background image
background image
background image

ii

Cyril

A lb

erg

a

Ro

y

A dler

Ric

har

d

A nder

so

n

Geor

ge

A ndr

ews

Henr

y

Ba

k

er

Stephen

Ba

lzac

Y

ur

ij

Bar

ansk

y

Da

vid

R.

Ba

rto

n

Ger

ald

Baumga

rtner

Gil b

er

R.

Roy

RoyR.

yro0(b)-20c(er)]Tj32.56 0 Tk(a)Tj76.72 0 (Mumga)Tj5.04 0 Tn(k)Tj29.68 0 TuelGerGersoykyGer

Da

vidR.Day

background image

C

o n

t en

t s

1

Ax i

om

F

ea tures

1

1.1

In

tro d uctio

n

t o

Axio

m

background image

iv

CO

NTENTS

3.2

. 4

Sym

b

ols,

V

a

ria

bles,

Assig

nm eb9.31000(4)]TD18.24 [cla 0 Td9q 0.12 0 0 0.12 0 0 cm/R7 gs0 G0 gq8.33333 0 0 8.33333 0 0 cm BT/R81 0.12 Tf1 0 0 -1 160.68 736.08 Tm(iv)Tj/R257 0.12 Tf287.16 0 Td(CO)Tj14q 0.12 0 0 0.12 0 0 cm/R7 gs0 G0 gq8.33333 0 0 8.33333 0 0 cm BT/R81 0.12 t04[000(4)]TD18.24 [cla 0 Td9q 0.12 0 0 0v

background image
background image

vi

CO

NTENTS

7

I nput

Fi

les

an d

Output

St

yles

22

1

7.1

Inp ut

Files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

2

21

7.2

The

.ax

iom.inp ut

File

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

2

22

7.3

Common

F

ea

t ur

es

of

Using

Outp ut

F

o

rmats

.

.

.

.

.

.

.

.

.

.

.

.

2

23

7.4

Monos

p a

ce

Tw

o-

D imensio

nal

Ma

t hema

t ica

l

F

or

mat

.

.

.

.

.

.

.

2

24

7.5

T

eX

F

oTd(of)Tj11.4 0 T0 Td(23)Tj-318.84 12 Td(7.4)Tj22.92 0 Td(Monos)Tj28.56 0 Td[(p)-1000(a)]TJ10.56 0 Td(ce)Tj12.12 0 Td(Tw)Tj14.16 0 Td(o-)Tj8.28 0 Td[(D)-1000(imensio)]TJ40.32 0 Td(nal)Tj16.68 0 Td(Ma)Tj14.04 0 Td[(t)-1000(hema)]TJ27.12 0 Td[(t)-1000(ic0t(0j14.04 0 Td(ce)Tj12.12 0 Td(Tw)Tj14.16 0 Td(o-)Tj8.28 0 Td[(D)-1000(imensio)]TJ40.32 0 Td(nal)Tj16.68 0 Td(Ma)Tj14.04 0 Td[(ce)Tj12.12 0 Td(Tw)Tj14.16 0 Td(o-)Tj8.28 0 Td[(D)-1000(imensio)]TJ40.32 0 Td(nal)Tj16.68 0 Td(Ma)Tj14.04 0 Td[(ce)Tj12.12 0 Td(Tw)Tj14.16 0 Td(o-)Tj8.28 0 Td[(D)-1000(imensio)]TJ40.32 0 Td(nal)Tj16.68 0 Td(Ma)Tj14.04 0 Td[(ce)Tj12.l)Tj16.683 d(nal)Tj16.68 0 Td(Ma)Tj14.04 0 Td[(t)-1000(hema)]TJ27.12 0 Td[(t)-1000(ic0t(0j14.04 0SM0(ic0327.12 0 TSc24 0 (.)8 0 Td(.i18.84 1pj7.68al)7.12 0 T8.64 0 Td(2)Tj4.92 0 Td(23)Tj-(mat)T(23)Tjula7.8 0 T57.12 0 T8.64 0 Td(2)Tj424 0 Td(F)Tj5[(m5.64 0 Td(or).)Tj7.68 0t)Tj1692 Td(Ma)Tj14.04 0 Td[(ce)Tj12.12 0 Td(Tw)Tj14.16 0 Td(o-)Tj8.28 0 Td[(D)-1000(imensio)]TJ40.32 0 Td(nal)Tj16.68 0 Td(Ma)Tj14.04 0 Td[(ce)Tj12.l)Tj16.683 d(nal)Tj16.68 0 Td(Ma)T Td(nal)Tj16.68 0 Td(Ma)Tj14.04 0 Td[(ce)Tj12.l)Tj16.683 d(nal)Tj16.68 0 Td(Ma)Tj14.04 0 Td[(t)-1000(hema)6TJ27.12 0 Td[(t)-1070(ic0t(0j14.04 Fsio)]TTj16.68 OR8 0 Td1000(ic0tTRAN8 0 32Ma)Tj14.00 Td(Ma)Tj14.04 0 Td[(t)-1000(hema)]TJ27.12 0 Td[(t7T57.12 0 T[(ce)Tj12.l)Tj16.683 d(nal)Tj16.68 0 Td(Ma)T Td(nal)Tj16.68 0 Td(Ma)Tj14.04 0 Td[(ce)Tj12.l)Tj16.683 d(nal)Tj16.68 0 Td(Ma)T Td(nal)Tj16.68 0 Td(Ma)Tj14.04 0 Td[(ce)Tj12.l)Tj16.683 d(nal)Tj16.68 0 Td(Ma)T Td(nal)Tj16.68 0 Td(Ma)Tj14.04 0 Td[(ce)Tj12.lnal

