Całki Tabele 2 2

background image

1

Wzor

y

p

o

ds

ta

w

o

w

e

1.

R

0

d

x

=

C

2.

R

d

x

=

x

+

C

3.

R

xd

x

=

1

2

x

2

+

C

4.

R

x

n

d

x

=

1

n

+1

x

n

+1

+

C

,

d

la

n

6=

1

5.

R

1

x

d

x

=

ln

|x

|

+

C

6.

R

f

(x

)

f

(x

)

d

x

=

ln

|f

(x

)|

+

C

7.

R

1

x

2

d

x

=

1

x

+

C

8.

R

xd

x

=

2

3

x

x

9.

R

1

x

d

x

=

2

x

+

C

10.

R

f

(x

)

f

(x

)

d

x

=

2

q

f

(x

)

+

C

11.

R

d

x

1−

x

2

=

ar

csi

n

x

+

C

12.

R

si

n

xd

x

=

co

s

x

+

C

13.

R

1

si

n

h

xd

x

=

2

co

sh

x

+

C

14.

R

co

s

xd

x

=

si

n

x

+

C

15.

R

co

sh

xd

x

=

si

n

h

x

+

C

16.

R

1

sin

2

x

d

x

=

3

co

t

x

+

C

17.

R

1

sin

h

2

x

d

x

=

4

co

th

x

+

C

18.

R

1

cos

2

x

d

x

=

ta

n

x

+

C

19.

R

1

cos

h

2

x

d

x

=

5

tan

h

x

+

C

20.

R

e

x

d

x

=

e

x

+

C

1

sin

h

x

=

e

x

e

x

2

,

jest

to

si

n

u

s

hip

erb

o

liczy

2

cos

h

x

=

e

x

+

e

x

2

,

jest

to

cosin

us

hip

erb

olic

zy

3

co

t

x

ozn

acza

cot

ange

ns

4

co

t

x

=

cos

h

x

s

in

h

x

,

jest

to

cotan

gens

hip

erb

oli

czy

5

tan

h

x

=

s

in

h

x

cos

h

x

,

jest

to

tange

ns

hi

p

erb

olicz

y

2

21.

R

m

x

d

x

=

m

x

ln

m

+

C

,

d

la

m

>

0

i

m

6=

1

22.

R

ln

xd

x

=

x

ln

x

x

+

C

23.

R

arc

ta

n

xd

x

=

x

arc

ta

n

x

ln

x

2

+

1

3

background image

2

Ca

łk

o

w

a

nie

funk

cj

i

w

ie

lo

mi

a

no

wy

c

h

1.

R

0

d

x

=

C

2.

R

d

x

=

x

+

C

3.

R

xd

x

=

1

2

x

2

+

C

4.

R

(ax

+

b)

d

x

=

a

2

x

2

+

bx

+

C

5.

R

x

n

d

x

=

1

n

+1

x

n

+1

+

C

,

d

la

n

6=

1

6.

R

(ax

+

b)

n

d

x

=

1

a

(n

+1

)

(ax

+

b)

n

+1

+

C

,

d

la

a

6=

0

i

n

6=

1

7.

R

(a

n

x

n

+

a

n−

1

x

n−

1

+

..

.+

a

1

x

+

a

0

)d

x

=

a

n

n

+1

x

n

+1

+

a

n

1

n

x

n

+

..

.+

a

1

2

x

2

+

a

0

x

+

C

4

3

Ca

łk

o

w

a

nie

funk

cj

i

w

y

mi

ern

y

c

h

1.

R

1

x

d

x

=

ln

|x

|

+

C

2.

R

1

x

2

d

x

=

1

x

+

C

3.

R

d

x

1+

x

2

=

ar

ct

an

x

+

C

4.

R

d

x

(1+

x

2

)

n

=

x

2(

n−

1)

(1+

x

2

)

n

1

+

2

n−

3

2

n−

2

R

d

x

(1+

x

2

)

n

1

,

d

la

n

6=

1

5.

