dv = — v = —
u = ln|x|
dv = (4 + 3xf v= J(l6 + 24x + 9x2)ix = 16x + 12x2 +3xJ
J(4 + 3xf ln|.tkx =
= In|x|(l6x+I2x2 + 3x3)- J(l6+12x+3x2)& = (3x5+12x2 + 16x)ln|x|-l6x-6x2 -x3 +C
u = ln(x2 + 3) du = -y dv = x,dx
2 xdx
x'+3
x*
.iP-3I+*_'W.£l|1^ł3)-i-+^-?f^.^ln(^ł3)-^-5Mx'+3)+C
2\ x2+3J * 8 4 2V+3 4 ^ ' 8 4 4 '
=x—f3r*=^——L—=—fjx—L)+c In 3 ln 3 ln 3 ln 3 ln 3 ln 3 v ln 3 J
= rt+?)A = f-s//2+3x// = —lnl +VfJ + 3| + -fVr2 + 3+r = J /V^T3 J 21 12
u = x du = dx
y
dv = V dx v = -
ln 3
x2-3 = r
X=V/2 + 3
, tdt tdt
dx = — = -
* V/2 +3
= -^ ln|x + -Jx2-3 + xVx2 -3 + C
dx
f dx f ax Jx4+3x2 " Jx2(x2+3):
1 A B Cx+D x3(A + C)+x2(B + D)+ 3.4x + 3B
: = /
1 rdx 1 r dx 1 V3 X _
/ = - —— —-=----arclg —j= + C
3JX* 3 J X +3
180/
r dx r dx __ V2 r dx _ J2_ r dx 1 r c
2 x' - *3 - 2 J (x2 +1 \x --Jl \x + yfl)~ 2 'x-Jl 2 'x + V2 2^x2 Powyższe współczynniki otrzymano z rozkładu podcałkowej funkcji wymiernej. A zatem:
+ 1
J 4 ^ ln|jc - a/2| ln|.v + V2|-arc/gr + C
dx
1 x* -x* -2
181/
r ^
J(2jr + lXl + V2.x+lJ
V2.
2.r +1 = /' 2<£r = 2rt/r
bfcrhfa-
= ln|V2x + l|-ln|l + Vlr+l| + C
182/
cos .v<ir
r cos x , r cos xax r
-dx= -1—;-5—t= -
Jcos3.v Jcosx^cos‘x-3sin‘.vj Jl-sii
dx
r:-h
dx
sin~x-3sin'x Jl-4sin'x
tgx = i
1+r2
sin x = I
! + /2 A
dt
_ f 1 + /2 - f dt _ ^ 4 r JI-3/2
= /
1 + /2
1 — 3/2 |-V3/ ] + V3/
fi i{aS-b43)+A+B
1-3/
{
/=- [ dtr +- f d,r =--lnll-V3/| + —T=ln|l + V3/| + C =
2J1-V3/ 2J1+V3/ 2V3 1 1 2V3 1 1
1 + \l3tgx
Aj3-Bj3=0 .4 + fi = I
2v/3
ln
l-V3/gx
+ C
B = — 2
-53-