PODSTAWY TELEKOMUNIKACJI
PODSTAWY TELEKOMUNIKACJI
PODSTAWY TELEKOMUNIKACJI
2.3. Wykład
2.3. Wykład
SSB
SSB
i
i
VSB
VSB
Dr Wojciech J. Krzysztofik
Dr Wojciech J. Krzysztofik
Dr W.J. Krzysztofik
Dr W.J. Krzysztofik
2.3. Podstawy Telekomunikacji
2.3. Podstawy Telekomunikacji
2
2
2.3.
2.3.
MODULACJA JEDNOWSTĘGOWA
MODULACJA JEDNOWSTĘGOWA
Do przesłania pełnej informacji o sygnale modulującym wystarczy
Do przesłania pełnej informacji o sygnale modulującym wystarczy
tylko
tylko
jedna wstęga boczna
jedna wstęga boczna
.
.
Po raz pierwszy do tego wniosku doszedł J. R.
Po raz pierwszy do tego wniosku doszedł J. R.
Carson
Carson
w 1915 r.
w 1915 r.
Modulację jednowstęgową będziemy oznaczać literami
Modulację jednowstęgową będziemy oznaczać literami
SSB
SSB
(
(
S
S
ingle
ingle
S
S
ide
ide
B
B
and
and
)
)
.
.
Możliwe jest tworzenie sygnałów SSB z falą nośną i bez fali nośn
Możliwe jest tworzenie sygnałów SSB z falą nośną i bez fali nośn
ej.
ej.
Znaczenie praktyczne mają tylko sygnały
Znaczenie praktyczne mają tylko sygnały
SSB bez fali nośnej
SSB bez fali nośnej
i tylko do analizy
i tylko do analizy
tych sygnałów ograniczymy nasze zainteresowanie.
tych sygnałów ograniczymy nasze zainteresowanie.
Analizując modulację jednowstęgową będziemy posługiwali się poję
Analizując modulację jednowstęgową będziemy posługiwali się poję
ciem
ciem
sygnału analitycznego:
sygnału analitycznego:
)
t
(
fˆ
j
)
t
(
f
)
t
(
f
+
=
Dr W.J. Krzysztofik
Dr W.J. Krzysztofik
2.3. Podstawy Telekomunikacji
2.3. Podstawy Telekomunikacji
3
3
2.3.
2.3.
MODULACJA JEDNOWSTĘGOWA
MODULACJA JEDNOWSTĘGOWA
1.
1.
Transformaty Fouriera:
Transformaty Fouriera:
2.
2.
są związane ze sobą transformatą
są związane ze sobą transformatą
Hilberta
Hilberta
(2.40)
(2.40)
3.
3.
mają jednakowe funkcje autokorelacji
mają jednakowe funkcje autokorelacji
i widma energetyczne,
i widma energetyczne,
4.
|f (t)| i arg {f (t)}
definiują formalnie obwiednię i fazę fali rzeczywistej,
definiują formalnie obwiednię i fazę fali rzeczywistej,
mające sens fizyczny tylko dla sygnałów wąskopasmowych.
mające sens fizyczny tylko dla sygnałów wąskopasmowych.
5.
5.
Sygnał fizyczny może reprezentować zarówno
Sygnał fizyczny może reprezentować zarówno
.
.
SYGNAŁ ANALITYCZNY
SYGNAŁ ANALITYCZNY
-
-
WŁAŚCIWOŚCI
WŁAŚCIWOŚCI
∫
∞
∞
−
τ
τ
−
τ
π
=
d
t
)
(
f
1
)
t
(
fˆ
0
f
dla
0
)}
t
(
fˆ
{
0
f
dla
0
)}
t
(
f
{
>
=
ℑ
<
=
ℑ
)
t
(
fˆ
i
)
t
(
f
)
t
(
fˆ
i
)
t
(
f
)
t
(
fˆ
i
jak
)
t
(
f
Dr W.J. Krzysztofik
Dr W.J. Krzysztofik
2.3. Podstawy Telekomunikacji
2.3. Podstawy Telekomunikacji
4
4
2.3.1.
2.3.1.
SYGNAŁ ZMODULOWANY I JEGO WIDMO
SYGNAŁ ZMODULOWANY I JEGO WIDMO
Zapiszmy analityczny funkcjonał modulacji w postaci
Zapiszmy analityczny funkcjonał modulacji w postaci
(2.41)
(2.41)
przy czym:
przy czym:
„
„
+
+
” odpowiada
” odpowiada
górnej wstędze bocznej
górnej wstędze bocznej
-
-
USB
USB
Upper
Upper
SideBand
SideBand
, a
, a
„
„
-
-
”
”
-
-
dolnej wstędze bocznej
dolnej wstędze bocznej
-
-
LSB
LSB
.
.
Lower
Lower
SideBand
SideBand
Przyjmijmy analityczną harmoniczną falę nośną
Przyjmijmy analityczną harmoniczną falę nośną
c (t) = e
j
ω
0
t
.
.
(2.42)
(2.42)
Analityczny sygnał zmodulowany
Analityczny sygnał zmodulowany
s(t
s(t
) =
) =
c(t
c(t
)
)
m(t
m(t
) ma postać:
) ma postać:
(2.43)
(2.43)
)
t
(
fˆ
j
)
t
(
f
)
t
(
m
±
=
]
t
cos
)
t
(
fˆ
t
sin
)
t
(
f
[j
]
t
sin
)
t
(
fˆ
t
cos
)
t
(
f
[
e
)]
t
(
fˆ
j
)
t
(
f
[
)
t
(
s
0
0
0
0
t
j
0
ω
+
ω
±
ω
ω
=
⋅
±
=
ω
m
Dr W.J. Krzysztofik
Dr W.J. Krzysztofik
2.3. Podstawy Telekomunikacji
2.3. Podstawy Telekomunikacji
5
5
2.3.1.
2.3.1.