R

d

x

1+

(ax

+

b)

2

=

1

a

arc

ta

n

(ax

+

b)

+

C

,

d

la

a

6=

0

6.

R

d

x

a

2

+

x

2

=

1

a

arc

ta

n

x

a

+

C

,

d

la

a

6=

0

7.

R

d

x

b+(

x−

a

)

2

=

1

b

arc

ta

n

x−

a

b

+

C

,

d

la

b

>

0

8.

R

d

x

a

2

x

2

=

1

2

a

ln

|

a

+

x

a−

x

|

+

C

,

d

la

a

>

0

i|

x|

6=

0

9.

R

1

ax

+

b

d

x

=

1

a

ln

|ax

+

b|

+

C

,

d

la

a

6=

0

10.

R

1

(ax

+

b)

2

d

x

=

1

a

(ax

+

b)

+

C

11.

R

1

(ax

+

b)

n

=

1

a

(1

n

)(

ax

+

b)

n

1

+

C

,

d

la

n

6=

1

12.

R

A

x

+

B

ax

+

b

d

x

=

A

a

x

+

aB

A

b

a

2

ln

|ax

+

b|

+

C

,

d

la

a

6=

0

13.

R

d

x

ax

2

+

bx

+

c

=

1

a

q

4

a

2

arc

ta

n

x

+

b

2

a

q

4

a

2

+

C

,

d

la

a

6=

0

or

az

<

0

14.

R

d

x

ax

2

+

bx

+

c

=

1

ln

|

x

+

b−

2

a

x

+

b

+

2

a

|

+

C

,

d

la

a

6=

0

or

az

>

0

15.

R

d

x

ax

2

+

bx

+

c

=

1

ax

+

b

2

+

C

,

d

la

a

6=

0

or

az

=

0

16.

R

d

x

b+

x

2

=

1

b

arc

ta

n

x

b

+

C

,

d

la

b

>

0

17.

R

A

x

+

B

ax

2

+

bx

+

c

d

x

=

A

2

a

ln

|ax

2

+

bx

+

c|

+

2

aB

A

b

a

arc

ta

n

x

+

b

2

a

q

4

a

2

+

C

,

d

la

a

6=

0

or

az

<

0

18.

R

A

x

+

B

ax

2

+

bx

+

c

d

x

=

A

2

a

ln

|ax

2

+

bx

+

c|

+

2

aB

A

b

2

a

ln

|

x

+

b−

2

a

x

+

b

+

2

a

|+

C

,

d

la

a

6=

0

or

az

>

0

5

background image

19.

R

A

x

+

B

ax

2

+

bx

+

c

d

x

=

A

2

a

ln

|ax

2

+

bx

+

c|

+

2

aB

A

b

2

a

(−

1

ax

+

b

2

)

+

C

,

d

la

a

6=

0

or

az

=

0

20.

R

A

x

+

B

(ax

2

+

bx

+

c)

n

d

x

=

A

2

a

(1

n

)(

ax

2

+

bx

+

c)

n

1

+

2

aB

bA

2

a

n

+1

(

4

a

2

)

n

1

2

R

d

t

(1+

t

2

)

n

,d

la

a

6=

0,

n

6=

1,

<

0

ora

z

t

=

x

+

b

2

a

q

4

a

2

21.

R

A

x

2

+

B

x

+

C

ax

2

+

bx

+

c

d

x

=

A

a

x

+

B

b

A

a

2

a

ln

|ax

2

+

bx

+

c|

+

2

a

(C

cA

a

)−

(B

b

A

a

)b

a

arc

ta

n

x

+

b

2

a

q

4

a

2

+

C

,

d

la

a

6=

0

or

az

<

0

22.

R

A

x

2

+

B

x

+

C

ax

2

+

bx

+

c

d

x

=

A

a

x

+

B

b

A

a

2

a

ln

|ax

2

+

bx

+

c|

+

2

a

(C

cA

a

)−

(B

b

A

a

)b

2

a

ln

|

x

+

b−

2

a

x

+

b

+

2

a

|+

C

,

d

la

a

6=

0

or

az

>

0

23.