Ma

background image

CO

NTENTS

vii

New

F

o rew

o rd

O

n

Octob

er

1

,

20

01

Axio

m

w

as

withdra

wn

f r

om

th e

ma

rk

et

a

nd

ended

life

a

s

a

commer

cial

pro

duct.

background image

C

hapte r

1

Axi

om

F

eat ures

1.1

In

tro

du

t ion

to

Axiom

W

elco

m e

to

t he

w

or

ld

o

f

A x

i o

m.

W

e

ca

ll

Axiom

a

background image

2

CHAPTE

R

1.

A XIO

M

FEA

TUR E

S

whic

h

w

ould

g

background image

1

.1.

IN TR

ODU CT

ION

TO

AX IO

M

3

liter

ally

d o

zens

of

kinds

of

n

u m

b

er

s

to

co

mp ute

wit h.

Th e

se

r

ang

e

fro

m

v

ar

-

io

us

kind s

o

f

in

00inr

background image

4

CHAPTE

R

1.

A XIO

M

FEA

TUR E

S

i

nve

rs

e(%

)

1

x

+i

0

1

2

x

+2

i

1

2

Ty

pe

:

Un

io

n(M

at

rix

F

ra

ti

on

Po

ly

nom

ia

l

Com

pl

ex

In

te

ger

,.

..)

1.1.4

Hyp

er

Do

Figure

1.1

:

Hyp

er

do

c

o

p

e

n ing

men

u

Hyp

erDo

c

pres

en

ts

y

o

u

wind o

ws

o

background image

1

.1.

IN TR

ODU CT

ION

TO

AX IO

M

5

k

background image
background image

1

.1.

IN TR

ODU CT

ION

TO

AX IO

M

7

d

ra

w(5

*b

es

sel

J(

0,s

qr

t(

x**

2+

y**

2)

),

x=

-2

0..

20

,

y

=-

20

..2

0)

F ig

ure

1.2

:

J

0

(

p

background image

8

CHAPTE

R

1.

A XIO

M

FEA

TUR E

S

1

;

3

x ;

1

5

background image

1

.1.

IN TR

ODU CT

ION

TO

AX IO

M

9

Ty

pe:

Ex

pre

ss

ion

I

nt

ege

r

No

t e

the

use

of

\%"

h er

e.

This

m e

ans

the

v

a

lue

of

t he

la

st

ex

p r

ess

ion

w

e

c

omput ed.

