WOJSKOWA AKADEMIA TECHNICZNA
LABORATORIUM FIZYCZNE
Sprawozdanie z Pracy Laboratoryjnej nr 15
Temat pracy: Pomiar siły elektromotorycznej ogniwa
i charakterystyki jego pracy
I. Wstęp teoretyczny
Siła elektromotoryczna jest siłą wprawiającą w ruch uporządkowany nośniki ładunku - elektrony (w metalach) i jony (w elektrolitach). Przyczyną powstawania siły elektromotorycznej mogą być:
procesy chemiczne - w ogniwach i akumulatorach;
procesy elektromagnetyczne - w prądnicach prądu stałego i zmiennego;
procesy termoelektryczne - w termoogniwach lub termometrach;
procesy fotoelektryczne - fotoogniwach.
Zależność natężenia prądu płynącego w obwodzie ogniwa i rezystora o rezystancji RZ od siły elektromotorycznej E wyrażona jest prawo Ohma dla odwodu zamkniętego
E = I RZ + I RW = U + I RW. (1)
Składnik U = I RZ wyraża spadek napięcia na rezystancji zewnętrznej. Jest ono nazywane napięciem na biegunach źródła prądu, albo krótko napięciem źródła. Składnik I RW wyraża spadek napięcia na rezystancji RW.
Każde źródło prądu ma dwie wielkości charakterystyczne (stałe dla danego źródła): siłę elektromotoryczną E i rezystancję wewnętrzną RW.
Z równania (1) wynika, że przy obciążeniu źródła (tzn. przy poborze prądu) napięcie na rezystancji wewnętrznej rośnie wraz ze wzrostem obciążenia, natomiast napięcie na jego biegunach staje się mniejsze od siły elektromotorycznej E i to tym bardziej, im silniej obciążone jest źródło prądu.
U = I RZ < E
To zmniejszanie się napięcia na biegunach źródła wskutek jego obciążenia coraz silniejszym prądem nazywamy charakterystyką pracy źródła.
Jedną z najprostszych metod określenia siły elektromotorycznej jest metoda kompensacyjna, polegająca na porównaniu mierzonego napięcia UX lub siły elektromotorycznej EX z wartością wzorcową napięcia UW lub siły elektromotorycznej EW na podstawie przepływu prądu przez źródło tych napięć UN lub siłę elektromotoryczną EN. Wówczas I = 0, czyli IRW=0 więc nie ma spadku napięć na rezystancji wewnętrznej źródła. Źródło napięć badanego i wzorcowego są połączone przeciwstawnie, a jako wskaźnik prądu służy czuły galwanometr G.
Cel ćwiczenia:
Celem ćwiczenia jest pomiar siły elektromotorycznej ogniwa oraz dokonanie charakterystyki jego pracy.
II. Opracowanie wyników pomiarów
Tabela pomiarowa:
Lp. |
U [mV] |
Lp. |
I [mA] |
U [mV] |
Rw[Ω] |
Pz [mW] |
PRw [μW] |
1. |
913,77 |
1. |
0,5 |
910,51 |
34,90 |
2,28 |
8,72 |
2. |
913,75 |
2. |
1,0 |
908,38 |
28,10 |
4,54 |
28,10 |
3. |
913,73 |
3. |
1,5 |
906,66 |
24,47 |
6,80 |
55,05 |
4. |
913,76 |
4. |
2,0 |
905,27 |
21,82 |
9,05 |
87,30 |
5. |
913,71 |
5. |
2,5 |
904,02 |
19,96 |
11,30 |
124,75 |
6. |
913,71 |
|
|
|
|
|
|
7. |
913,70 |
|
|
|
|
|
|
8. |
913,70 |
|
|
|
|
|
|
9. |
913,69 |
|
|
|
|
|
|
10. |
913,69 |
|
|
|
|
|
|
1. Obliczenia (Otrzymane wyniki należy pomnożyć przez 5)
SIŁA ELEKTROMOTORYCZNA ŹRÓDŁA
1.1 Obliczenie średniej arytmetycznej Eśr.
1.2 Obliczenie średniego błędu kwadratowego .
CHARAKTERYSTYKA PRACY ŹRÓDŁA
1.3 Wykres zależności mierzonego napięcia U od natężenia I czerpanego ze źródła prądu.
(Załącznik nr 1)
1.4 Obliczenie rezystancji wewnętrznej.
Wynik zamieszczony w tabeli pomiarowej.
1.5 Obliczenie dla wszystkich punktów pomiarowych moc czerpaną ze źródła Pz = U I
oraz moc PRw wydzieloną na rezystancji wewnętrznej źródła PRw = (EŚr - U) I
Wynik zamieszczony w tabeli pomiarowej.
1.6 Wykres na jednym arkuszu zależności Pz i PRw od I (Załącznik nr 2)
1.7 Porównanie wartości z wykresu z wynikiem teoretycznym.
Lp. |
PZ [mW] |
PRw [μW] |
1. |
2,28 |
8,72 |
2. |
4,54 |
28,10 |
3. |
6,80 |
55,05 |
4. |
9,05 |
87,30 |
5. |
11,30 |
124,75 |
III. Wnioski
Wartość siły elektromotorycznej wyznaczona przez nas wynosi:
Przy pobieraniu coraz większego prądu wartość siły elektromotorycznej zaczyna maleć. ( Na podstawie wykresu zależności napięcia U od natężenia I).
Wzrost prądu powoduję także wzrost mocy. Moc czerpana ze źródła jest znacznie większa od mocy wydzielonej na rezystancji wewnętrznej źródła. (Na podstawie wykresów zależności mocy od prądu).
Obecność błędów przypadkowych powoduje niedokładność pomiarów, ale wyznaczenie wartości średniej oraz średniego błędu kwadratowego pozwoliło nam na bardziej dokładne obliczenia.
Na dokładność również wpływa ustawienie temperatury otoczenia oraz właściwego prądu.