d5

d5



ślonego pytania, sugerując tylko uczniom, aby zastanowili się nad przedstawioną na rysunku sytuacją. Nauczyciel nie ograniczył czasu, w którym uczniowie mieli „zadanie rozwiązać” (czy w ogóle było to zadanie ? co to znaczyło rozwiązać takie zadanie?). Autorzy piszą: „nie trzeba było niczego więcej, aby wzbudzić chęć zabrania się do pracy. . . . Wysiłek, na który się dobrowolnie godzimy, jest najbardziej przyjemny, a więc najbardziej pożyteczny”.

W następnym tygodniu uczniowie zaatakowali nauczyciela pytaniami, o co mu właściwie chodzi. Nauczyciel dał jedyną wskazówkę: „rysujcie starannie i obserwujcie własności figury”. W następnym tygodniu dopiero niektóre grupy uczniów dyskutujących żywo nad sytuacją przedstawiły nauczycielowi hipotezę, że przedłużając dowolnie „strzałkową łamaną” w jedną i drugą stronę otrzyma się w każdym trójkącie łamaną zamkniętą. Ale czy tak będzie zawsze ? Czy to prawda ? I znowu dopiero za tydzień udało się uczniom (nie wszystkim) udowodnić tę hipotezę. Autorzy pracy komentując tę relację, piszą: „Będą tacy, którzy uśmiechną się na myśl, że trzeba było aż trzech tygodni, aby ci słabi uczniowie doszli do końca w rozwiązaniu tak banalnego problemu. Ale dla licealistów, o których mowa, stanowiło to niewątpliwie etap przełomowy wr ich matematycznym rozwoju. Był to pierwszy problem, który rozwiązali bez pomocy. A kto raz rozwiąże taki problem, będzie rozwiązywał wr przyszłości i inne, które nie będą koniecznie tak łatwe. W ten sposób przekroczony zostanie decydujący próg w kształceniu matematycznym.

Ten epizod daje nam i inną lekcję dydaktyczną: rozwiązywanie problemu może trwać długo i nauczyciel powinien powstrzymać chęć doprowadzenia do rozwiązania zbyt wcześnie. Wiele obserwacji świadczy o tym, że nauczyciele sceptyczni w sprawie możliwości samodzielnego pokonywania trudności przez ich uczniów byli zaskoczeni faktami przeczącymi temu przekonaniu, gdy okres rozwiązywania zadania był dłuższy niż ten, który początkowo na rozwiązanie zadania zaplanowali.”

Tyle autorzy pracy. Dodać należałoby do tych słusznych uwag jeszcze jedną, bardzo ważną z punktu widzenia interesującego nas pojęcia sytuacji problemowej. Nauczyciel nie sformułował od razu problemu. Nie polecił uczniom „sprawdźcie, czy przedłużając łamaną otrzymamy łamaną zamkniętą” lub „udowodnijcie twierdzenie: łamana opisana w temacie zadania jest zamknięta” itp. W pierwszym tygodniu uczniowie szukali bezskutecznie problemu. Czy to był czas stracony? Z punktu widzenia rozwoju ich aktywności matematycznej bezwzględnie nie! W drugim tygodniu dopiero nauczyciel zasugerował uczniom, aby wykonali wiele rysunków i obserwowali je konkretnie. Nic więcej. To już wystarczyło, by uczniowie —jeszcze tylko empirycznie — odkryli hipotezę. Pytanie, czy tak będzie zawsze, było motywacją poszukiwania dowodu, w którym uczniowie zastosowali już znane im twierdzenie Talesa. Sądzimy, że tu nie tylko samodzielne rozwiązanie problemu było, jak autorzy stwierdzają, etapem rozwoju matematycznego myślenia uczniów, ale może jeszcze ważniejsze było to, że problem sami odkryli i sformułowali, to był bowiem ich własny problem (oczywiście w ciągu tych trzech tygodni w klasie przerabiano materiał niezależnie od wspomnianego zadania).

12


Wyszukiwarka

Podobne podstrony:
IMG13 Nic wy siarczy jednak dobrze uczyć, troszczyć się o uczniów, aby cieszyć się ich nutorytclein
CZĘSCIRODZINNE PYTANIADOWIEDZ SIĘ CZEGOŚ O SOBIE zastanów się nad odpowiedziami na pytaniaEl PRZYGOT
zastanowienia się nad życiem na Marsie. Shergotty znalazł się na Ziemi prawdopodobnie po upadku płan
Uczniowie klasy I zastanawiali się, gdzie spędzić Dzień Dziecka. Zapisali na tablicy
h)    Klasa zastanawia się nad funkcją Itaki jako Raju. Uczniowie ustosunkowują się
Przeczytaj dokładnie kolejne pytania. Zastanów się nad odpowiedzią. Przelicz dość wszystkich wypijan
199 2 Chemia organiczna Zadanie 131. (10 p.) Uczniowie zastanawiali się nad określeniem rozpuszczaln
Nr 36. WSZECHŚWIAT.575 kier i mocznik—zkolei zaczęto zastanawiać się nad pytaniem, czy pozostaje ona
1 Uczniowie klasy I zastanawiali się, gdzie spędzić Dzień Dziecka. Zapisali na tablicy
1 Uczniowie klasy I zastanawiali się, gdzie spędzić Dzień Dziecka. Zapisali na tablicy
Pan Jezus książeczka (6) Pan Jezus powiedział do swoich uczniów, aby przeprawili się na drugi brze
NDIGCZAS0034762540 222 Tadeusz Mischke.II. Zastanawiając się nad planem ochrony Górala, zadaję sob
IMAG1364 Prawda, sprawiedliwość, historia i inne dziwne rzeczy konsekwencje. Należy więc zastanowi

więcej podobnych podstron