Biblioteczka Opracowań Matematycznych
= _ (inj^iy ln |x|__1_
4*4 8.t4 32 ac4
+ C
62
Jat ln 2 |jr(ir =
u = ln 2 IacI du =
21" W
dx
.t2 In : |x| , . ;t2ln2.x
dv = xdx
u = ln|jc| du = —
. x2
dv = ,v v = —
?
J V -
■ - J.x ln xdx =
x' In:IacI xz ln|x| | r jr' ln2|.tc| ot2 Inljrl x2
--L-1--— -L— \xdx =-—--■—- j—
^ 2
■ + -
2 2
+ — + C 4
dx
u = ln |j| du
. dx - 1
OV = —— V = -
X * X
64/
J.xln|x- l|e£c =
651_
Jcos(lnx)a!x = = xcos(lnx)+
= r*_ = lnH 1 ! c
r * r' r r
u = ln |x - 11 du =
dx
.X - 1
x2
dv = xdx v =-
2
lnj-r - 1[ _ | xldx _
2 2 ■! x — I
+ 1 dx = * lnF- ‘I * ■"!*- '1 , c
x-l 2 42 2
/. x , sin(lnx)oEx « = cos(lnxJ du =--1-£—
dv = dx
V = x
. \ , cos(ln.x)
u = sin(ln.x) du = ——--
dv = dx
x v=x
= xcos(lnx)+ Jsin(lnjx)ć£r =
= .xcos(ln.x)+.xsin(ln.v)- |cos(ln.x)a!x
2 Jcos(lnx)ix = xcos(ln.x)+.xsin(ln.x)
r /, xcos(lnx) .xsin(ln.v)
Jcos(lnx)ix =-^^-’- + C
jarcsin xdx =
u = arcsm: du =
dx
= x arcsm
in x - J
xdr
l-x2 =/2
xdr = -tdt H&L j arctgxdx =
dv = dx u = arctgx du =
= x arcsm x +
xarcsin x + Vl - x2 + C dx
dv = dx
1 + xJ
V = X
r xc
= xarctgx - J —
xdx
= xarctgx -
1 + x2 - t 2xdx = dl xdx =
dl
1 fd/
= xarctgx -- Jy =
= xarctgx - yln|l + x2|+C
Jxorc/gx<ir =
u = arctgx du =
dr
l + xJ
2
x2arctgx 1 rx2dx x2arctgx
dv = xdv
_I f** + l~'jr _ x2arctgx _J_ r^. + J_ r dx _ x2arctgx x [ arclgx | ^ 2 J l + x2 2 2 J 2 Jl + x2 5 5 ?
dr
2 2 u = arclgx du =
l + x2 r3
dv = x2dr v = —
3
2 2 2
x’arctgx 1 i- x'dx
3 J1 + x
x’arctgx 1 |
f, | * Yj. ^'^gx |
x2 |
1 |
1 + x2 = / |
3 3 J |
I1' l + r-f' 3 |
6 |
3 |
2xdx = dt |
x 3 arctgx x 2 1 r dt _ x3 arclgx x 2 ln |l + x ' | ^ ^
~ r’ 6 '7" 3 6 6 +
- 19-