0929DRUK00001766
KozDZiAŁ ym, ust. 99
dome 0, SI i u. Ale Ścisłe tfe wzory stosowane być'muszą tylko w przypadkach wyjątkowych, z reguły zaś wystarczają wzory przybliżone.
Zastosujmy mianowicie wzory różniczkowe (8) i (9) do boków WNffl N0N trójkąta WN0N oraz do kata WNN0. Biorąc pod uwagę wyżej podane znaczenie wy mieniony cli elementów trójkąta i zważywszy, że 0o jest wielkością stalą, znajdujemy
d (SI — K— = — cos 0 d« — cos i dK,
dO = — cos (fi — K — -/)«) d* — sin 0o sin (n0 — w) d A)
d« = — cos 60 dK — cos 0 d(<0, — K— — (bl)|
— sin (<Q,0 — K) sin 0o dt.
We wzorach tych możemy po prawej stronie pisać 0 zamiast 0o i położyć ck)s« = l; dalej w wyrazach, pomnożonych przez dt, można pisać <0, — K- %?„ zamiast <0, — K i przyjąć SI — K—/m = Sl — /; wreszcie we wzorze na dO można opuścić ostatni wyraz, gdyż v0 — u jest zawsze bardzo małym kątem. Po wprowadzeniu tych uproszczeń i odpowiedniej redukcji wzory (lii) przechodzą wr następujące
d>Q, = d-/,« — cos 0 di/,
dO = — cos (Si — I) di, (hm)
sin (Si — I)
dat =--— dt.
Podstawmy jeszcze w pierwszym z powyższych wzorów zamiast du wartość według drugiego z tych w^zorów i podzielmy na obu* stronach przez Łt, to otrzymamy wryrnżenia pochodnych elementów Si, 0 i u względem czasu, mianowicie:
dw , . ,n „:dsfl
..- = — cosec 0 sin (fi — A T.. d^ dt
Wyszukiwarka
Podobne podstrony:
0929DRUK00001772 360 KOZDZIAL VII, UST. 79 ku punktowi wiosennemu, to długością apeksu jest oczywiś0929DRUK00001784 472 KOZDZIAŁ IX, UST. 103 Spólrzędne xz, Bz_ nie okraśłają ściśle kierunku ku gwie0929DRUK00001700 88 KOZDZIAŁ II, UST. skąd po łatwej redukcji otrzymuje się r a -ij cos * I Gos *0929DRUK00001710 98 KOZDZIAŁ II, UST. 24 nową, przechodząc-ą przez punkt B, która określa na powier0929DRUK00001716 .104 KOZDZIA.L iff UST. 24 Pomiędzy r^-r-^r i y zachodzi prosty związek. Z poprze0929DRUK00001756 144 KOZDZIAI III, UST. 33 do równoleżnika gwiazdy w dwóch jej położeniach Gą i G2,0929DRUK00001758 +4 ) 1413 KOZDZIAŁ III, UST. 34 wobec czego jest + jfeos (5 + 95) Bos (o — cp) ---0929DRUK00001758 . 346 KOZDZIiL VII UST. 76 wielką. W rzeczywistości obserwator ziemski znajduje si0929DRUK00001712 400 KOZDZIAŁ VIH, UST. 89 Ponieważ między (h i -tkj zachodzi w tym przypadku prost0929DRUK00001720 408 KOZDZIAŁ VJ11, UST. 90 a zatem też S JfC = E(t.-t0) + E {Ą-10) T + I E" (0929DRUK00001746 434 KOZDZIAŁ TUI, UST. 96 96. Przykłady do ustępu 95. PrzyMad 1. W epoce 1700.0 sp0929DRUK00001748 436 KOZDZIAŁ VIII, UST. 96 PrsnjktaM 2. Niechaj będzie [30 = 25°, a wszystkie inne0929DRUK00001764 452 ROZDZIAŁ VIII, UST. 99 99. Zmiany, którym ulegają wskutek precesji elementy, o0929DRUK00001768 456 ROZDZIAŁ VIII, UST. 99 Różnice <0/ — Ą0 , 0 — 60 i u — u0 są to zmiany,0929DRUK00001790 478 ROZDZIAŁ IX, UST. 105 Drogę gwiazdy G,-G2 = 5 rozkładamy na dwie składowe, z k0929DRUK00001796 484 ROZDZIAŁ IX, UST. 106 Wartości zmiennych, wysypujących w tych wzorach, które m0929DRUK00001732 520 KOZDZIAŁ X, UST. 110 w Czasie uniwersalnym. Ponieważ pierwszy cLień nowej erywięcej podobnych podstron