In

t his

case

it

is

the

lo

ng

expres

sion

a

b

o

v

e.

1.1.8

P

a tt

ern

Mat

hi8yTj106P8yTja4.32 0 T(9)TjTj10.08 0 Td(the)Tje

background image

1

0

CHAPTE

R

1.

A XIO

M

FEA

TUR E

S

Using

i

nput

 les

and

the

) read

co

m ma

nd ,

y

ou

ca

n

c

rea

t e

y

our

o

I2y

ou)ourourr84 0 TTj20.4 0 ud(the)Tj18.72 0 Td(o)Tjs12 07.2 0 Td(r84 0 TTj20.4 (elev14.886)]TJ12.72an000(XIO]TJ12.72t1C2 96 Td(our)To18.72 01Td(o)Tj4.68 0 Td(I7Tj4rea)Tja4.68 0 Td(Ipplications,4.68530.12 Tf2 Td(our)Then Td(y2.58 0 Td(selectiv14.8310 Td(ou)Te000(e)]TJ12.7[(l(our)Ty18.71)T0 Td[(TUa4.68 0 Td(I[ppd(the)Ty Td(y2.]TJ12.72t00(rea-31 04 0r84 0 TTj20.4 0 ud(the)Tj18.72 0 Td(o)Tjs12 07.3Td(o)Tj4.68 0 Td(ITd(y)T Td(Ineed.(read)34517 0.12 Tf4 0 Td320.1226.28 1.94.68 10.12 Tf27Pj42.84 0 lo)Tjol000(XIO412 Tf27ymor84 0 0M)Tj12.48 pd(the)hi14.88 0 TJ21.6 0 000(XIO412 Tf27AlTd(y)T Td(Igori12 0 2. Td(ou)Tthm12 0 384 0 lo)Tjsg)Tj/R217 0.12 Tf180M)Tj 2. Tdf27All14.886)56 Tcompd2ur)Tonen Td(43. Td(ou) Td(our)Ts18.71)T12 Tf27o1C1)Tj4rea)Tjt00(rea7T12 Tf27Axiom12 03204rea)Tja4.68 0 Td(Ilgey)Tj4.92 a4.688Tj4rea)TjCHAPTE)Tj42.84 0 lo)Tj12 T8CHAPTE)Tj42.84 0 lo)Tjej42.8.12 Tf27wr1C1oury401Td(o)Tjin1C1rea7T12 Tf27Axiom12 03204reaououruag0 Td(M)Tj12.4jej429(c)Tj4.32 0 Td(rea)Tjlled 0 Td(nput)Tj/R8108.12 Tf27Spades

background image
background image

1

2

background image

C

hapte r

2

T

en

F

undamen

tal

Ideas

Axioeas

background image

1

4

CHA P

TER

2.

TE

NNAMENTj1037.0 Td(N)ALj10.7.04 Td(N)IDEASj/R25345.12 Tf13-312.72 27.96d(2.)T12 Tj4.97.70 Td(TE)j4.9

background image

15an/R7 gs0Myth e

background image
background image
background image

1

8

CHA P

TER

2.

TE

N

FUN D

AMENT

AL

IDEAS

Ty

pe

:

Ma

tri

x

Pol

yn

om

ial

F

ra

ti

on

In

te

ger

the

in

t er

preter

background image

1

9

Axio

m's

use

o

f

a

bstra

ct

da

tat

yp

es

clea

rly

separ

ates

the

exp

or

ts

of

a

domain

(wha

t

o

p

er

ations

a

re

dened)

