152 Rozdział 6. Rachunek różniczkowy funkcji jednej zmiennej-
152 Rozdział 6. Rachunek różniczkowy funkcji jednej zmiennej-
— cos3 3z.
= arc cos 5(3z2).
~ sin5(e3x).
= lnsin(z + |).
= arc tg (z + i).
— arc sin2 (z + Jj). = In (arc tg (ex)).
= arc sin (tg (z2)). __ e2 sin3 2x
— earctg(a:2)_
„ garcfcg2a;_
____ earc cos 3a;
arc tg 2ex.
— arc tg ex'Z.
— sin4(2z3).
coss(51n(z2 + 1) + z).
( ex+e~x\3 yez-e -x J ■
sin3 x -h sin(z3).
sin3(ln(2z 4-1)). log2(3sLl12*).
2 arcsin in x
i 1 +sirt x 111 1—sina;'
arctgifjJ.
In
6.89.
L —In x
l+lnx''
6.95. /(z)
l+x2 ’
6.63. f{x) =
6.64. f(x) =
6.65. f{x) =
6.66. /(z) =
6.67. /(z) =
6.68. /(z) =
6.69. f{x) -
6.70. f(x) : 6.7 L. /(as) =
6.72. f{x)
6.73. /(z)
6.76. /(.i;)
6.77. f(x)
6.79. f(x)
6.80. f(x)
6.85. f(x)
6.87. f(x)
1-KgJE i-tg i-'
6.91. f(x) =
6.92. f(x) = ys + tg2(z + ^).
6.93. f(x) = arcsin
6.94. /(z) ~ arc cos 6-96. f(x) =
6.97. /(x) = arctgp^f-
6.99. /(®)=ln(f±£jf|).
6.100. /a) = arctg^vi+g.
6.101. /(z) = zx.
6.102. /(z) ~ (sinz)®.
6.103. /(*) - (l + J)*.
6.104. /(z) - (ctgz)acc™3a:.
6.105. /(z) — (smx)C0SX.
6.106. f(x) = (lnz)ctsx.
6.107. /(z) — zllłX.
6.108. f{x)=xt&.
6.109. f(x) — (arctgz)x.
6.110. /(z) = (cosz)arccosx.
6.111. /(z) = z?.
6.112. /(z) = sino? „
Zadania
153
6.127. |
m = | ||
6.128. |
/(*) - |
. ^si» ś/Ćt'* i-3:.(-l | |
6.129. |
/(*) = |
= arctg ^^-1- 0 sin"' ox— |
sina; sin :c ‘ |
6.130. |
/(x) = |
= arctg ^cosx+^ |
— sin x - COS X • |
6.131. |
/(*) = |
= ln "ctiC(*!+ arc 31112 (:c2-;- |
i) ■ii’ |
6.132. |
/(*) = |
= \Arct.g^ |
r J.ł-X‘ |
6.133. |
/(*) = |
= arc cos |
Lsill.ie (■sin ;l4 . |
6.134. |
/(*) |
In (/arc tgx'^ |
! ni II |
0.135. |
/(*) |
1 « | |
6.130. |
/(■•'•) |
arc l,g (lu( | | |
Z')). |
0.137. |
/(■«) |
('/ln nM ‘*.V; V '"‘tp.hr |
Mt) ' O' |
$0.113. /(a;) -f - 6.114. /(ar) = xx*.
6.115. f{x) = (arc tg z)811*2*.
■ 6.116. /(z) = (sin2 z)cts*.
6.117. /(z) = (eosx2)ctgx.
|S:6.118. /(x) = (sinx)arctga:.
|$6.119. /(z) = (tgx)arcsiris. tg.u-6.. 120. f(x) — (arccosx)lna:. ‘‘”•‘6.121. f{x) = (tgx)x.
II 6.122. /(z) - (ex-2e-* + l)(z+l)2-
.-•K 6,123. f{x) = (sin z)*08*8.
, 6.124. /(z) = (arccosx)r.
, 6.125. /(z) = (arc tgx)lnx.
• 6.126. f(x) = \/arc sinx.
6.138. /(z) = arctg (x2sin(x2 + 1))-
6.139. f(x) = ^/tg2(x2 -f- sin4(z2"+"z + lj).
6.140. /(z) = ln(arctg2(sin(x2 + !)))•
, ;S Wyrazić pochodną funkcji / za pomocą pochodnej funkcji g: f': -6.141. f[x) — g(x) sinx.
V ' 6.142. /(a;) = :c2(9(i))2.
6.144. /( r)
r\A0'0.
6.143. /•(.(■
) airl.j’
</(.<■) • l '/(,<•) 1.1
6-146- /M = ggf
6.148. /(i) = (s(x2))3
6.149. /(x) = ln(p(x) + i)
6.150. f(x)=g{x) ln(*a + 0(a;)).
6.151. / (x) = e&2(*>sin*
_ p 6.152. iii.. I. .i l..;<l/.ii- wielomianem, <?(1) = 2, p'(l) = -I. g"{\) = 2 i nioc W funkcja / 'i. ul rr:;|iin;i, wzorem /(x) — x°£(x2). Obliczyć f'{Y\ f"{\)