Funkcje Cyklometryczne
1. Wyznaczyć dziedzinę funkcji:
(a) / (x) = aresin (4x — 2),
(d) / (x) = y/4 aresin 3x — ;r,
(e) / (x) = aresin (aretg x),
2. Naszkicować wykres funkcji:
(a) |
/(*) |
= 3 aresin (|x| — 2), |
(d) |
f(x) |
= aretg (|x - 1|) + 7T, |
(e) |
/(*) |
— [arccos (x+ 1) - ^ |
(g) |
/(*) |
= aresin (sin x), |
(i) |
/(*) |
= arccos (cosx), |
(k) |
/(*) |
= aretg (tgx), |
(1) |
/(*) |
= arcctg (ctgx). |
(b) / (x) = arccos (22r+l — 3),
(c) / (x) = log.j [2 arccos (1 — 2x) —
(f) / (i) = \/3arcctg (1 “ 2x) — 2TT.
(b) f(x) = arccos (f - l) - § f
(c) / (z) = 2arcctg (x + 2) - tt, (f) / (x) = 3 arccos (3x — 0) — tr. (h) / (x) = sin (aresin x),
(j) / (x) = cos (arccosx),
(1) / (x) = tg (arctgx)
(m) f{x) = ctg (arcctgx).
3. Wykazać tożsamości:
aresin (—x) = — aresin x, | |
[-i.i] |
aresin x + arccos x = |
Ki] |
arccos (— x) — i: — arccos x, |
[-i.i] |
aresin x = aretg |
[-i.i] |
arccos x = arcctg j, |
IR ari |
"tg ( x) = —arctgx, |
IR arcctg (—x) = tt — arcctgx, | |
R arctgx + arcctgx = | |
[0,1] |
aresin x = arccos \/l — X2, |
[0,1] |
aresin x = arcctg' |
[0,1] |
arccos x = aresin \/l - x*, |
[0.1] |
arccos x = aretg |
(0,+oc) |
arctgx = arcctg j, |
(0,+oo) |
arcctgx = aretg j, |
(0,+oo) |
arctgx = arccos |
(0,+oc) |
arcctgx = aresin |
(a)
(b)
(c) W)
(e)
(0
(g)
(h)
(i)
(j) 00 (1)
(m)
(n)
(o) (P)
Vx g VxG Vx G Vx G Vx G Vx G Vx G Vx G Vx G Vx G VxG Vx G Vx G Vx G Vx G Vx G
4. Obliczyć wartość: aresin —fi + arccos fi + aretg (tg-^p1) + arcctg (-\/3).
1