Rozkłady zmiennych losowych skokowych |
|
|
|
|
|
|
|
|
|
|
|
|
Zadanie 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n |
7 |
|
xi |
P(X=Xi)=pi |
P(X<xi)=F(xi) |
|
|
p |
0,2 |
|
0 |
0,20971520 |
0,20971520 |
|
|
q |
0,8 |
|
1 |
0,36700160 |
zaoczne:
odp: b
0,57671680 |
|
|
|
|
|
2 |
0,27525120 |
0,85196800 |
|
|
|
|
|
3 |
0,11468800 |
0,96665600 |
|
|
E(X)=np. |
zaoczne:
d
1,4 |
|
4 |
zaoczne:
odp:a
0,02867200 |
0,99532800 |
|
|
D2(x)=npq |
zaoczne:
e
1,12 |
|
5 |
0,00430080 |
0,99962880 |
|
|
D(X)=sqrt(npq) |
zaoczne:
odchylenie standardowe
1,05830052442584 |
|
6 |
zaoczne:
odp:c
0,00035840 |
0,99998720 |
|
|
|
|
|
7 |
0,00001280 |
1,00000000 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zadanie 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n |
40 |
|
xi |
P(X=Xi)=pi |
P(X<xi)=F(xi) |
|
|
p |
0,02 |
|
0 |
0,44932896412 |
0,44932896412 |
|
|
q |
0,98 |
|
1 |
0,35946317129 |
0,80879213541 |
|
|
|
|
|
2 |
0,14378526852 |
0,95257740393 |
|
|
l |
0,8 |
|
3 |
zaoczne:
a
0,03834273827 |
zaoczne:
c
0,99092014220 |
|
|
D(X) |
0,894427190999916 |
|
4 |
0,00766854765 |
0,99858868985 |
|
zaoczne:
b P(3)+P(4)
0,046011285925604 |
|
|
|
5 |
0,00122696762 |
0,99981565748 |
|
zaoczne:
b F(4)-F(2)
0,046011285925604 |
|
|
|
6 |
0,00016359568 |
0,99997925316 |
|
|
|
|
|
7 |
0,00001869665 |
0,99999794981 |
|
|
|
|
|
8 |
0,00000186966 |
0,99999981948 |
|
|
|
|
|
9 |
0,00000016619 |
0,99999998567 |
|
|
|
|
|
10 |
0,00000001330 |
0,99999999896 |
|
|
|
|
|
11 |
0,00000000097 |
0,99999999993 |
|
|
|
|
|
12 |
0,00000000006 |
1,00000000000 |
|
|
|
|
|
13 |
0,00000000000 |
1,00000000000 |
|
|
|
|
|
14 |
0,00000000000 |
1,00000000000 |
|
|
|
|
|
15 |
0,00000000000 |
1,00000000000 |
|
|
|
|
|
16 |
0,00000000000 |
1,00000000000 |
|
|
|
|
|
17 |
0,00000000000 |
1,00000000000 |
|
|
|
|
|
18 |
0,00000000000 |
1,00000000000 |
|
|
|
|
|
19 |
0,00000000000 |
1,00000000000 |
|
|
|
|
|
20 |
0,00000000000 |
1,00000000000 |
|
|
|
|
|
21 |
0,00000000000 |
1,00000000000 |
|
|
|
|
|
22 |
0,00000000000 |
1,00000000000 |
|
|
|
|
|
23 |
0,00000000000 |
1,00000000000 |
|
|
|
|
|
24 |
0,00000000000 |
1,00000000000 |
|
|
|
|
|
25 |
0,00000000000 |
1,00000000000 |
|
|
|
|
|
26 |
0,00000000000 |
1,00000000000 |
|
|
|
|
|
27 |
0,00000000000 |
1,00000000000 |
|
|
|
|
|
28 |
0,00000000000 |
1,00000000000 |
|
|
|
|
|
29 |
0,00000000000 |
1,00000000000 |
|
|
|
|
|
30 |
0,00000000000 |
1,00000000000 |
|
|
|
|
|
31 |
0,00000000000 |
1,00000000000 |
|
|
|
|
|
32 |
0,00000000000 |
1,00000000000 |
|
|
|
|
|
33 |
0,00000000000 |
1,00000000000 |
|
|
|
|
|
34 |
0,00000000000 |
1,00000000000 |
|
|
|
|
|
35 |
0,00000000000 |
1,00000000000 |
|
|
|
|
|
36 |
0,00000000000 |
1,00000000000 |
|
|
|
|
|
37 |
0,00000000000 |
1,00000000000 |
|
|
|
|
|
38 |
0,00000000000 |
1,00000000000 |
|
|
|
|
|
39 |
0,00000000000 |
1,00000000000 |
|
|
|
|
|
40 |
0,00000000000 |
1,00000000000 |
|
|
|
Parametr Q |
|
E(X) |
|
|
|
|
|
|
|
|
|
Prawdopodobieństwo 0,95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
n |
x śr |
D(X) |
S(x) |
T |
D(T) |
1-alfa |
alfa |
alfa/2 |
p |
minus_u_alfa |
|
|
121 |
10 |
nieznane |
5 |
10 |
0,454545454545455 |
0,95 |
0,05 |
0,025 |
0,41 |
-1,95996398454005 |
|
pierw |
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Granica górna |
|
Granica dolna |
|
|
|
|
|
|
|
|
|
P= |
10,8908927202455 |
Q |
9,10910727975452 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Odp: |
Z prawdopodobieństwem 0,95 możemy twierdzić, iż średni staz pracy w firmie F waha się w granicach 9,11 dp 10,89 lat. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Prawdopodobieństwo 0.99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
Parametr Q |
|
E(X) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n |
x śr |
D(X) |
S(x) |
T |
D(T) |
1-alfa |
alfa |
alfa/2 |
p |
minus_u_alfa |
|
|
121 |
10 |
nieznane |