SYGNAŁ ZMODULOWANY I JEGO WIDMO
SYGNAŁ ZMODULOWANY I JEGO WIDMO
Jako fizyczny sygnał zmodulowany przyjmiemy część rze
Jako fizyczny sygnał zmodulowany przyjmiemy część rze
czywistą
czywistą
sygnału analitycznego s (t)
sygnału analitycznego s (t)
(2.44)
(2.44)
Biorąc pod uwagę, że widmo sygnału ma po
Biorąc pod uwagę, że widmo sygnału ma po
stać
stać
(2.45)
(2.45)
oraz korzystając z twierdzenia o splocie w dziedzinie
oraz korzystając z twierdzenia o splocie w dziedzinie
częstotliwości
częstotliwości
znajdujemy
znajdujemy
(2.46)
(2.46)
t
t
f
t
t
f
t
s
t
s
0
0
sin
)
(
ˆ
cos
)
(
)}
(
Re{
)
(
ω
ω
m
=
=
]
1
)
(
1
2
[
)
(
jF
)
sgn(
)
(
jF
)
t
(
fˆ
−
ω
⋅
⋅
ω
−
=
ω
⋅
ω
−
↔
)]
sgn(
)
(
F
)
sgn(
)
(
F
[
2
1
)]}
(
)
(
[
j
{
)}
sgn(
)
(
jF
{
2
1
t
sin
)
t
(
fˆ
0
0
0
0
0
0
0
ω
+
ω
⋅
ω
+
ω
−
ω
−
ω
⋅
ω
−
ω
=
=
ω
−
ω
δ
−
ω
+
ω
δ
π
∗
ω
⋅
ω
π
↔
ω
−
)
t
(
fˆ
Dr W.J. Krzysztofik
Dr W.J. Krzysztofik
2.3. Podstawy Telekomunikacji
2.3. Podstawy Telekomunikacji
6
6
2.3.1.
2.3.1.
SYGNAŁ ZMODULOWANY I JEGO WIDMO
SYGNAŁ ZMODULOWANY I JEGO WIDMO
)
t
(
fˆ
)]}
sgn(
1
[
)
(
F
)]
sgn(
1
[
)
(
F
{
2
1
)
t
(
s
0
0
0
0
ω
+
ω
−
⋅
ω
+
ω
+
ω
−
ω
+
⋅
ω
−
ω
↔
Widmo sygnału zmodulowanego otrzymamy sumując widma iloczynów
Widmo sygnału zmodulowanego otrzymamy sumując widma iloczynów
f
f
(t)
(t)
cos
cos
ω
ω
0
0
t
t
i
i
sin
sin
ω
ω
0
0
t
t
(2.47)
(2.47)
Wyrażenie (2.47) przedstawia sygnał jednowstęgowy odpowiadający górnej
wstędze bocznej.
Sygnał jednowstęgowy można więc uważać za sumę dwóch sygnałów
dwuwstęgowych bez fali nośnej, przy czym jeden z tych sygnałów powstaje
przez przemnożenie sygnału modulującego f(t) przez falę nośną cos
ω
0
t, drugi
natomiast - przez przemnożenie ortogonalnego (transformata Hilberta) sygnału
modulującego f(t) przez ortogonalną falę nośną sin
ω
0
t.
Operację sumowania widm przedstawiono graficznie na rys. 2.18.
Dr W.J. Krzysztofik
Dr W.J. Krzysztofik
2.3. Podstawy Telekomunikacji
2.3. Podstawy Telekomunikacji
7
7
2.3.1.
2.3.1.
SYGNAŁ ZMODULOWANY I JEGO WIDMO
SYGNAŁ ZMODULOWANY I JEGO WIDMO
a) Sygnał modulujący i jego widmo
b) Sygnał ortogonalny i jego widmo
c) Sygnał dwuwstęgowy [ f(t) cos
ω
0
t ] i jego widmo
Rys. 2.18. Modulacja SSB
Rys. 2.18. Modulacja SSB
-
-
SC
SC
Dr W.J. Krzysztofik
Dr W.J. Krzysztofik
2.3. Podstawy Telekomunikacji
2.3. Podstawy Telekomunikacji
8
8
2.3.1.
2.3.1.
SYGNAŁ ZMODULOWANY I JEGO WIDMO
SYGNAŁ ZMODULOWANY I JEGO WIDMO
e) Sygnał jednowstęgowy i jego widmo USB
d) Sygnał dwuwstęgowy [ ] i jego widmo
t
sin
)
t
(
fˆ
0
ω
⋅
Rys. 2.18. Modulacja SSB
Rys. 2.18. Modulacja SSB
-
-
SC
SC
Dr W.J. Krzysztofik
Dr W.J. Krzysztofik
2.3. Podstawy Telekomunikacji
2.3. Podstawy Telekomunikacji
9
9
2.3.1.
2.3.1.
SYGNAŁ ZMODULOWANY I JEGO WIDMO
SYGNAŁ ZMODULOWANY I JEGO WIDMO
Obwiednię sygnału zmodulowanego określa moduł wyrażen
Obwiednię sygnału zmodulowanego określa moduł wyrażen
ia (2.43)
ia (2.43)
(2.48)
(2.48)
Jeżeli sygnał modulujący ma postać grupy falowej
Jeżeli sygnał modulujący ma postać grupy falowej
(2.49)
(2.49)
Biorąc pod uwagę, że transformatą
Biorąc pod uwagę, że transformatą
Hilberta
Hilberta
funkcji cos (
funkcji cos (
ω
ω
m
m
t
t
+
+
ϕ
ϕ
m
m
) jest
) jest
funkcja sin (
funkcja sin (
ω
ω
m
m
t
t
+
+
ϕ
ϕ
m
m
), znajdujemy sygnał ortogonalny
), znajdujemy sygnał ortogonalny
(2.50)
(2.50)
oraz obwiednię sygnału zmodulowanego
oraz obwiednię sygnału zmodulowanego
(2.51)
(2.51)
)
t
(
fˆ
)
t
(
f
)
t
(
s
2
2
+
=
∑
=
ϕ
+
ω
=
M
1
m
m
m
m
)
t
(
cos
A
)
t
(
f
∑
=
ϕ
+
ω
=
M
1
m
m
m
m
)
t
(
sin
A
)
t
(
fˆ
2
M
1
m
m
m
m
2
M
1
m
m
m
m
]
)
t
(
sin
A
[
]
)
t
(
cos
A
[
)
t
(
s
∑
∑
=
=
ϕ
+
ω
+
ϕ
+
ω
=
Dr W.J. Krzysztofik
Dr W.J. Krzysztofik
2.3. Podstawy Telekomunikacji
2.3. Podstawy Telekomunikacji
10
10
2.3.2. GENERACJA SYGNAŁÓW SSB
2.3.2. GENERACJA SYGNAŁÓW SSB
-
-
SC
SC
Są znane dwie podstawowe metody tworzenia sygnałów SSB
Są znane dwie podstawowe metody tworzenia sygnałów SSB
-
-
SC:
SC:
1)
1)
metoda filtracji
metoda filtracji
i
i
2)
2)
metoda fazowa
metoda fazowa
.
