dx
" = ,nH du=— i
dv =
dx
x x
+ C
duM
u = ln|x|
A
</v = (4 + 3x)2 v= J(l6 + 24x + 9x2)it = 16x + 12x = In|x|(l6x + 12.t2 + 3x3)- J(l6 + 12x + 3x2)/x = (3x3 + 12x2 + 16x)ln|x|-
+ 3x3
16x-6x2 -x3 +C
2 xdx
u = ln(x2 + 3) </«=-= v ' x +3 x4
dv = x'dx
v = -
= £llnM+3|-ifi^L=
4 1 I 2Jx*+3
2\ S+3) 4 " ; 8 4 2Jx2+3 4 ' ’
= x—----hrdx = x—---
In 3 In3J !n3 In3 1n3
m = x du = dx dv = y dx v = —
f X2£ĆC
x -3 = r
x = >//2 + 3
, tdt tdt dx = — =
V/2 +3
= — ln|x + -\/x' -3 + —xjx2 -3 +C 2 I 2
179/ r |
- f A |
•*x4+3x |
Jx2(x:+3) |
I 4 |
5 Cx+D x |
"ST* IJ + U) 1 H 1 H |
x2 x2 +3 |
4 + C = 0 |
4 = 0 |
B+D = 0 |
fl = -3 |
3.4 = 0 |
c=o £> = -i |
II <53 |
= /
Wracając do całki:
T3l+-/Vr2+3+C =
I 2
1 rdx I r 1 \/3 X
/ = - ——-=----arclg—j=+C
3Jx2 3Jxs+3 3x 9 %/3
180/
1 r c/v
r ć/v r <ix V2 r t/f V2 r tńr I r
x2+l
Powyższe współczynniki otrzymano z rozkładu podcałkowej funkcji wymiernej. A zatem:
f^4_^_2=:yln|x-V2|-^ln|x + V2|-^arc/gx-t-C
181/
= f-7^- f*. f^- = in|/|-in|r + i| + c
J/2(l+/) Jr(l + r) J* + l
2x +1 = t 2dx = 2 tdt
J(2x + lXl + V2.t + l)‘
= ln|V2x + l|-ln|lW2x+l| + C
182/
cos xdx
dx
r cos x _ r cos xax _ r___ r ax
■’cos3x ■* cos x(cos2 x - 3 sin2 x) ■* 1-sin2 x-3sin2x ■U-4sin:
= f—= /
J1 -3/2
tgx = t
i+r2
t2
i+/!
4
1-3/2 1 —v/3r \ + &.i
aJJ-bJ3 = 0
.4 + fi = l
1+/2
fi t(.4>fi-Bj3)+A+B
1 — 3/
. = i 2
B = — 2
2J1-V3/ 2 •* 1 + y/3t 2^3 ' 1 2^3 1 1
l + V3/gx
2yf3
In
+ C
-53-