fro

j10.44 a-1TJ1t.88 0 15(domain)Timpleme1.52 4d(6at)Tj12.430.4 0 Td(the)Tj1(h88 0 Td(ations)Tw8 0 Td(j10.44 8.24 0 Td[(yp)-2000ob)-5TJ1ject.88 0 35d(Tj4.92 0 Td(re)Tj13.08 0 27.5.28(wha)Tj8 0 T3(a)Tj4.9epr.72 0 T(ct)Tj12e1.52 9(the)Tj18ed2 0 Td68Tj4.92 0 Td(re)Tj13nd8 0 Td(re)Tj132 0 Td[(p)-3000(er)]TJ1488 0 10(ct)Tj12.2 0 T8(j10.44[64 -1TJ1.4 8 0 11(o)Tj4.9n24 0 Td(of)Tj12a.08 0 T6(ct)Tj12)Tj39.6..52 4d(j10.44 User4 0 Td68Tj4.924 0 6(the)Tj1.48 0 T0.8Tj4.92 0 T7.8Tj4.9j-311.52 3d(re)Tj13c6 0 Td(domain)Tn 0 T8tat)Tj12h 0 Td1re

background image

2

0

CHA P

TER

2.

TE

N

FUN D

AMENT

AL

IDEAS

background image

C

hapte r

3

Starting

Axi

om

W

elco

m e

t o

th e

A x

i o

m

en

vir

onmen

t

for

in

t e

rac

t ivvir

background image

2

2

CHAPTE

R

3.

ST

A R

TING

AXIOM

If

y

ou

a

re

running

Axiom

under

th e

X

W indo

w

System,

there

ma

y

b

e

t

w

o

windo

ws:

t he

c

onso

le

wind o

w

(as

j ust

descr

ib

ed)

a

n d

the

Hyp

e

rDo

c

main

men

u.

Hyp

erDo

c

is

a

m

u ltiple-windo

w

h

yp

ertext

sys

t em

that

lets

y

o

u

view

A x

iom

do

cumen

tatio

n

a

nd

examples

o

n-line,

execute

A x

iom

expre

ssions

,

a

nd

g

ener

ate

g

ra

p hics

.

If

y

o

u

ar

e

in

a

g

ra

background image
background image

2

4

CHAPTE

R

3.

ST

A R

TING

AXIOM

1

+

2

-

3

/

4

*

3

**

2

-

1

1

9

4

T

yp

e:

F

ra

ti

on

In

te

ger

The

a

b

o

v

e

ex

p r

essio

n

is

equiv

alen

t

to

th is

.

(

(1

+

2)

-

((3

/

4

)

*

(

3

*

*

2)

))

-

1

1

9

4

T

yp

e:

F

ra

ti

on

In

te

ger

If

a

n

expr

essio

n

co

n

t a

ins

s

ub

expr

essio

ns

enclo

sed

i n

par

en

theses,

t he

background image

3

.2.

TH E

AXIOM

L

A NGUA

G E

2

5

99

99

99

99

99

Ty

pe

:

Po

si

tiv

eI

nt

ege

r

This

is

the

la

st

r

esult .

%

%(

-1)

99

99

99

99

99

Ty

pe

:

Po

si

tiv

eI

nt

ege

r

This

is

the

r

esult

fro

m

step

n

um

b

er

1.

%

%(

1)

10

00

00

00

000

Ty

pe

:

Po

si

tiv

eI

nt

ege

r

3.2.3

Some

T

yp

es

E

v

e

rything

i n

Axiom

ha

s

a

t

y

p

e.

The

t

yp

e

determines

what

op

era

t io

ns

y

ou

can

p

er

f o

rm

o

n

a

n

ob

ject

a

nd

ho

w

the

ob

j e[

background image

2

6

CHAPTE

R

3.

ST

A R

TING

AXIOM

x

**8

x

8

T

yp

e:

P

ol

yno

mi

al

In

te

ger

Here

a

nega

t iv

e

in

teg

er

exp

o

nen

t

pro d uce

s

a

fra

ct io

background image

3

.2.

TH E

AXIOM

L

A NGUA

G E

2

7

This

giv

es

the

v

a

lue

z

+

3

=5

(a

background image

2

8

CHAPTE

RA yp

ti als anrl=i(b)-2[(yp)-300038 Tm(2)Tjg736.08 Tm(2)Tjiv736.7..22 7e.14 0 3.5n.18.tog14 0 3..22 7ether 0 de5..22 7with 0 de3 A.71.1a736.08 Tm(2)Tj79.04 0 n.9 0as92 0((CHAPTE)Tj[(92 0[(tg)-3007..22 7nme.14 0e3 5n.9 0t.92 0n.9 0The14 0e0.76]TJ19.4.92 0 dela.22 7- 0 d-340.32 8)TT2 739.04 0HAPTE)Tjation 0 de5.5n.18.736.083n.9 0a.14 0 3. Tm(2)Tja736.08 Tm(2)Tjssis79.04210HAPTE

background image

3

.2.