.
Jednoczesne zastosowanie metody 1) i 2) prowadzi do,
Jednoczesne zastosowanie metody 1) i 2) prowadzi do,
3)
3)
zmodyfikowanej metody fazowej
zmodyfikowanej metody fazowej
określanej również mianem
określanej również mianem
trzeciej metody generacji
trzeciej metody generacji
sygnałów SSB
sygnałów SSB
-
-
SC .
SC .
Dr W.J. Krzysztofik
Dr W.J. Krzysztofik
2.3. Podstawy Telekomunikacji
2.3. Podstawy Telekomunikacji
11
11
2.3.2. GENERACJA SYGNAŁÓW SSB
2.3.2. GENERACJA SYGNAŁÓW SSB
-
-
SC
SC
Naturalną metodą tworzenia sygnałów jednowstęgowych jest wy
Naturalną metodą tworzenia sygnałów jednowstęgowych jest wy
dzielenie z
dzielenie z
sygnału DSB
sygnału DSB
-
-
SC pożądanej wstęgi bocznej za pomocą filtru pasmowego.
SC pożądanej wstęgi bocznej za pomocą filtru pasmowego.
Podstawową trudnością techniczną związaną z praktyczną reali
Podstawową trudnością techniczną związaną z praktyczną reali
zacją metody
zacją metody
filtracji jest konieczność zapewnienia odpowiedniej charakteryst
filtracji jest konieczność zapewnienia odpowiedniej charakteryst
yki filtru
yki filtru
eliminującego niepożądaną wstęgę. Zwykle wymaga się, aby tłumien
eliminującego niepożądaną wstęgę. Zwykle wymaga się, aby tłumien
ie sygnałów
ie sygnałów
niepożądanych było nie mniejsze niż 40
niepożądanych było nie mniejsze niż 40
dB
dB
, przy czym fala nośna powinna być
, przy czym fala nośna powinna być
dodatkowo stłumiona o 10
dodatkowo stłumiona o 10
÷
÷
30
30
dB
dB
.
.
Rys. 2.19. Generacja sygnału SSB-SC metodą filtracji
Rys. 2.19. Generacja sygnału SSB
Rys. 2.19. Generacja sygnału SSB
-
-
SC metodą filtracji
SC metodą filtracji
-
-
METODA FILTRACJI
METODA FILTRACJI
Dr W.J. Krzysztofik
Dr W.J. Krzysztofik
2.3. Podstawy Telekomunikacji
2.3. Podstawy Telekomunikacji
12
12
Trudność tę można ominąć stosując dwukrotną modulację i
Trudność tę można ominąć stosując dwukrotną modulację i
filtrację.
filtrację.
Widmo sygnału
Widmo sygnału
f(t
f(t
) jest najpierw przesuwane do niezbyt wielkich
) jest najpierw przesuwane do niezbyt wielkich
częstotliwości za pomocą pomocniczej fali nośnej cos
częstotliwości za pomocą pomocniczej fali nośnej cos
ω
ω
01
01
t, następnie
t, następnie
odfiltrowuje się jedną wstęgę boczną;
odfiltrowuje się jedną wstęgę boczną;
Otrzymany w ten sposób sygnał jednowstęgowy jest następ
Otrzymany w ten sposób sygnał jednowstęgowy jest następ
nie przesuwany
nie przesuwany
do właściwego położenia na osi częstotliwości w drugi
do właściwego położenia na osi częstotliwości w drugi
m modulatorze
m modulatorze
zrównoważonym, do którego doprowadza się drugą falę n
zrównoważonym, do którego doprowadza się drugą falę n
ośną cos
ośną cos
ω
ω
02
02
t.
t.
ω
ω
01
01
+
+
ω
ω
02
02
=
=
ω
ω
0
0
2.3.2. GENERACJA SYGNAŁÓW SSB
2.3.2. GENERACJA SYGNAŁÓW SSB
-
-
SC
SC
Rys. 2.20. Generacja sygnału SSB-SC metodą wielokrotnej modulacji i filtracji
Rys. 2.20. Generacja sygnału SSB
Rys. 2.20. Generacja sygnału SSB
-
-
SC metodą wielokrotnej modulacji i filtracji
SC metodą wielokrotnej modulacji i filtracji
FPP2
FPP2
FPP1
FPP1
MZ 1
MZ 1
MZ 2
MZ 2
Dr W.J. Krzysztofik
Dr W.J. Krzysztofik
2.3. Podstawy Telekomunikacji
2.3. Podstawy Telekomunikacji
13
13
2.3.2. GENERACJA SYGNAŁÓW SSB
2.3.2. GENERACJA SYGNAŁÓW SSB
-
-
SC
SC
Właściwą wstęgę boczną wybiera się za pomocą odpowiednio
Właściwą wstęgę boczną wybiera się za pomocą odpowiednio
dostrojonego filtru
dostrojonego filtru
pasmowego (rys. 2.21 ). W razie potrzeby proces modulac
pasmowego (rys. 2.21 ). W razie potrzeby proces modulac
ji I filtracji można powtarzać
ji I filtracji można powtarzać
kilkakrotnie.
kilkakrotnie.
a) Widmo sygnału modulującego
a) Widmo sygnału modulującego
a) Widmo sygnału modulującego
b) Widmo na wyjściu MZ1
b) Widmo na wyjściu MZ1
b) Widmo na wyjściu MZ1
c) Widmo na wyjściu FPP1
c) Widmo na wyjściu FPP1
c) Widmo na wyjściu FPP1
d) Widmo na wyjściu MZ2
d) Widmo na wyjściu MZ2
d) Widmo na wyjściu MZ2
e) Widmo na wyjściu FPP2
e) Widmo na wyjściu FPP2
e) Widmo na wyjściu FPP2
Rys. 2.21.
Rys. 2.21.
Rys. 2.21.
Dr W.J. Krzysztofik
Dr W.J. Krzysztofik
2.3. Podstawy Telekomunikacji
2.3. Podstawy Telekomunikacji
14
14
2.3.2. GENERACJA SYGNAŁÓW SSB
2.3.2. GENERACJA SYGNAŁÓW SSB
-
-
SC
SC
W modulatorach jednowstęgowych stosuje się filtry :
W modulatorach jednowstęgowych stosuje się filtry :
LC,
LC,
kwarcowe,
kwarcowe,
mechaniczne i
mechaniczne i
ceramiczne.
ceramiczne.