5 |
10 |
0,454545454545455 |
0,99 |
0,01 |
0,005 |
0,41 |
-2,5758293035489 |
|
pierw |
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Granica górna |
|
Granica dolna |
|
|
|
|
|
|
|
|
|
P= |
11,1708315016131 |
Q |
8,82916849838686 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Odp: |
Z prawdopodobieństwem 0,99 możemy twierdzić, iż średni staz pracy w firmie F waha się w granicach 8,83 dp 11,17 lat. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Prawdopodobieństwo 0.9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
Parametr Q |
|
E(X) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n |
x śr |
D(X) |
S(x) |
T |
D(T) |
1-alfa |
alfa |
alfa/2 |
p |
minus_u_alfa |
|
|
121 |
10 |
nieznane |
5 |
10 |
0,454545454545455 |
0,9 |
0,1 |
0,05 |
0,41 |
-1,64485362695147 |
|
pierw |
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Granica górna |
|
Granica dolna |
|
|
|
|
|
|
|
|
|
P= |
10,7476607395234 |
Q |
9,2523392604766 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Odp: |
Z prawdopodobieństwem 0,9 możemy twierdzić, iż średni staz pracy w firmie F waha się w granicach 9,25 do 10,74 lat. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Parametr Q |
|
D(X) |
|
|
|
|
|
|
|
|
|
Prawdopodobieństwo 0,95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
n |
x śr |
D(X) |
S(x) |
T |
D(T) |
1-alfa |
alfa |
alfa/2 |
p |
minus_u_alfa |
|
|
121 |
10 |
nieznane |
5 |
5 |
0,321412173266612 |
0,95 |
0,05 |
0,025 |
0,41 |
-1,95996398454005 |
|
pierw z 2n |
15,556349186104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Granica górna |
|
Granica dolna |
|
|
|
|
|
|
|
|
|
P= |
5,62995628379531 |
Q |
4,37004371620469 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Odp: |
Z prawdopodobieństwem 0,95 możemy twierdzić, iż przecietne zróżnicowanie (odchylenie standardowe) stazu pracy w firmie F waha się w granicach 4,37 dp 5,62 lat. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Parametr Q |
|
D(X) |
|
|
|
|
|
|
|
|
|
Prawdopodobieństwo 0,95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
n |
x śr |
D(X) |
S(x) |
T |
D(T) |
1-alfa |
alfa |
alfa/2 |
p |
minus_u_alfa |
|
|
121 |
10 |
nieznane |
5 |
5 |
0,321412173266612 |
0,99 |
0,01 |
0,005 |
0,41 |
-2,5758293035489 |
|
pierw z 2n |
15,556349186104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Granica górna |
|
Granica dolna |
|
|
|
|
|
|
|
|
|
P= |
5,82790289441748 |
Q |
4,17209710558252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Odp: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Parametr Q |
|
D(X) |
|
|
|
|
|
|
|
|
|
Prawdopodobieństwo 0,95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
n |
x śr |
D(X) |
S(x) |
T |
D(T) |
1-alfa |
alfa |
alfa/2 |
p |
minus_u_alfa |
|
|
121 |
10 |
nieznane |
5 |
5 |
0,321412173266612 |
0,9 |
0,1 |
0,05 |
0,41 |
-1,64485362695147 |
|
pierw z 2n |
15,556349186104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Granica górna |
|
Granica dolna |
|
|
|
|
|
|
|
|
|
P= |
5,52867597894394 |
Q |
4,47132402105606 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Odp: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Parametr Q |
|
p |
|
|
|
|
|
|
|
|
|
Prawdopodobieństwo 0,95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
n |
x śr |
D(X) |
S(x) |
T |
D(T) |
1-alfa |
alfa |
alfa/2 |
p |
minus_u_alfa |
|
|
121 |
10 |
nieznane |
5 |
0,413223140495868 |
0,044764745634159 |
0,95 |
0,05 |
0,025 |
0,41 |
-1,95996398454005 |
|
pierw z 2n |
15,556349186104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Granica górna |
|
Granica dolna |
|
|
|
|
|
|
|
|
|
P= |
0,500960429715915 |
Q |
0,325485851275821 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Odp: |
Z prawdopodobieństwem 0,95 możemy twierdzić, iż udział pracowników ze stażem powyżej 10 w firmie F waha się w granicach 0,33 dp 0,50 lat. |
|
|
|
|
|
|
|
|
|
|
|