TH E

AXIOM

L

A NGUA

G E

2

9

T

ype

:

F

loa

t

Use

background image

3

0

CHAPTE

R

3.

ST

A R

TING

AXIOM

3.2.6

Ca l

l

i

ng

F

un 

ti

ons

As

w

e

sa

w

ear

lier,

when

y

ou

w

an

t

to

add

or

subtra

ct

t

w

o

v

alues,

y

ou

pla

ce

the

ar

it hmetic

op

era

t o

r

\

+"tt

background image

3

.2.

TH E

AXIOM

L

A NGUA

G E

3

1

An

o

p

e

ra

t io

ns

that

r

eturns

a

B

oo

lea

n

v

a

lue

(that

is,

t

rue

o

r

fal

se

)

background image
background image

3

.3.

U SING

AXIOM

AS

A

P

OCK

ET

CA L

CU LA

TO

R

3

3

r

4(3)Tj4.9[(b)-2J27elong 0 Td8.4s7PAS

background image

3

4

CHAPTE

R

3.

ST

A R

TING

AXIOM

3.3.2

T

yp

e

Con

v

background image
background image

3

6

CHAPTE

R

3.

ST

A R

TING

AXIOM

3.3.3

Us eful

F

unti

ons

T

o

obtain

the

a

bsolute

v

alue

o

f

a

n

background image

3

.3.

U SING

AXIOM

AS

A

P

OCK

ET

CA L

CU LA

TO

R

3

7

Ty

pe

:

Po

si

tiv

eI

nt

ege

r

T

es

t s

on

v

alues

ca

n

b

e

done

using

v

a

rious

functions

whic

h

ar

e

gener

ally

mo

re

e

Æ cien

t

than

using

r

elationa

l

o

p

era

t o

rs

s

uc

h

as

=

pa

rticular

ly

if

the

v

a

lue

is

a

ma

t r

ix.

E

xamples

of

s12 Td(ma)Tj13mue

of

thses

background image

3

8

CHAPTE

R

3.

ST

A R

TING

AXIOM

Ty

pe

:

Bo

ol

ean

e

background image
background image
background image

3

.4.

U SING

AXIOM

AS

A

SYMBO

LIC

CALCULA

TO

R

4

1

3.4.2

Com

p l

ex

Num

b

ers

F

o

r

man

y

scien

tic

calc

u la

ti o

ns

r

eal

n

um

b

ers

ar

en' t

suÆcien

t

a

n d

s

u pp

or

t

f o

r

c

omplex

n

um

b

er

s

is

a

lso

re

quired.

Complex

n

um

b

ers

ar

e

ha

ndled

in

a

n

in

tuitiv

e

ma

nn e

r.

A xio

m

us

es

t he

%

i

macr

o

to

r

eprese

n

t

the

squar

%

background image

4

2

CHAPTE

R

3.

ST

A R

TING

AXIOM

Ty

pe:

Com

pl

ex

In

te

ger

f

at

or

(%)

i

background image

3

.4.

U SING

AXIOM

AS

A

SYMBO

LIC

CALCULA

TO

R

background image

4

4

CHAPTE

R

3.

ST

A R

TING

AXIOM

r

adi

x(

3/2

1,

5)

0:0

32

41

2

T

yp

e:

R

41

2

T

yp41T41

background image

3

.4.

U SING

AXIOM

AS

A

SYMBO

LIC

CALCULA

TO

R

4

5

om

pa

tF

ra

ti

on

(%)

6

3

background image

4

6

CHAPTE

R

3.

ST

A R

TING

AXIOM

3

background image

3

.5.