Jako ciekawostkę warto podać, że pierwszą, eksperymentalną trans
Jako ciekawostkę warto podać, że pierwszą, eksperymentalną trans
misję
misję
w systemie SSB zrealizowano opierając się na filtracyjnej metodz
w systemie SSB zrealizowano opierając się na filtracyjnej metodz
ie
ie
generacji
sygnału
jednowstęgowego.
Sam
sposób
eliminacji
generacji
sygnału
jednowstęgowego.
Sam
sposób
eliminacji
niepożądanej wstęgi bocznej był bardzo pomysłowy i polegał na
niepożądanej wstęgi bocznej był bardzo pomysłowy i polegał na
dostrojeniu anteny, współpracującej z konwencjonalnym długofalow
dostrojeniu anteny, współpracującej z konwencjonalnym długofalow
ym
ym
nadajnikiem AM, do pożądanej wstęgi bocznej.
nadajnikiem AM, do pożądanej wstęgi bocznej.
Dr W.J. Krzysztofik
Dr W.J. Krzysztofik
2.3. Podstawy Telekomunikacji
2.3. Podstawy Telekomunikacji
15
15
2.3.2. GENERACJA SYGNAŁÓW SSB
2.3.2. GENERACJA SYGNAŁÓW SSB
-
-
SC
SC
Koncepcja fazowej metody generacji
Koncepcja fazowej metody generacji
sygnałów
jednowstęgowych
(znanej
sygnałów
jednowstęgowych
(znanej
również jako metoda kompensacji )
również jako metoda kompensacji )
opiera się na zależności (2.44), z
opiera się na zależności (2.44), z
której wynika, że
której wynika, że
Sygnał SSB można uzyskać przez
Sygnał SSB można uzyskać przez
sumowanie
sygnałów
z
dwóch
sumowanie
sygnałów
z
dwóch
modulatorów
zrównoważonych,
przy
modulatorów
zrównoważonych,
przy
czym :
czym :
Do jednego modulatora doprowadza się
Do jednego modulatora doprowadza się
sygnał modulujący
sygnał modulujący
f(t
f(t
) i falę nośną
) i falę nośną
cos
cos
ω
ω
0
0
t, do drugiego natomiast
t, do drugiego natomiast
-
-
sygnał
sygnał
ortogonalny i ortogonalną falę nośną
ortogonalny i ortogonalną falę nośną
sin
sin
ω
ω
0
0
t.
t.
-
-
METODA FAZOWA
METODA FAZOWA
)
t
(
fˆ
a) z przesuwnikiem w jednym torze
a) z przesuwnikiem w jednym torze
Rys. 2.22.
Rys. 2.22.
b) z przesuwnikami w obu torach
b) z przesuwnikami w obu torach
Dr W.J. Krzysztofik
Dr W.J. Krzysztofik
2.3. Podstawy Telekomunikacji
2.3. Podstawy Telekomunikacji
16
16
2.3.2. GENERACJA SYGNAŁÓW SSB
2.3.2. GENERACJA SYGNAŁÓW SSB
-
-
SC
SC
Poprawna praca modulatora SSB, działającego na zasadzie kompen
Poprawna praca modulatora SSB, działającego na zasadzie kompen
sacji, wymaga
sacji, wymaga
dokładnego zachowania właściwych przesunięć fazowych zarówno w t
dokładnego zachowania właściwych przesunięć fazowych zarówno w t
orze sygnału
orze sygnału
modulującego, jak i w torze fali nośnej.
modulującego, jak i w torze fali nośnej.
W celu dokładniejszej analizy wpływu błędów fazowych na przebieg
W celu dokładniejszej analizy wpływu błędów fazowych na przebieg
procesu
procesu
modulacji załóżmy, że przesunięcie fazy w torze sygnału modulują
modulacji załóżmy, że przesunięcie fazy w torze sygnału modulują
cego różni się o
cego różni się o
∆ϕ
∆ϕ
≠
≠
π
π
/2.
/2.
Przyjmijmy ponadto, że amplitudy sygnałów modulujących i fal noś
Przyjmijmy ponadto, że amplitudy sygnałów modulujących i fal noś
nych w obydwu
nych w obydwu
torach są jednakowe (w praktyce warunek ten jest stosunkowo łatw
torach są jednakowe (w praktyce warunek ten jest stosunkowo łatw
y do spełnienia).
y do spełnienia).
W celu uproszczenia rozważań analizę przeprowadzimy dla przypadk
W celu uproszczenia rozważań analizę przeprowadzimy dla przypadk
u modulacji
u modulacji
sygnałem harmonicznym
sygnałem harmonicznym
f(t
f(t
) = A
) = A
m
m
cos
cos
ω
ω
m
m
t
t
.
.
Sygnał na wyjściu modulatora MZ1 m a postać
Sygnał na wyjściu modulatora MZ1 m a postać
u
u
1
1
(t) = A
(t) = A
m
m
cos
cos
ω
ω
m
m
t
t
cos
cos
ω
ω
0
0
t =A
t =A
0
0
/2 [
/2 [
cos
cos
(
(
ω
ω
0
0
+
+
ω
ω
m
m
)t
)t
+
+
cos
cos
(
(
ω
ω
0
0
-
-
ω
ω
m
m
)t
)t
]
]
,
,
(
(
2.53)
2.53)
podczas gdy przebieg na wyjściu modulatora MZ2 wynosi
podczas gdy przebieg na wyjściu modulatora MZ2 wynosi
u
u
2
2
(t) = A
(t) = A
m
m
sin
sin
(
(
ω
ω
m
m
t
t
-
-
∆ϕ
∆ϕ
)
)
cos
cos
ω
ω
0
0
t =A
t =A
0
0
/2 {
/2 {
cos
cos
[(
[(
ω
ω
0
0
-
-
ω
ω
m
m
)t
)t
+
+
∆ϕ
∆ϕ
)]
)]
-
-
cos
cos
[(
[(
ω
ω
0
0
+
+
ω
ω
m
m
)
)
t
t
-
-
∆ϕ
∆ϕ
]
]
(2.54)
(2.54)
-
-
METODA FAZOWA
METODA FAZOWA
–
–
ANALIZA BŁĘDÓW
ANALIZA BŁĘDÓW
Dr W.J. Krzysztofik
Dr W.J. Krzysztofik
2.3. Podstawy Telekomunikacji
2.3. Podstawy Telekomunikacji
17
17
2.3.2. GENERACJA SYGNAŁÓW SSB
2.3.2. GENERACJA SYGNAŁÓW SSB
-
-
SC
SC
Po prostych przekształceniach trygonometrycznych, otrzymujemy
Po prostych przekształceniach trygonometrycznych, otrzymujemy
następującą
następującą
zależność opisującą sygnał na wyjściu modulatora jednowstęgowego
zależność opisującą sygnał na wyjściu modulatora jednowstęgowego
(dla LSB):
(dla LSB):
Wynikiem występowania błędu fazowego w torze sygnału modulująceg
Wynikiem występowania błędu fazowego w torze sygnału modulująceg
o jest
o jest
niezupełne wytłumienie niepożądanej
niezupełne wytłumienie niepożądanej
-
-
w tym przypadku górnej
w tym przypadku górnej
-
-
wstęgi bocznej USB.
