Biblioteczka Opracow ań Matematycznych
= _ O" !n \x\__1_
4x4 8 .t4 32 x 4
62
J.rln
_ 2lnM
i/ = In J |j| du=^£±dx
„2
,v' In ' |x|
d\> = xdx
u = ln|x| du = — x
, x2
dv = x v = — 2
- J.t In xdx
x ‘ In ‘ .v
x"ln’x a:* In x | r x"ln*x x* ln x x‘
=-—--Li + — I xdx =-C-l--— + — + C
7 7 7 J 7 7 A
dx
u = In i du -
x
, dx - 1
dv = — v = -
X X
64/
Jx In |x - 1 |c/r =
x’ In |x - 1
“ 2
65/
Jeos(lnx)& = = xcos(lnx)+
In |x I r dx
=--—+ J — =
r J r
a = In |x - 11 du =
x — 1
X *
= X<& V = -
2
In Lt |
——- —+ C
*2 ln|x- l| _ ^ | x2dx _
2 2 Jx- 1 “
l_lrJC + i + _U& =£lLnk-J!_£l. £.. In!y-|l + r
2 J x - 1 2 4 2 2
/i \ . sin(lnxW*
u = cos(lnx) du =----——
dv = dx
v = x
. /, \ . cos(lnx)
w = sin(ln x) du - —-—-
dv — dx
x v = x
= xcos(lnx)+ |sin(lnx)^ =
= xcos(ln x)+ xsin(ln x)- Jcos(lnx)dx
l Jcos(lnx)ir = xcos(lnx)+xsin(lnx)
r /, v, xcos(lnx) xsin(lnx) „ Jcos(In x)dx =-i-- +-2—L + c
jarcsin xdx =
u = arcsm: du =
dx
= x arcsm
in x - J
xdr
l-x2 =/2
xdr = -tdt H&L j arctgxdx =
dv = dx u = arctgx du =
= x arcsm x +
xarcsin x + Vl - x2 + C dx
dv = dx
1 + xJ
V = X
r xc
= xarctgx - J —
xdx
= xarctgx -
1 + x2 - t 2xdx = dl xdx =
dl
1 fd/
= xarctgx -- Jy =
= xarctgx - yln|l + x2|+C
Jxorc/gx<ir =
u = arctgx du =
dr
l + xJ
2
x2arctgx 1 rx2dx x2arctgx
dv = xdv
_I f** + l~'jr _ x2arctgx _J_ r^. + J_ r dx _ x2arctgx x [ arclgx | ^ 2 J l + x2 2 2 J 2 Jl + x2 5 5 ?
dr
2 2 u = arclgx du =
l + x2 r3
dv = x2dr v = —
3
2 2 2
x’arctgx 1 i- x'dx
3 J1 + x
x’arctgx 1 |
f, | * Yj. ^'^gx |
x2 |
1 |
1 + x2 = / |
3 3 J |
I1' l + r-f' 3 |
6 |
3 |
2xdx = dt |
x 3 arctgx x 2 1 r dt _ x3 arclgx x 2 ln |l + x ' | ^ ^
~ r’ 6 '7" 3 6 6 +
- 19-