GENERAL

P

OINTS

ABO

U T

A XIO

M

4

7

The

rst

e

xample

s

h o

uld

b

e

rea

d

a

s:

Le

t

x

be

of

ty

pe

P

rim

eF

iel

d(

7)

an

d

ass

ig

n

t

o

it

th

e

val

ue

5

No

t e

that

it

is

o

nl y

p

os

sible

t o

in

v

er

t

no

n -

zer

o

v

alues

if

the

ar

it hmetic

is

p

er

-

fo

rmed

mo

dulo

a

prime

n

u m

b

er

.

Th

u s

ar

it hmetic

mo

dulo

a

no

n -

prime

in

teg

er

is

p

os

sible

bu t

the

r

ecipro cal

op

er

ation

is

unde ned

a

sn

background image
background image

3

.5.

GENERAL

P

OINTS

ABO

U T

A XIO

M

4

9

3.5.4

Com

men

ts

background image
background image

3

.5.

GENERAL

P

OINTS

ABO

U T

A XIO

M

5

1

le.

T

o

g

et

A x

iom

t o

rea

d

t his

le,

y

ou

use

the

system

command

)

rea

d

m

y.

inp

ut

.

If

y

o

u

need

to

m a

k

e

c

h a

nges

to

y

our

appr

oa

c

h

or

deniti o

ns,

g

o

in

t o

y

our

f a

v

or

it e

edit o

r,

c

hang

e

m

y

.i

nput ,

t hen

)re

ad

m

y.i

np

ut

ag

ain.

O

th e

r

sys

t em

co

m ma

nd s

in clude:

)

hi

sto

ry

,

t o

d is

pl a

y

pr

evious

input

a

nd/o

r

o

utp ut

lines;

)d

isp

la

y,

to

displa

y

pro

p

e

rties

and

v

alues

of

w

or

kspa

ce

v

ar

iables;

a

nd

)w

ha

t.

Is

sue

)w

ha

t

to

ge

t

a

li s

t

o

f

Axio

m

o

b

jects

thar5N8.0(e)]TJ10.2 0 Td(0 Td[(li)-[(pl)-1000(a)]TJalues)Tj24.48 0ye12.6 0 T5000(jecwbstriTd(e)42nd)Tj18.9

background image

5

2

CHAPTE

background image
background image
background image
background image

5

6

CHAPTE

R

3.

ST

A R

TING

AXIOM

AXIOMTp11.88 0yTCHAitTCHAteT

background image

3

.6.

D

A

T

A

STR

UCTURES

IN

A XIOM

5

7

r

ev

ers

e(

[7

,2,

-1

,2â„„

)

[2;

1;

2;

7

]

T

yp

e:

L

ist

I

nt

ege

r

s

or

t([

7,

2,

-1,

2â„„

)

[

1

;

2;

2;

7

]

T

yp

e:

L

ist

I

nt

ege

r

r

em

ove

Du

pl

ia

te

s([

1,

5,

3,5

,1

,1,

2â„„

)

[1;

5

;

3;

2

]

Ty

pe

:

Li

st

Po

si

tiv

eI

nt

ege

r

#

[7

,2,

-1

,2

â„„

4

Ty

pe

:

Po

si

tiv

eI

nt

ege

r

L

i s

t s

in

A xio

m

ar

e

m

ut a

ble

and

so

th e

i r

co

n

t e

n

t s

( the

elemen

background image

5

8

CHAPTE

R

3.

ST

A R

TING

AXIOM

[9;

2

;

4;

7

;

1

;

5;

4

2]

Typ

e:

Lis

t

Pos

it

iv

eIn

te

ger

e

ndO

fu

:=

r

est

(u

,4

)

[1;

5

;

4

2]

Typ

e:

Lis

t

Pos

it

iv

eIn

te

ger

p

art

Of

u

:

=

res

t(

u,

2)

[4

;

7;

1

;

5

;

42

]

Typ

e:

Lis

t

Pos

it

iv

eIn

te

ger

s

etr

es

t!(

en

dOf

u,

pa

rtO

fu

);

u

9;

2

;

background image
background image

6

0

CHAPTE

R

3.