wstęgi bocznej USB.
Stopień tłumienia niepożądanej wstęgi bocznej wynosi
Stopień tłumienia niepożądanej wstęgi bocznej wynosi
Łatwo można wykazać, że identyczny wpływ mają błędy fazowe w tor
Łatwo można wykazać, że identyczny wpływ mają błędy fazowe w tor
ze fali nośnej.
ze fali nośnej.
Przy założeniu, że tłumienie niepożądanej wstęgi bocznej powinno
Przy założeniu, że tłumienie niepożądanej wstęgi bocznej powinno
być nie mniejsze
być nie mniejsze
niż
niż
40
40
dB
dB
, przesunięcie fazowe w obu torach może się różnić
, przesunięcie fazowe w obu torach może się różnić
∆ϕ
∆ϕ
≤
≤
90
90
0
0
±
±
1,15
1,15
0
0
w całym
w całym
paśmie częstotliwości sygnału modulującego.
paśmie częstotliwości sygnału modulującego.
Warunek ten jest na ogół trudny do spełnienia w praktyce.
Warunek ten jest na ogół trudny do spełnienia w praktyce.
-
-
METODA FAZOWA
METODA FAZOWA
–
–
ANALIZA BŁĘDÓW
ANALIZA BŁĘDÓW
]}
2
t
)
cos[(
cos
1
]
2
2
t
)
cos[(
cos
1
{
2
A
]}
t
)
cos[(
t
)
cos(
]
t
)
cos[(
t
)
{cos(
A
2
1
)
t
(
u
)
t
(
u
m
0
m
0
m
m
0
m
0
m
0
m
0
m
2
1
ϕ
∆
+
ω
−
ω
ϕ
∆
+
+
ω
∆
−
π
+
ω
+
ω
ϕ
∆
−
=
=
ϕ
∆
+
ω
−
ω
+
ω
−
ω
+
ϕ
∆
−
ω
+
ω
−
ω
+
ω
=
+
(2.5
(2.5
5
5
)
)
]
dB
[
2
ctg
log
20
cos
1
cos
1
lg
10
ϕ
∆
=
ϕ
∆
−
ϕ
∆
+
Dr W.J. Krzysztofik
Dr W.J. Krzysztofik
2.3. Podstawy Telekomunikacji
2.3. Podstawy Telekomunikacji
18
18
2.3.2. GENERACJA SYGNAŁÓW SSB
2.3.2. GENERACJA SYGNAŁÓW SSB
-
-
SC
SC
Różni się od opisanej metody
Różni się od opisanej metody
kompensacji jedynie sposobem
kompensacji jedynie sposobem
tworzenia sygnałów ortogonalnych,
tworzenia sygnałów ortogonalnych,
modulujących dwa przebiegi nośne
modulujących dwa przebiegi nośne
wielkiej częstotliwości i przesunięte
wielkiej częstotliwości i przesunięte
w fazie o 90
w fazie o 90
0
0
.
.
Różnica ta polega na
Różnica ta polega na
zastosowaniu wstępnej modulacji
zastosowaniu wstępnej modulacji
amplitudy z jednoczesnym
amplitudy z jednoczesnym
odfiltrowaniem pożądanego
odfiltrowaniem pożądanego
produktu tej modulacji.
produktu tej modulacji.
W modulatorze
W modulatorze
zrównoważonym MZ1 następuje
zrównoważonym MZ1 następuje
modulacja fali nośnej cos
modulacja fali nośnej cos
ω
ω
01
01
t
t
sygnałem
sygnałem
f(t
f(t
). Pulsacja
). Pulsacja
ω
ω
01
01
pierwszej
pierwszej
fali nośnej jest równa średniej
fali nośnej jest równa średniej
arytmetycznej skrajnych pulsacji (
arytmetycznej skrajnych pulsacji (
ω
ω
d
d
i
i
ω
ω
m
m
) widma sygnału modulującego
) widma sygnału modulującego
.
.
Na wyjściu modulatora
Na wyjściu modulatora
otrzymuje się sygnał o widmie
otrzymuje się sygnał o widmie
przedstawianym na rys. 2.24.
przedstawianym na rys. 2.24.
-
-
ZMODYFIKOWANA METODA FAZOWA
ZMODYFIKOWANA METODA FAZOWA
Rys. 2.23. Zmodyfikowana fazowa metoda tworzenia SSB-SC
Rys. 2.23. Zmodyfikowana fazowa metoda
Rys. 2.23. Zmodyfikowana fazowa metoda tworzenia
SSB
SSB
-
-
SC
SC
- modulator Weaver’a
a)
b2)
b1)
c1)
c2)
d1)
d2)
e1)
e2)
f1)
f2)
g)
Dr W.J. Krzysztofik
Dr W.J. Krzysztofik
2.3. Podstawy Telekomunikacji
2.3. Podstawy Telekomunikacji
19
19
2.3.2. GENERACJA SYGNAŁÓW SSB
2.3.2. GENERACJA SYGNAŁÓW SSB
-
-
SC
SC
Z sygnału zmodulowanego wydziela się,
Z sygnału zmodulowanego wydziela się,
za pomocą filtru dolnoprzepustowego, sygnał
za pomocą filtru dolnoprzepustowego, sygnał
zawarty w paśmie od zera do (
zawarty w paśmie od zera do (
ω
ω
01
01
-
-
ω
ω
d
d
).
