ćwiczenie nr 7 ICH doc


POLITECHNIKA POZNAŃSKA

Wydział Technologii Chemicznej

Instytut Technologii i Inżynierii Chemicznej

Zakład Inżynierii i Aparatury Chemicznej

Rok akademicki

2003/04

Rok studiów

III

Nr ćwiczenia 7

Data oddania 06.05.2004

Wykonał

Sprawdził

Zwrot

Ocena

Sopel Piotr Błażej Skóra

mgr D.Dulska

TEMAT ĆWICZENIA

Badanie spływu grawitacyjnego filmu cieczy po ścianie płaskiej.

UWAGI

Wstęp teoretyczny.

Jednym z typów aparatów absorpcyjnych są aparaty o zraszanych ścianach, rurkowe lub płaskorównoległe, przydatne szczególnie wtedy, gdy procesowi wymiany masy towarzyszy efekt cieplny.

Gładka powierzchnia swobodna filmu cieczy występuje jedynie w ograniczonym zakresie wartości natężenia zraszania powierzchni Γ i liczb Reynoldsa Ree, albowiem już dla niewielkich wartości liczb Reynoldsa pojawiają się długie fale sinusoidalne.

Optymalne jednostkowe natężenie zraszania powierzchni ograniczone jest dwoma wartościami Γmin< Γ < Γmax przy czym Γmin oznacza wartość, poniżej której praktycznie przestaje się tworzyć równomierna warstwa spływającej cieczy, przez co część powierzchni ściany nie jest zraszana, natomiast Γmax opisuje wartość, powyżej której następuje zbyt silne odpryskiwanie cieczy, wskutek czego znaczna jej ilość omija powierzchnie ściany. Podstawę wyznaczania minimum zraszania powierzchni stanowi tzw. Energetyczna teoria Hoblera, który założył, że w przypadku spływu filmowego bez jednoczesnej wymiany ciepła lub masy między zwierciadłem cieczy a otoczeniem na układ nie wpływają energie chemiczna i cieplna jako nie związane z przepływem oraz energia potencjalna, która zużywa się na tarcie. Energia całkowita układu jest więc sumą energii kinetycznej i energii pochodzącej od napięć powierzchniowych.

W wyniku przeprowadzonych rozważań Hobler uzyskał wzór na całkowitą energię właściwą układu:

0x01 graphic

Parametry geometryczne powierzchni:

-szerokość L=O=0,214[m]

-długość H=1,2[m]

powierzchnia F=0,2568[m2]

kąt nachylenia Θ0=17,74°

Parametry fizykochemiczne:

-dynamiczny współczynnik lepkości η=8,0145*10-4[Pa*s]

-gęstość cieczy ρ=995,5[kg/m3]

-zastępczy wymiar liniowy δe=40,41*10-6

Lp.

Temperatura

Natężenie przepływu cieczy

Natężenie zraszania powierzchni

Objętość cieczy na płycie

Średnia grubość filmu cieczy

Ree

sr

[K]

[m3/s]

[kg/m*s]

[m3]

[m]

[-]

[-]

1.

300

4,16667E-05

0,193847352

0,000145

0,000564642

968,0267

4,25751892

2.

300

8,33333E-05

0,387694704

0,000217

0,000845016

1936,053

6,371597281

3.

300

0,000125

0,581542056

0,000278

0,001082555

2904,08

8,162691447

4.

300

0,000166667

0,775389408

0,00033

0,001285047

3872,107

9,689525818

Parametry geometryczne powierzchni

-szerokość L=O=0,214[m]

-długość H=1,2[m]

powierzchnia F=0,2568[m2]

kąt nachylenia Θ0=24,7°

Parametry fizykochemiczne:

-dynamiczny współczynnik lepkości η=8,0145*10-4[Pa*s]

-gęstość cieczy ρ=995,5[kg/m3]

-zastępczy wymiar liniowy δe=40,41*10-6

Lp.

Temperatura

Natężenie przepływu cieczy

Natężenie zraszania powierzchni

Objętość cieczy na płycie

Średnia grubość filmu cieczy

Ree

sr

[K]

[m3/s]

[kg/m*s]

[m3]

[m]

[-]

[-]

1.

300

4,16667E-05

0,193847352

0,000145

0,000564642

967,4832

5,839

2.

300

8,33333E-05

0,387694704

0,000217

0,000845016

1934,966

8,739

3.

300

0,000125

0,581542056

0,000278

0,001082555

2902,45

11,195

4.

300

0,000166667

0,775389408

0,00033

0,001285047

3869,933

13,289

Natężenie zraszania powierzchni Γ wyznaczamy z zależności:

4Γ/η=4√*ρ/O*η

Średnią grubość filmu cieczy s obliczamy ze wzoru:

s=V/F

Wartość zmodyfikowanej dla spływu filmowego cieczy liczby Reynoldsa wyznaczamy ze wzoru:

Ree=4Γ/η

Kąt nachylenia powierzchni spływu Θ0 wyznaczamy z funkcji trygonometrycznej (tgα), a następnie odczytujemy wartość kąta z tablic.

Zredukowaną grubość warstwy sr obliczamy ze wzoru:

sr = s / δe * (sinΘ0) 1/3

Na podstawie uzyskanych wykresów zależność:

sr = c * ReeA

przyjmuje postać:

- dla kąta nachylenia 17,74°

sr = 0,0019 * Ree2,5986

- dla kąta nachylenia 24,7°

sr = 0,002 * Ree3,0606

Wnioski:

Wraz ze wzrostem natężenia przepływu cieczy wzrasta natężenie zraszania powierzchni oraz objętość cieczy na płycie. W związku z tym pozostałe wartości, takie jak średnia grubość cieczy, liczba Reynoldsa oraz zredukowana grubość warstwy, również wzrastają.

Analizując wyniki dla kąta nachylenia Θ=17,74° i Θ=24,7° można stwierdzić, że im większy kąt nachylenia tym objętość cieczy na płycie jest większa.



Wyszukiwarka

Podobne podstrony:
instrukcja do ćwiczeń nr 11 doc
Ćwiczenia nr 15 doc
Ćwiczenie nr 2 Grzesiu doc
Ćwiczenie nr 3 obliczenia doc
Sprawozdanie do ćwiczenia nr 210 doc
ćwiczenie nr 7 ICH
Sprawozdanie do ćwiczenia nr 401 doc
Ćwiczenie nr 46 doc
Ćwiczenia nr 18 doc
Ćwiczenia nr 13 doc
Ćwiczenie nr 5 grzesiu doc
Ćwiczenie nr 9 (zak) doc
Ćwiczenie nr 8 (zak) doc
Cwiczenie nr 30 doc
Cwiczenie nr 12 Koloidy i ich wlasciwosci
Ćwiczenia nr 6 (1) doc
Ćwiczenie nr 43 cd doc
Ćwiczenia nr 1 doc

więcej podobnych podstron