Biblioteczka Opracowań Matematycznych
idi
rfdt
r*6rdt e r rat , tcat , t, . i „ ,
= —r—r = 6 Kr—t = 6 -=6 (/-1+—)di
= 3/: - 6/ + 61n|f + l| + C = 3VT - 6^/x + 6ln[>/7 + i| + C 108/
W
x = t dx=6tf'dt
dx
2(*-i y
2
-*-1 =/j
x-2
1 -2r2
1 ~/2
2 tdt
(!-/*)•
f -2tdt (l-/2)2 r-2<//
"J $-<*/ 'J T5 =
ć£c
Vx2+3x+2 3
3
x+—=t
2
dx = dt
+c=
!_
4
+ C 6/
X+2
x + — + Vx2 + 3x + 2 2
-(5o:-4)
5jr"4 -._5f 5' '
6x- —
6x-2
rfy _ 3 f _^===^ = _
V3x2-2x + 1 6•*V3jt2 — 2jt +1 6 J V3x2 - 2x +16 JV3x2-2x+l
<£r = —f-
A ■>
*dx-
dx
= -V3x2-2x + 1~- f-3 3 J
dx
x—
2 3 3
=- = -V3x2 -2x+l -
x — = f 3
dx = dt
7V3 r dt
9
f—^ =-V3x2-2x + l- —ln t + Jt2+-
3 /TT 3 9 V 9
+ C =
r + —
Biblioteczka Opracowań Matematycznych
, ~(5x+2 )dx c 4x+-
- 5 f 5 = 5 f S
A J . _2 . o_ i A J
_ 5 r (4x + 8)rfr
f (5x + 2)cbc j r 5' ' J r 5 ^ 3 r
W2x2+8x-I 4 J V2jc2 +8jc-I 4>j2x2+lx-\ 4 J^jr+8.t-l
dx
-dx
-- —s-==-2V2x2+&r-l-8f-7 f ^
4JV2r2+&t-l 4 ■J2(x+2'f -9 2 Jl3 L+2y _
* i- _ - < /- _ I V o
= — -J2x2 +8j:-1 -4yfl f =-yj2x2+8x-l-4V2lnt + Jt2--
2 J , 9 2 V 2
f- 2
9 2
+ C =
x + 2=t dx-d(
= — V2.r2 + 8.v — 1 — 4 V2 in.r + 2 + J.r2 + 4jr--2 V 2
+ C
J
x-5
1 (■ -2(x-5)cfc 1 f -2jt+4 I
V 5 + 4jt -
6dx
2 Jy]9-(x-2f 2 ^V5 + 4x-jr: 2 J^9_(^_2):
= ^5 + 4x-4x2 - 3 J , =
=* = -- f
J 2 J
= ——2-^5 + 4* - jc2 - 3 f 2 J
C 3dt |
»*• CO II <N 1 H |
W9-9/2 |
dx = 3t7/ |
f- 5^r - f.
5</x
AT—1 =/
dx = dt
J-
3xdx
1 r -6xdx _ i r
? J Ft ^ ńU ? J
= 5 = 5 arcsin/ + C = 5 arcsii^.r -1)+C
1 f -6at-2+2 . 1 r -6x-2
W 1-2jc-3jc2 2SJ\-2x-3x2 2 J Vi-2jc-3a:
-Ir. 2A 2 J
2JVi-2a-3aj
2 WI-2x-3a2
/
= -\l\-2x-3x2 -1 + C = —J\-2x-3x2 -—arcsin
3 2
(1.36)
^całkach 110/- 7/2/ wykorzystano wzór (1.36).