•Zad. I Zmienna losowa X ma fimkcję rorktadu pirwdopodobitfatw P(X.—~yy» j. ^ ęęę=Qy= —g^X.=\y 2
^ 6 ■
M^awcjyć rozkład zmienne; K • AT2 oraz £>J(ł'). Zaznaczyć na wykresie i obliczyć p(-\sx <OĄ
■Zad. 2 Narysuj wykres funkcji gęstości oraz podaj interpretację graficzną P(— < x s V) c
4
0 dla x < O
/(*) =
3 dla OS*S-3
O dta x >■•*• 3
Zad 3 Czas wykonania pewnej operacji bankowej ma rozkład normalny. Dla 6 wylosowanych operacji uzyskano średni czas 4min oraz odchylenie standardowe 0,5 min. Zweryfikować hipotezę głoszącą, /e wariancja czm wykonania tej operacji wynosi 0,2 min . Przyjąć poziom istotności 0,1.
Zad.4 Producent bateryjek chce oszacować przeciętną długość życia bateryjki. Dla 15 wylosowanych bateryjek uzyskano średni czas 34 godz. oraz odchylenie standardowe 8 godz. Oszacować średnią żywotność bateryju przyjmując poziom ufności 0,99 oraz normalność rozkładu żywotności bateryjek.
Zad. 5 Waga mężczyzn jest zmienną losową o rozkładzie normalnym \5j. OkUocz ęnrwtopcĆKJeitdK
wylosowania mężczyzny o wadze mniejszej niż 80 i większej niż 70.