R

A

x

2

+

B

x

+

C

ax

2

+

bx

+

c

d

x

=

A

a

x

+

B

b

A

a

2

a

ln

|ax

2

+

bx

+

c|

+

2

a

(C

cA

a

)−

(B

b

A

a

)b

2

a

(−

1

ax

+

b

2

)+

C

,

d

la

a

6=

0

or

az

=

0

24.

R

d

x

(x

a

)(

x−

b)(

x−

c)

=

1

(a

b)(

a−

c)

ln

|x

a|

+

1

(b

a

)(

b−

c)

ln

|x

b|

+

1

(c

a

)(

c−

b)

ln

|x

c|

+

C

,

d

la

a

6=

b

6=

c

25.

R

A

x

+

B

(x

a

)(

x−

b)(

x−

c)

d

x

=

A

a

+

B

(a

b)(

a−

c)

ln

|x

a|

+

A

b+

B

(b

a

)(

b−

c)

ln

|x

b|

+

A

c+

B

(c

a

)(

c−

b)

ln

|x

c|

+

C

,

d

la

a

6=

b

6=

c

6

4

Ca

łk

o

w

a

nie

funk

cj

i

ni

ew

ym

ie

rn

y

c

h

1.

R

xd

x

=

2

3

x

x

2.

R

ax

+

bd

x

=

2

3

a

(ax

+

b)

q

(ax

+

b)

,

d

la

a

6=

0

3.

R

1

x

d

x

=

2

x

+

C

4.

R

1

(ax

+

b)

d

x

=

2

ax

+

b

a

+

C

,

d

la

a

6=

0

5.

R

d

x

1−

x

2

=

ar

csi

n

x

+

C

6.

R

d

x

1−

(ax

+

b)

2

=

1

a

arc

si

n

(ax

+

b)

+

C

,

d

la

a

6=

0

7.

R

d

x

a

2

x

2

=

ar

csi

n

x

a

+

C

,

d

la

a

>

0

8.

R

d

x

x

2

a

2

=

ln

|x

+

x

2

a

2

|

+

C

,

d

la

a

6=

0

9.

R

d

x

1+

x

2

=

ln

(x

+

x

2

+

1)

+

C

10.

R

d

x

1+

(ax

+

b)

2

=

1

a

ln

((

ax

+

b)

+

q

(ax

+

b)

2

+

1)

+

C

,

d

la

a

6=

0

11.

R

d

x

x

2

1

=

ln

|x

+

x

2

1|

+

C

,

d

la

|x

|

>

1

12.

R

d

x

(ax

+

b)

2

1

=

1

a

ln

|(

ax

+

b)

+

q

(ax

+

b)

2

1|

+

C

,

d

la

|ax

+

b|

>

1

i

a

6=

0

13.

R

d

x

x

2

+

bx

+

c

=

ln

|x

+

1

2

b

+

x

2

+

bx

+

c|

+

C

,

d

la

6

<

0

14.

R

d

x

ax

2

+

bx

+

c

=

1

a

arc

si

n

ax

b

2

a

q

4

a

+

C

,

d

la

a

<

0,

or

az

>

0

15.

R

d

x

ax

2

+

bx

+

c

=

1

a

ln

|

ax

+

b

2

a

+

ax

2

+

bx

+

c|

+

C

,

d

la

a

>

0

i

<

0

16.

R

A

x

+

B

ax

2

+

bx

+

c

d

x

=

A

a

ax

2

+

bx

+

c+

2

aB

A

b

2

a

a

ln

|

ax

+

b

2

a

+

ax

2

+

bx

+

c|

+

C

,

d

la

a

>

0

i

<

0

17.

R

A

x

+

B

ax

2

+

bx

+

c

d

x

=

A

a

ax

2

+

bx

+

c

+

2

aB

A

b

2

a

a

arc

si

n

ax

b

2

a

q

4

a

+

C

,

d

la

a

<

0,

ora

z

>

0

6

=

b

2

4

ac

oz

nacz

a

de

lt

wn

ania

kw

a

drato

w

eg

o

7

background image

5

Ca

łk

o

w

a

nie

funk

cj

i

try

g

ono

met

ry

czn

y

c

h

1.