).
W tym sygnale, składowe harmoniczne
W tym sygnale, składowe harmoniczne
odpowiadające górnej (położonej powyżej
odpowiadające górnej (położonej powyżej
ω
ω
01
01
)
)
części widma sygnału modulującego są
części widma sygnału modulującego są
uszeregowane w porządku naturalnym,
uszeregowane w porządku naturalnym,
porządek składowych zaś odpowiadających
porządek składowych zaś odpowiadających
dolnej części widma ulega odwróceniu.
dolnej części widma ulega odwróceniu.
Jak widać, wprowadzone przez filtr
Jak widać, wprowadzone przez filtr
dolnoprzepustowy ograniczenie szerokości
dolnoprzepustowy ograniczenie szerokości
pasma częstotliwości przenoszonych sygnałów
pasma częstotliwości przenoszonych sygnałów
nie zmniejsza zawartości informacyjnej
nie zmniejsza zawartości informacyjnej
sygnału zmodulowanego
sygnału zmodulowanego
.
.
W analogiczny sposób przeprowadza się
W analogiczny sposób przeprowadza się
modulację w drugim torze, w którym sygnał
modulację w drugim torze, w którym sygnał
f(t
f(t
)
)
moduluje falę nośną sin
moduluje falę nośną sin
ω
ω
01
01
t.
t.
Podstawową zaletą zmodyfikowanej
Podstawową zaletą zmodyfikowanej
metody fazowej jest wyeliminowanie
metody fazowej jest wyeliminowanie
szerokopasmowych przesuwników fazy w
szerokopasmowych przesuwników fazy w
torach sygnału modulującego
torach sygnału modulującego
.
.
-
-
ZMODYFIKOWANA METODA FAZOWA
ZMODYFIKOWANA METODA FAZOWA
Rys. 2.24.
Rys. 2.24.
a)
b1)
b2)
c1)
c2)
d1)
d2)
e1)
e2)
f1)
f2)
g)
Dr W.J. Krzysztofik
Dr W.J. Krzysztofik
2.3. Podstawy Telekomunikacji
2.3. Podstawy Telekomunikacji
20
20
Sygnał modulujący można odtworzyć z sygnału jednowstęgowego, pod
Sygnał modulujący można odtworzyć z sygnału jednowstęgowego, pod
obnie jak
obnie jak
w przypadku sygnału DSB
w przypadku sygnału DSB
-
-
SC, za pomocą
SC, za pomocą
detekcji synchronicznej lub
detekcji synchronicznej lub
detekcji liniowej (kwadratowej),
detekcji liniowej (kwadratowej),
po uprzednim dodaniu do sygnału jednowstęgowego fali nośnej o d
po uprzednim dodaniu do sygnału jednowstęgowego fali nośnej o d
użej
użej
amplitudzie.
amplitudzie.
DETEKCJA SYNCHRONICZNA
DETEKCJA SYNCHRONICZNA
W przypadku detekcji synchronicznej sygnał jednowstęgowy jest mn
W przypadku detekcji synchronicznej sygnał jednowstęgowy jest mn
ożony przez
ożony przez
odtworzoną w odbiorniku falę nośną cos
odtworzoną w odbiorniku falę nośną cos
ω
ω
0
0
t
t
Pierwszy składnik w wyrażeniu (2.56) reprezentuje sygnał użytecz
Pierwszy składnik w wyrażeniu (2.56) reprezentuje sygnał użytecz
ny, drugi zaś
ny, drugi zaś
sygnał jednowstęgowy o fali nośnej cos 2
sygnał jednowstęgowy o fali nośnej cos 2
ω
ω
0
0
t.
t.
Sygnał użyteczny można zatem wyodrębnić za pomocą filtru
Sygnał użyteczny można zatem wyodrębnić za pomocą filtru
dolnoprzepustowego.
dolnoprzepustowego.
2.3.3. DEMODULACJA SYGNAŁÓW SSB
2.3.3. DEMODULACJA SYGNAŁÓW SSB
-
-
SC
SC
]
t
2
sin
)
t
(
fˆ
t
2
cos
)
t
(
f
[
2
1
)
t
(
f
2
1
t
cos
]
t
sin
)
t
(
fˆ
t
cos
)
t
(
f
[
t
cos
)
t
(
s
)
t
(
u
0
0
0
0
0
0
SSB
d
ω
±
ω
+
=
ω
ω
ω
=
ω
=
m
(2.56)
(2.56)
Dr W.J. Krzysztofik
Dr W.J. Krzysztofik
2.3. Podstawy Telekomunikacji
2.3. Podstawy Telekomunikacji
21
21
2.3.3. DEMODULACJA SYGNAŁÓW SSB
2.3.3. DEMODULACJA SYGNAŁÓW SSB
-
-
SC
SC
Koherentną detekcję sygnałów jednowstęgowych przeprowadza się wi
Koherentną detekcję sygnałów jednowstęgowych przeprowadza się wi
ęc w układzie
ęc w układzie
złożonym z: mieszacza iloczynowego, filtru dolnoprzepustowego i
złożonym z: mieszacza iloczynowego, filtru dolnoprzepustowego i
generatora fali nośnej (rys.
generatora fali nośnej (rys.
2.25).
2.25).
DETEKCJA SYNCHRONICZNA
DETEKCJA SYNCHRONICZNA
a)
a)
b)
b)
c)
c)
c)
c)
b)
b)
a)
a)
•
Jeżeli przebieg nośny jest
reprodukowany w odbiorniku z błędem
częstotliwościowym
∆ω
0
i fazowym
∆ϕ
,
to sygnał na wyjściu filtru
dolnoprzepustowego będzie mieć
postać (2.58):
•
Jeżeli przebieg nośny jest odtworzony
w odbiorniku poprawnie (
∆ω
0
=0 i
∆ϕ
=0),
to sygnał wyjściowy
u
d
= ½ f (t)
)
t
sin(
)
t
(
fˆ
)
t
cos(
)
t
(
f
[
2
1
)
t
(
u
0
0
d
ϕ
∆
+
ω
∆
ϕ
∆
+
ω
∆
=
m
Rys. 2.25.
Rys. 2.25.