ST

background image
background image

6

2

CHAPTE

R

3.

ST

A R

TING

AXIOM

[9;

9

9;

20

;

7]

Typ

e:

Lis

t

Pos

it

iv

eIn

te

ger

In

th e

pr

evious

ex

ample

a

new

e6j30.96 0 ad(9)T10.68 0 y(ex)T210.44 0 of(In)21.12 0 constd(pr266 23.08 0 Tu[(th)-1c00(e) Tf9.96 0 Td[(th)-1ing00(e))Tj210.44 0 ld(Lis)Tj9.36 0 Td[(th)-1s00(e)]Tj11.88 0 Td(e6j42.84 0 a(Pos)2j30.96 0 gd(9)Tj4.92 0 Td(iv Tf7.8 0 end(3.))T24.04 0 T(iv T13.08 0 T[(th)-1is00(e)]6Tf4.32 0 d(Lis)Tj10.68 0 ad(9-338.76 1 0. 0 Tp)-2h)-1o00(e)]0.561.88 0 Td(e6j42.84 0 erful(pr236 23.08 0 Tmetho)-2h)-1d00(e)36j42.84 0 whic(3.))T561.88 0 h(Lis)T15.48 0 gTd(iv)2j15.72 0 T(Pos)2j249.36 0 Td[(th)-1h000(e)]TJ7.n9

background image

3

.6.

D

A

T

A

STR

UCTURES

IN

A XIOM

6

3

3.6.2

Segmen

ted

Li

sts

A

se

gmen

ted

list

is

one

in

whic

h

so

me

of

the

elemen

ts

ar

e

ra

nges

of

v

alues.

The

e

x pand

fun c

t io

n

con

v

er

t s

lists

o

f

th is

t

yp

e

in

to

or

dinary

lists:

[

1.

.10

â„„

[1::10

]

Ty

pe:

Lis

t

background image
background image

3

.6.

D

A

T

A

STR

UCTURES

IN

A XIOM

6

5

T

o

crea

te

t he

s

eries

the

windo

w

is

p la

ced

at

the

star

0

background image
background image

3

.6.

D

A

T

A

STR

UCTURES

IN

A XIOM

6

7

y

:

=

xy36 0 0 Td(:)Tj5.16 0pe Td(26)Tj10.56 On Td(:)Tj5.16 0eDi Td(5)Tj6.36 0me Td(:)Tj5.16 0nsi Td(5)Tj6.36 0on Td(:)Tj5.16 0alA Td(5)Tj6.36 0rr Td(:)Tj5.16 0ay Td(5)Tj6.36 0Po Td(:)Tj5.16 0si Td(:)Tj5.16 0tiv Td(5)Tj6.36 0eI Td(:)Tj5.16 0nt Td(:)Tj5.16 0ege Td(5)Tj6.36 0r Td96 Td4 32.44 0 Td=

5

background image

6

8

CHAPTE

R

3.

ST

A R

TING

AXIOM

s

wap

!(

b,2

,3

);

b

[2;

4

;

3;

5

;

6]

T

yp

e:

O

ne

Dim

en

sio

na

lA

rra

y

Pos

it

iv

eIn

te

ger

opy

In

to!

(a

,b,

3)

[4;

4

;

2

lArr73r3;

4

2

;

4

;

2

5

;

6]

T

yp

e:

