04 Systemy liczbowe

background image

SYSTEMY LICZBOWE

background image

SYSTEM DWÓJKOWY

•Systemem liczbowym stosowanym w technice
cyfrowej jest system dwójkowy (binarny) – system
liczbowy o podstawie 2.

•Wynika to z wcześniej zauważonej właściwości
istnienia dwóch stanów, które można interpretować
jako dwie różne cyfry.

•W systemie dwójkowym w zapisie liczb używasz
dwóch cyfr: 0 i 1.

• Kolejne cyfry w liczbie są mnożone przez kolejne
potęgi liczby 2. Znajdziesz więc tu pozycję jedynek
(2

0

), pozycję dwójek (2

1

), czwórek (2

2

), ósemek (2

3

),

itd.

background image

Wartości dziesiętne wybranych liczb

zapisanych w systemie dwójkowym:

Zapis w

systemie

dwójkowym

Wartość w

systemie

dziesiętnym

Wartość w

systemie

dziesiętnym

Zapis w systemie

dwójkowym

1 2

0

= 1

0,1

2

-1

=0,5

10 2

1

= 2

0,01

2

-2

=0,25

100 2

2

= 4

0,001

2

-3

=0,125

1000 2

3

= 8

0,0001

2

-4

=0,0625

10000 2

4

= 16

0,00001

2

-5

=0,03125

100000 2

5

= 32

0,000001

2

-6

=0,015625

1000000 2

6

= 64

0,0000001

2

-7

=0,0078125

10000000 2

7

= 128

0,00000001

2

-8

=0,00390625

100000000 2

8

= 256

0,000000001

2

-9

=0,001953125

1000000000 2

9

= 512

0,0000000001

2

-10

=0,0009765625

1000000000

0

2

10

= 1024

0,0000000000
1

2

-11

=0,00048828125

background image

W poniższej tabeli przedstawione jest działanie prowadzące do
zamiany zapisu liczby 283 z systemu dziesiętnego na system
dwójkowy:

Zamiana liczby z systemu

dziesiętnego na binarny.

background image

gdzie:

k oznacza pozycję cyfry w liczbie
(liczoną od prawej do lewej),
b

k

to cyfra z k-tej pozycji należąca

do zbioru cyfr sytemu binarnego,
b

k

є {0, 1}

Wzór ogólny liczby naturalnej

zapisanej w systemie binarnym

background image

Zamiana ułamka dziesiętnego

na binarny:

background image

SYSTEMY:

ÓSEMKOWY

I

SZESNASTKOWY

background image

SYSTEM ÓSEMKOWY

Liczby zapisywane są w pozycyjnym systemie

ósemkowym za pomocą ośmiu cyfr:

0 1 2 3 4 5 6 7

background image

Podstawą sytemu ósemkowego jest 8, czyli 2

3

.

Dzięki temu zapis liczby binarnej skracany jest

trzykrotnie.

SYSTEM ÓSEMKOWY

background image

SYSTEM ÓSEMKOWY

background image

W tym systemie mamy szesnaście cyfr:

0 1 2 3 4 5 6 7 8 9 A B C D E F

Symbolom literowym odpowiadają

wartości dziesiętne:

A - 10, B - 11, C - 12, D - 13, E - 14, F - 15

SYSTEM SZESNASTKOWY

background image

Podstawą systemu szesnastkowego jest 16,

czyli 2

4

,

co pozwala skrócić zapis binarny

czterokrotnie.

SYSTEM SZESNASTKOWY

background image

Hex – system szesnastkowy (heksadecymalny)

Dec – system dziesiątkowy (decymalny)

Oct – system ósemkowy (oktalny)

Bin – system dwójkowy (binarny)


Document Outline


Wyszukiwarka

Podobne podstrony:
prezentacja rzymski system liczbowy
04 system mikroprocesorowy i peryferia
systemy liczbowe, informatyka
systemy liczbowe
Systemy Liczbowe, systemy liczbowe1, SYSTEM BINARNY
Pozycyjne systemy liczbowe
prezentacje zaawans, systemy liczbowe LO
04 System Operacyjny
04 Typy liczbowe, zmienne, operatoryid 4873 ppt
Sprawozdanie Automatyka systemy liczbowe, SGGW Technika Rolnicza i Leśna, Automatyka
Szesnastkowy system liczbowy
04 systemy pamięci krótkotrwałejid 4865 ppt
17-09-2005 Wstęp do informatyki Systemy Liczbowe, Systemy Liczbowe
systemy liczbowe 4
Tabela (Systemy Liczbowe)
Dwójkowy system liczbowy

więcej podobnych podstron