Dr W.J. Krzysztofik
Dr W.J. Krzysztofik
2.3. Podstawy Telekomunikacji
2.3. Podstawy Telekomunikacji
22
22
2.3.3. DEMODULACJA SYGNAŁÓW SSB
2.3.3. DEMODULACJA SYGNAŁÓW SSB
-
-
SC
SC
Jeżeli przebieg nośny jest odtwarzany tylko z błędem fazowym (
Jeżeli przebieg nośny jest odtwarzany tylko z błędem fazowym (
∆ω
∆ω
0
0
= 0,
= 0,
∆ϕ
∆ϕ
≠
≠
0), to
0), to
(2.59)
(2.59)
Na wyjściu mieszacza iloczynowego pojawia się więc niepożądany s
Na wyjściu mieszacza iloczynowego pojawia się więc niepożądany s
ygnał ,
ygnał ,
którego nie można odfiltrować
którego nie można odfiltrować
-
-
jest to zniekształcenie fazowe.
jest to zniekształcenie fazowe.
Jeżeli występuje tylko błąd częstotliwościowy w odtworzeniu fali
Jeżeli występuje tylko błąd częstotliwościowy w odtworzeniu fali
nośnej
nośnej
(
(
∆ω
∆ω
≠
≠
0,
0,
∆ϕ
∆ϕ
= 0), to sygnał na wyjściu detektora ma kształt
= 0), to sygnał na wyjściu detektora ma kształt
(2.60)
(2.60)
W przypadku małego błędu częstotliwościowego otrzymujemy
W przypadku małego błędu częstotliwościowego otrzymujemy
(2.61)
(2.61)
co oznacza, że sygnał użyteczny
co oznacza, że sygnał użyteczny
f(t
f(t
) jest obarczony szkodliwą modulacją
) jest obarczony szkodliwą modulacją
amplitudy (efekt podobny jak przy DSB
amplitudy (efekt podobny jak przy DSB
-
-
SC).
SC).
DETEKCJA SYNCHRONICZNA
DETEKCJA SYNCHRONICZNA
]
sin
)
t
(
fˆ
cos
)
t
(
f
[
2
1
)
t
(
u
d
ϕ
∆
ϕ
∆
=
m
]
t
sin
)
t
(
fˆ
t
cos
)
t
(
f
[
2
1
)
t
(
u
0
0
d
ω
∆
ω
∆
=
m
t
cos
)
t
(
f
2
1
)
t
(
u
0
d
ω
∆
≈
Dr W.J. Krzysztofik
Dr W.J. Krzysztofik
2.3. Podstawy Telekomunikacji
2.3. Podstawy Telekomunikacji
23
23
2.4.
2.4.
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
VSB
VSB
VSB
VSB
VSB
VSB
VSB
VSB
Przy modulacji SSB szerokość pasma zajętego przez sygnał zmodulo
Przy modulacji SSB szerokość pasma zajętego przez sygnał zmodulo
wany jest
wany jest
najmniejsza, równa szerokości pasma sygnału modulującego. Jest t
najmniejsza, równa szerokości pasma sygnału modulującego. Jest t
o ważna zaleta
o ważna zaleta
modulacji jednowstęgowej, zwłaszcza gdy widmo sygnału modulujące
modulacji jednowstęgowej, zwłaszcza gdy widmo sygnału modulujące
go jest szerokie.
go jest szerokie.
Niestety, demodulacja sygnałów jednowstęgowych wymaga precyzyjne
Niestety, demodulacja sygnałów jednowstęgowych wymaga precyzyjne
go
go
odtworzenia w odbiorniku fali nośnej, co stwarza poważne kłopoty
odtworzenia w odbiorniku fali nośnej, co stwarza poważne kłopoty
układowe, zwłaszcza
układowe, zwłaszcza
w odbiornikach produkowanych masowo.
w odbiornikach produkowanych masowo.
Z tego względu stosuje się czasem (np. w telewizji) zawężenie pa
Z tego względu stosuje się czasem (np. w telewizji) zawężenie pa
sma
sma
zajmowanego przez sygnał zmodulowany metodą częściowego wytłumie
zajmowanego przez sygnał zmodulowany metodą częściowego wytłumie
nia jednej
nia jednej
wstęgi bocznej
wstęgi bocznej
VSB
VSB
V
V
estigial
estigial
S
S
ide
ide
B
B
and
and
.
.
Jeśli rozkład energii w widmie sygnału modulującego jest taki, ż
Jeśli rozkład energii w widmie sygnału modulującego jest taki, ż
e przeważająca
e przeważająca
część energii jest skupiona w dolnej części widma, to przekazują
część energii jest skupiona w dolnej części widma, to przekazują
c tę część widma
c tę część widma
dwuwstęgowo, a pozostałą jednowstęgowo wprowadzamy małe zniekszt
dwuwstęgowo, a pozostałą jednowstęgowo wprowadzamy małe zniekszt
ałcenia,
ałcenia,
zawężając jednocześnie znacznie pasmo sygnału zmodulowanego.
zawężając jednocześnie znacznie pasmo sygnału zmodulowanego.
W celu ograniczenia jednej wstęgi bocznej sygnał o modulowanej a
W celu ograniczenia jednej wstęgi bocznej sygnał o modulowanej a
mplitudzie
mplitudzie
(AM) przepuszczamy przez filtr pasmowy o transmitancji H(
(AM) przepuszczamy przez filtr pasmowy o transmitancji H(
ω
ω
)
)
(rys. 2.29).
(rys. 2.29).
Dr W.J. Krzysztofik
Dr W.J. Krzysztofik
2.3. Podstawy Telekomunikacji
2.3. Podstawy Telekomunikacji
24
24
2.4.
2.4.
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
VSB
VSB
VSB
VSB
VSB
VSB
VSB
VSB
Rys. 2.29. Tworzenie sygnału VSB
Rys. 2.29. T
Rys. 2.29. Tworzenie sygnału
VSB
VSB
•
Widmo sygnału na wyjściu ma postać
S
VSB
(
ω
) = { ½ kA
0
[ F(
ω
-
ω
0
)+ F (
ω
+
ω
0
)]+
π
A
0
[
δ
(
ω
-
ω
0
)+
δ
(
ω
+
ω
0
)]} H(
ω
)
(2.66)
•
Działanie filtru o charakterystyce H (
ω
) zilustrowano wykresami widmowymi
przedstawionymi, na rys. 2.30.
Dr W.J. Krzysztofik
Dr W.J. Krzysztofik
2.3. Podstawy Telekomunikacji
2.3. Podstawy Telekomunikacji
25
25
2.4.
2.4.
