|
Wzór funkcji y = f(x) |
Pochodna f'(x) funkcji f |
Uwagi |
1. |
f(x) = c |
(c)' = 0 |
c∈ R |
2. |
f(x) =ax+b |
(ax+b)' = a |
|
3. |
f(x) =ax2+bx+c |
(ax2+bx+c)' = 2ax+b |
|
4. |
f(x) =xa |
(xa)'=a*xa-1 |
a∈ R \ {0,1} |
5. |
f(x) = √x |
1 (√x)' = 2√x |
x > 0 |
6. |
a f(x) = x |
x = x' |
x ≠ 0 |
7. |
f(x) = n√x |
1 (n√x)' = n*n√xn-1 |
x >0 n∈N \{0,1} |
8. |
f(x) = sinx |
(sinx)' = cosx |
|
9. |
f(x) = cosx |
(cosx)' = -sinx |
|
10. |
f(x) = tgx |
1 (tgx)' = cos2x |
∏ x ≠ 2 + k∏ dla k∈C |
11. |
f(x) = ctgx |
1 (ctgx)' = sin2x |
x ≠ k∏ dla k∈C |
12. |
f(x) = ax |
(ax)' = ax * ln a |
a > 0 |
13. |
f(x) = ex |
(ex)' = ex |
|
14. |
f(x) = ln x |
1 (ln x)' = x |
x > 0 |
15. |
f(x) = ln IxI |
1 (ln IxI)' = x |
x ≠ 0 |
16. |
f(x) = loga x |
1 (loga x)' = x*ln a |
a > 0, a ≠ 1 x > 0 |
17. |
f(x) = arc sin x |
1 (arc sinx)' = √1-x2 |
IxI < 1 |
18. |
f(x) = arc cos x |
-1 (arc cosx)' = √1-x2 |
IxI < 1 |
19. |
f(x) = arc tg x |
1 (arc tgx)' = 1+x2 |
|
20 |
f(x) = arc ctg x |
-1 (arc ctgx)' = 1+x2 |
|
Jeżeli funkcje f i g mają pochodne to
[g(x)]2
|