arcsin(—l)) = j^5n.
19.13. / = [i(x3 + 3* + 1 )*]2 = i (15* - 5ł
19.14.
2 xdx , 4 +(x2)2 2
[ln|xJ +V4 +x4 |]o = jln(18+5Vl3)-
19.15. / = [(Vx2+4n2)3J“0 = (5N/5-8)a3.
2 + J2
19.16. / = [2(x — \ )sjx2 — 2x— 1 — ln|x— 1 +\/x2 -2x- 1 |]j=-|n/7 — J2 + ln ^
19.17.
x + 2+2n/x2+x + iJi
ln 5
3+2^3
6 WlTT
19.18. / = [{*\Ja2 -x2 + -ża2 arcsin (x/u)]° = a2.
19.19. i = [4x3aictgx—ix2+jln(l+x2)]i=1!57r-i + ^ln2.
2
19.20. / = [e*-ln(l+<rx)]2 = e2 —1+ln-.
1 +e
19.21. I = [—e~*(x + l)]J = —-2 +1. 19.22. / = [.v2-|^]2 = 2e4-ie.
19.23. / = [-\e~ 2x(x2 + x+i)] I i=±e2(5e2 -1).
19.24. I = [|e2jc(2 - sin 2x- cos 2*)]+'=-i(3e* - 1).
19.25. / = [tg ±*]f=l. 19.26.
19.27. I = [sinjr—±sin3*]!£=f.
/= ln
2 + tgj* 2-tg i*
= ln3.
Jo
19.28.
19.29.
/V -T X. Z*. i -L I -T -ł- » A
-+—^arctg-==— =—— arctg-p-----Farctg—=-.
3(2 + sinx) 3^3 73 Jo 3>/3 73 6 3^3 73
^ J" 1 1 ^ 72+7l +cos x"|ł*
L71 +cosx 2yfl 71-71 +cos
, i , V2+i i i 72+71
= 1--= ln —=---=3--ln —=-—■
2V2 72-1 7| 272 72-71
19.30. / = [j arctg i sin x]Ź”=± [arctg j- arctg ^].
19.31. J=[cosx+lntg-jx]|3J= —-j+ln73• 19.32. / = [(* + !)sin*+cosx]o" = 5tt-
19.33. /=["—T =2(72-1). 19.34. / = [271 -l-sinjc]S* = 2(7^ — 1)-
Lcosxjo
19.35. /= [xtgx + lncos jr]5’I=jn+ln-j72-
19.36. Przyjmujemy a>0. Obliczone pole wynosi ^a3 i stanowi \ wymienionego prostokąta. Warto zaznaczyć, że wynik ten znany już był Archimedesowi — na innej oczywiście drodze.
19.37. i.
19.39. P = 2 [2x2 — jx4]2 = 8. 19.41. p = [|*M*4]i = n-
19.38. §.
19.40. P = [4773-|jc4]2=|.
19.42. P = 2[-±x3+fx2 + lCbc]l2 = 114|.