Zad. 1 |
|
|
|
|
|
|
|
|
|
|
|
Rzucamy dwukrotnie monetą. Jakie jest prawdopodobieństwo wyrzucenia orła? |
|
|
|
|
|
|
Wyniki przedstaw w postaci histogramu. |
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zad. 2 |
|
|
|
|
|
|
|
|
|
|
|
Siła kiełkowania pewnego gatunku ziarna łubinu wynosi 0,98. Dla celów doświadczalnych wybieramy 10 ziaren. |
|
|
|
|
|
|
|
|
|
|
|
Obliczyć prawdopodobieństwo, że wykiełkuje 8 ziaren. |
|
|
|
|
Wyniki przedstaw w postaci histogramu. |
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
|
5 |
|
|
|
|
|
|
|
|
|
|
|
6 |
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
zad. 3 |
|
|
|
|
|
|
|
|
|
|
|
Obliczyć prawdopodobieństwo, że w wyniku 4 rzutów kostką do gry otrzymamy jedynkę. |
|
|
|
|
|
|
|
Wyniki przedstaw w postaci histogramu. |
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zad. 4 |
|
|
|
|
|
|
|
|
|
|
|
Kostka do gry – wyrzucamy jednocześnie 3 kostki do gry. Jakie jest prawdopodobieństwo uzyskania „szóstki”. |
|
|
|
|
|
|
|
|
|
Wyniki przedstaw w postaci histogramu. |
|
k |
p |
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zad.5 |
|
|
|
|
|
|
|
|
|
|
|
W pewnej zimowej populacji gawronów znana jest proporcja samic i wynosi ona p=0,5. |
|
|
|
|
|
|
|
|
|
|
|
Jak ocenić prawdopodobieństwo, że odławiając 10 gawronów i badając ich płeć otrzymamy dokładnie 0,1,2,3,4...10 samic? |
|
|
|
|
|
|
|
|
|
|
Wyniki przedstaw w postaci histogramu. |
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
|
5 |
|
|
|
|
|
|
|
|
|
|
|
6 |
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zad. 6 |
|
|
|
|
|
|
|
|
|
|
|
Dysponujemy zbiorem 10 tysięcy nasion fasoli o średniej długości 20mm |
|
|
|
|
|
|
|
|
|
|
|
i odchyleniu standardowym d = 2,50 mm. Załóżmy, że rozkład długości tych nasion jest zgodny z rozkładem normalnym. |
|
|
|
|
|
|
|
|
|
|
|
a. Jak wiele nasion powinno mieć długość mniejszą niż 23,2 mm? |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Z |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b. Jaka jest proporcja nasion większych od 23,2 mm? |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
c. Jaka część nasion mieści się w granicach od 18 mm do 19 mm? |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
|
|
|
|
|
|
|
|
|
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18-19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zad. 7 |
|
|
|
|
|
|
|
|
|
|
|
Załóżmy, że długość piór ogonowych pawia wynosi średnio 65 cm, z odchyleniem standardowym 5 cm, zaś rozkład ich długości jest normalny. |
|
|
|
|
|
|
|
|
|
|
|
Oszacuj jakie jest prawdopodobieństwo, że losowo wyrwane pióro ma: |
|
|
|
|
|
|
|
|
|
|
|
a. długość mniejszą niż 54 cm |
|
|
|
|
|
|
|
|
|
|
|
b. Większą niż 64 cm |
|
|
|
|
|
|
|
|
|
|
|
c. Między 70-75 cm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a. |
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b. |
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
c. |
70 |
|
|
|
|
|
|
|
|
|
|
|
75 |
|
|
|
|
|
|
|
|
|
|