Biblioteczka Opracowań Matematycznych
PRZYKŁADY CAŁKOWANIA
149/ &x=/
[str4xdx= —\tx=- \cH&xdx--dx=— \chtd dl -~x =—sH&x—-x+C
J J 2 2J 2 16J dx=- 2 16 2
8
150/ jch2 xdx- jchxc/fxdx - jc/u{l + shTx)jx = |5/lv = t chxdx = dt\ = J(l +f~ \łt =
f—■ - = Lr = shl Vx2 +1 = c/tf = chtd\ = f-= f-^- = -c/Af + C 3 x2\lx2 +1 ' ' J shtchl 3 sh't
151/
+c=-^±L+c
$A/ X
chi
i52/_
fV X2 — 1 I r~5- , , . .1 1 rshtsht . 1 riA2/ , ,
|-£& = x = cAf Vx2-l = shr dx = sA/<# = — I—7—= — |——chtdi =
J 5x I i 5J c-A/ 5 3ch't
1 r sA2/
-U
5 3 sh2t +1
-cAto7 =
shl = k chtdt = dk
= - f—^ -—arctgk+C = — sht--arcigsht+C -5J*2+I 5 5 5 5
= 7\lx2 -] - — arctgVx: -1 +C 5 5
153/
r </r I „ , . , , , I r 2cA/rff 1 r dt
\-r- == x = 2shl Vx‘ + 4 = 2cA/ = 2cAfcA =■ j tj- = ~ I—777~
1yj{x2 + 4j 1 1 (2c/"? 4 c*/
I . _ 1 shl 1
= —tht + C =--+ C = —-r
4 4 chi 4 /
154/
y+4
r + C = -
4 Vx2+ 4
+ C
j‘Vx7+9<& = |x = 3s/tf Vy+9=3 chi rft = 3cA/<*| = 9 JcA2/<* =9j
9 r 9 r 9 9 9 9 _ x-Jxi + 9 9
= — [ chlldt + - f = -sA2/ + — 1 + C = - + — / + C =---+ r In
23 2J 2 2 2 2 2 2
cA2/ +1
i-VxJ + 9
+ C
9. Całki różne
155/= /,+/, + /,
/2= j(x-X2)/v = -y+^- + C, /,= f(jT2-Ar)*r=y-y+C3
dla x e (-h,0] dla xe [0,1] dla x e [l,h)
Ostatecznie pozostało dobrać tak stałe Q , Cj, C? aby funkcja podcałkowa pozostała ciągła w punktach x = 0 oraz x = 1.
Jeżeli C| = C = C2 oraz C3= l/3+C| to warunek ten będzie spełniony.
156/
f—^—-dx 3 x + -Jx + 2
x + 2 = f2 = dx = 2 tdt x = r2- 2 t-1
= f f -' 2aft = 2 f /■— t/r = 2 f(r -1 + 21 2 =
312-2+t V+/-2 J l2 +i-2
2i-2
=t2-2t + 4\-r^—di=x+2-2^2+4\. \ 1 >dt = x + 2-2&+2+4 f— = +r-2 J(r-lX/+2) J/+2
=x+2-2Vx+2 + 4ln|/ + 2|+C = x+2-2>/x+2+4ln|Vx+2+2|+C 157/
f
x+ j2x-3 x-\
dx =
2x-3 = t2 2 dx = 2/<A t2 + 3
r+3
r -> a +2t2 + 3t , r 2/-2
= —**= I r——<*= f(/ + 2 + ^—-)<*
3 r+3 3 t +1 J r2 + l
= £ + 2/ + - 2 = ^£-2 + 272^3 + ln|/2 +1| - 2arcigt+C = + 271^3 +
2 V+l Jr+l 2 11 7
+ ln|2x - 2| - 2arctg -j2x-3 + C
158/ j-
dx
yjX2 — X + \ = X-l
X = ■
X + 1
t2 - 1
2/ -1
dx =
2(/2-/ + l) (2/-1)3
dt
-47-