R

si

n

xd

x

=

co

s

x

+

C

2.

R

si

n

(ax

+

b)

d

x

=

1

a

co

s

(ax

+

b)

+

C

,

d

la

a

6=

0

3.

R

co

s

xd

x

=

si

n

x

+

C

4.

R

co

s

(ax

+

b)

d

x

=

1

a

si

n

(ax

+

b)

+

C

,

d

la

a

6=

0

5.

R

1

sin

2

x

d

x

=

co

t

x

+

C

6.

R

1

sin

2

(ax

+

b)

d

x

=

1

a

co

t

(ax

+

b)

+

C

,

d

la

a

6=

0

7.

R

1

cos

2

x

d

x

=

ta

n

x

+

C

8.

R

1

cos

2

(ax

+

b)

d

x

=

1

a

tan

(ax

+

b)

+

C

,

d

la

a

6=

0

9.

R

si

n

h

xd

x

=

co

sh

x

+

C

10.

R

si

n

h

(ax

+

b)

d

x

=

1

a

co

sh

(ax

+

b)

+

C

,

d

la

a

6=

0

11.

R

co

sh

xd

x

=

si

n

h

x

+

C

12.

R

co

sh

(ax

+

b)

d

x

=

1

a

si

n

h

(ax

+

b)

+

C

,

d

la

a

6=

0

13.

R

1

cos

h

2

x

d

x

=

ta

n

h

x

+

C

14.

R

1

cos

h

2

(ax

+

b)

d

x

=

1

a

tan

h

(ax

+

b)

+

C

,

d

la

a

6=

0

15.

R

1

sin

h

2

x

d

x

=

co

th

x

+

C

16.

R

1

sin

h

2

(ax

+

b)

d

x

=

1

a

co

th

(ax

+

b)

+

C

,

d

la

a

6=

0

8

6

Ca

łk

o

w

a

nie

funk

cj

i

w

y

kła

dni

czy

c

h

1.

R

e

x

d

x

=

e

x

+

C

2.

R

e

ax

+

b

d

x

=

1

a

e

ax

+

b

+

C

,

d

la

a

6=

0

3.

R

m

x

d

x

=

m

x

ln

m

+

C

,

d

la

m

>

0

i

m

6=

1

4.

R

m

ax

+

b

d

x

=

m

a

x

+

b

a

ln

m

+

C

,

d

la

d

>

0,

m

6=

1

i

a

6=

0

9

background image

7

Ca

łk

o

w

a

nie

prze

z

cz

¸eś

ci

i

p

o

ds

ta

wi

enie

1.

R

ln

(ax

+

b)

d

x

=

1

a

[(

ax

+

b)

ln

(ax

+

b)

(ax

+

b)

]+

C

,

d

la

a

6=

0

2.

R

x

n

ln

xd

x

=

1

n

+1

x

n

+1

ln

x

1

(n

+1

)

2

x

n

+1

+

C

3.

R

arc

ta

n

(ax

+

b)

d

x

=

1

a

[(

ax

+

b)

ar

ct

an

(ax

+

b)

ln

q

(ax

+

b)

2

+

1]

+

C

10


Wyszukiwarka

Podobne podstrony:
Całki Tabele 2
tabele oddychanie transpiracja
Odpowiedzi calki biegunowe id Nieznany
LISTA 14 Całki krzywoliniowe
pochodne i całki
CALKI teoria
całki, szeregi zadania z kolosa wykład 21 03 2009
Calki i zakres 2012
KPK dowody tabele, Prawo, KPK
tabele wartości logicznych zdań, Pomoce naukowe, studia, logika
Tłuszcze, Porady i tabele
CAŁKI
Sprawozdanie? tabele
SERY tabele
Tabele cz I
rozmiary pliki Tabele rozmiarówReima
Sprawozdanie (8 4) Tabele
calki teoria zadania

więcej podobnych podstron