3U]\NáDG.UDWRZQLFD]áR*RQD
:\]QDF]\üUHDNFMH
P
P
4
×
l
3
×
l
5R]ZL]DQLH
=H VSRVREX SRGSDUFLD Z\QLND *H QLH]QDQH V VNáDGRZH UHDNFML 'OD XNLHUXQNRZDQLD
GDOV]\FK G]LDáD Z FHOX Z\]QDF]HQLD UHDNFML ]DFLHQLXMP\ WDUF]H V]W\ZQH WZRU]FH W
NUDWRZQLF(IHNWWHJRG]LDáDQLDSRND]XMHU\VXQHNSRQL*HM
P
P
A
B
4
3
2
1
3U]HGVWDZLRQD NUDWRZQLFD VWDQRZL XNáDG SRáF]RQ\FK SU]HJXERZR HOHPHQWyZ V]W\ZQ\FK
GZyFKWDUF]LGZXSUWyZ5R]G]LHOP\Z\Uy*QLRQHWDUF]HXVXZDMFP\ORZRSUW\L
L ]DVWSXMF MH QLH]QDQ\PL RGG]LDá\ZDQLDPL 6
1
i S
2
:SURZDG(P\ WDN*H UHDNFMH SRGSyU
2WU]\PDQ\XNáDGVLáSU]HGVWDZLDSRQL*V]\U\VXQHN
2
P
P
S
2
S
1
H
B
1
2
V
A
H
A
3
V
B
S
2
S
1
4
3l
2l
l
x
y
$E\ Z\HOLPLQRZDü ] UyZQDQLD QLHZLDGRPH 6
1
i S
2
Z\NRU]\VWDP\ GOD Z\G]LHORQHM F]FL
lewej równanie
0
P
i
lewa
iy
=
∑
VNGRWU]\PDP\9
A
– P = 0
⇒
V
A
= P.
:\NRU]\VWXMF WHUD] GRZROQH WU]\ UyZQDQLD UyZQRZDJL GOD FDáHJR XNáDGX PR*HP\
Z\]QDF]\üSR]RVWDáHQLHZLDGRPHUHDNFMH,WDNQS]UyZQD
M
iB
i
∑
=
0
⇒
P
Â
l + P
Â
3l + H
A
Â
2l – P
Â
3l = 0
0
P
i
ix
=
∑
⇒
H
A
–H
B
= 0 ,
0
P
i
iy
=
∑
⇒
V
B
-P –P +P = 0
REOLF]\P\*H
H
A
= - P/2, H
B
= - P/2, V
B
= P.
=QDQHZDUWRFLVNáDGRZ\FKUHDNFMLSR]ZDODMWHUD]QDZ\]QDF]HQLDVLáZSUWDFKNUDWRZQLF\
MHGQ]H]QDQ\FKPHWRGSROHFDP\MDNRüZLF]HQLH
:DUWRFLLU]HF]\ZLVWH]ZURW\UHDNFMLSU]HGVWDZLDSRQL*V]\U\VXQHN
P
P
P/2
P
P
P/2