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
VSB
VSB
VSB
VSB
VSB
VSB
VSB
VSB
Rys. 2.30. Wykresy widmowe przy transmisji sygnału VSB-LSB
Rys. 2.30. Wykresy widmowe przy transmisji
Rys. 2.30. Wykresy widmowe przy transmisji sygnału
VSB
VSB
-
-
LSB
LSB
Dr W.J. Krzysztofik
Dr W.J. Krzysztofik
2.3. Podstawy Telekomunikacji
2.3. Podstawy Telekomunikacji
26
26
)
(
)]}
2
(
)
(
[
)]
2
(
)
(
[
2
{
)
(
)]}
2
(
)
(
[
)]
2
(
)
(
[
2
{
)
(
)]}
(
)
(
[
2
)]
(
)
(
[
4
{
)
(
)
(
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ω
ω
ω
ω
δ
ω
δ
ω
ω
ω
π
ω
ω
ω
ω
δ
ω
δ
ω
ω
ω
π
ω
ω
ω
δ
ω
ω
δ
π
ω
ω
ω
ω
ω
ω
+
⋅
+
+
+
+
+
+
+
−
⋅
−
+
+
−
+
+
+
⋅
+
+
−
+
+
+
−
=
∗
H
A
F
F
kA
H
A
F
F
kA
H
A
F
F
kA
Q
S
AM
2.4.
2.4.
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
VSB
VSB
VSB
VSB
VSB
VSB
VSB
VSB
)]
(
H
)
(
H
)][
(
)
(
F
2
k
[
A
)
t
(
u
0
0
0
d
ω
+
ω
+
ω
−
ω
ω
δ
+
ω
π
↔
•
Jeśli ten sygnał poddamy detekcji w detektorze liniowym, to - jak wiadomo -
jest to równoważne pomnożeniu sygnału wejściowego przez falę prostokątną q(t) o
widmie określonym zależnością (2.18).
•
Widmo sygnału po detekcji jest określone przez splot widm (2.18) i (2.66).
Ograniczając się do wyniku uzyskiwanego z uwzględnieniem tylko trzech prążków
najniższych rzędów w widmie sygnału q(t) otrzymujemy
(2.67)
•
Uwzględniając następnie działanie filtru dolnoprzepustowego
włączanego na wyjściu detektora, mamy
(2.68)
Dr W.J. Krzysztofik
Dr W.J. Krzysztofik
2.3. Podstawy Telekomunikacji
2.3. Podstawy Telekomunikacji
27
27
2.4.
2.4.
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
TRANSMISJA Z CZĘŚCIOWO OGRANICZONA
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
JEDNĄ WSTĘGĄ BOCZNĄ
VSB
VSB
VSB
VSB
VSB
VSB
VSB
VSB
•
Jak widać, w celu zapewnienia możliwości odtwarzania sygnału f(t) bez
zniekształceń,
funkcja przenoszenia filtru powinna spełniać warunek
(2.69)
•
Ponieważ widmo sygnału modulującego jest ograniczone F (
ω
)=0 dla
|ω|
>
ω
m
,
więc równanie (2.69) musi być spełnione tylko dla
|ω|
<
ω
m
.
•
Funkcje H (
ω
-
ω
0
) oraz H (
ω
+
ω
0
) reprezentują transmitancję filtru przesuniętą
odpowiednio o (+
ω
0
) i (-
ω
0
) względem
ω
= 0. Zilustrowano to na rys. 2.31b i
2.31c.
Suma tych dwóch funkcji powinna być stała dla
|ω|
<
ω
m
.
•
Można łatwo stwierdzić na podstawie rys. 2.31, że jest to możliwe tylko wówczas,
gdy opadająca część charakterystyki filtru (zbocze Nyquista) jest symetryczna
względem częstotliwości fali nośnej.
•
Ukształtowanie zbocza Nyquista może odbywać się po stronie nadawczej (rys.
2.32a)
lub odbiorczej (rys. 2.32b).
•
W praktyce zwykłe stosuje się kształtowanie zbocza Nyquista po stronie
odbiorczej.
.
const
)
(
H
)
(
H
0
0
=
ω
+
ω
+
ω
−
ω
Dr W.J. Krzysztofik
Dr W.J. Krzysztofik
2.3. Podstawy Telekomunikacji
2.3. Podstawy Telekomunikacji
28
28
2.4.
2.4.
TRANSMISJA SYGNAŁU
TRANSMISJA SYGNAŁU
TRANSMISJA SYGNAŁU
TRANSMISJA SYGNAŁU
TRANSMISJA SYGNAŁU
TRANSMISJA SYGNAŁU
TRANSMISJA SYGNAŁU
TRANSMISJA SYGNAŁU
VSB
VSB
VSB
VSB
VSB
VSB
VSB
VSB
Rys. 2.31. Optymalny kształt transmitancji filtru VSB
Rys. 2.31. Optymalny kształt transmitancji filtru
Rys. 2.31. Optymalny kształt transmitancji filtru
VSB
VSB
Rys. 2.32. Kształtowanie zbocza Nyquista:
a) w nadajniku, b) w odbiorniku
Rys. 2.32. Kształtowanie zbocza
Rys. 2.32. Kształtowanie zbocza
Nyquista
Nyquista
:
:
a) w nadajniku, b) w odbiorniku
a) w nadajniku, b) w odbiorniku
System transmisji z ograniczoną jedną wstęgą boczną
System transmisji z ograniczoną jedną wstęgą boczną
znalazł zastosowanie w telewizji programowej. Na przykład
znalazł zastosowanie w telewizji programowej. Na przykład
w systemie CCIR górna wstęga boczna (6 MHz) jest
w systemie CCIR górna wstęga boczna (6 MHz) jest
przesyłana bez tłumienia, dolna wstęga boczna natomiast
przesyłana bez tłumienia, dolna wstęga boczna natomiast
jest stłumiona począwszy od częstotliwości 0,75 MHz
jest stłumiona począwszy od częstotliwości 0,75 MHz
poniżej częstotliwości fali nośnej. W ten sposób szerokość
poniżej częstotliwości fali nośnej. W ten sposób szerokość
pasma sygnału zmodulowanego wynosi 6,75 MHz, wobec 12
pasma sygnału zmodulowanego wynosi 6,75 MHz, wobec 12
MHz jakle byłyby wymagane przy transmisji dwuwstęgowej.
MHz jakle byłyby wymagane przy transmisji dwuwstęgowej.