O

ne

Dim

en

sio

na

lA

rra

y

3.30 Td(a 0.12 Tf4.44 0 T124.25.72 0 Td(In)Tj10.44 0 Td(to!)Tj15.72 0 Td((a)Tj10.44 0 Td(,b,)Tj15.72 0 Td(3))Tj/R81 0.12 Tf51 28.56 Td([4)Tj/R24 0.12 Tf7.8 0 Td(;)Tj/R81 0.12 Tf4.44 0 Td(4)Tj/R24 0.12 Tf4.92 0 Td(;)Tj/R81 0.12 Tf4.44 0 Td(2)Tj/R24 0.12 Tf)Tj10.44 0 Td(lA)Tj10.44 0 Td(rr73r3;)Tj/R84 0.12 Tf4.92 0 Td(;)Tj/R81 0.12 Tf4.44 0 Td(4)Tj/R26 0.12 Tf4.92 0 Td(;)Tj/R81 0.12 Tf4.44 0 Td(2)Tj/R24 0.12 Tf4.92 0 Td(;)Tj/R81 0.12 Tf4.44 0 Td(4)Tj/R24 0.12 Tf4.92 0 Td(;)Tj/R81 0.12 Tf4.44 0 Td(2)Tj/R24 0.12 Tf5.04 0 Td87.6/R8880.12 Tf4.44 0 Td(5)Tj/R24 0.12 Tf4.92 0 Td(;)Tj/R81 0.12 Tf4.44 0 Td(6â„„)Tj/R83 0.12 Tf-64.08 23.76 Td(T)Tj5.16 0 Td(yp)Tj10.44 0 Td(e:)Tj21 0 Td(O)Tj5.16 0 Td(ne)Tj10.44 0 Td(Dim)Tj15.72 0 Td(en)Tj10.44 0 Td(sio)Tj15.72 0 Td(na)Tj10.44 0 Td(lA)Tj10.44 0 Td(rra)Tj15.72 0 Td(y)Tj10.44 0 Td(Po4 0 (yv81 0.12 Tf4.44etj10.44 0 Td(rrorj/R83 0.12 Tf-3([1j10.44 0 Td(rr/24 0 Td(ger)Tj-31/.96 36.24 Td()T,4 0 Td(ger)Tj-1/.96 3d(ger)Tj-14 0.12 Td(te)Tj105.16 03625.04 0 Td3881 019(geTj1 0.12 Tf4.44 0 T68 737r3;)Tj-1 0.1ETQq 4-4 2630.9 3452.9 BI/IM true/W 1/H 1/BPC 1ID EI Q3 Td(t40481 0.m/R24 0.12 Tf7.8 0 TPos)T-60 m/R81 0.12 Tf4.44 0 T5.6)T-607;)Tj-1 0.1ETQq 4-4 27APT9 3452.9 BI/IM true/W 1/H 1/BPC 1ID EI Q327.640481 0.m/R4 0.12 Tf)Tj10.4Po4 0-60 m/R81 0.12 Tf4.44 0 T812 T-607;)Tj-1 0.1ETQq  m B-4 28 0 T 3452.9 BI/IM true/W 1/H 1/BPC 1ID EI Q339.30 40481 0.m/R1 0.1d(;)Tj/R845.16 03625.04 0 TdPos)T-208880.12 0.12 Tf5.04 0 Td3 48 73.12 Tf4.44 0 Td(5)Tj/R24 0.12 Tf4.92 0 Td(;)Tj/V81 0.12 Tf4.44e44 0 Td(eIn)Tj15r 0 Td(;)Tj/F81 0.12 Tf4.44raj10.44 0 Td(rrai44 0 Td(eIn)TjoTj10.44 0 Td(rr0.44 0 Td(eIn)Tj1)Tj15.72 0 Td(y)Tj10.44 0 Td(3.30 Td("81 0.12 Tf4.44Helj10.44 0 Td(rrlo4 0 Td(ger)Tj-34 0 Td5 Tf4.44W72 0 Td(it)Tj1rj/R83 0.12 Tf-ld"81 07781 0.72 0 Td("H/R24 0.12 Tf4.9lj/R83 0.12 Tf-lo4 0 Td(ger)Tj-34 0 Td5 Tf4.44W72 0 Td(it)Tj1rj/R83 0.12 Tf-ld"81 083(;)/R8880.12 Tf4.44 0 Td(5)Tj/R24 0.12 Tf4.92 0 Td(;)Tj/Sf4.44 0 Td(5)trj/R83 0.12 Tf-ing10.44 0 Td(Pos)Tj15bf4.44 0 Td(5)itTj10.44 0 Td(si 0 mTd(ger)Tj-3trj/R844 0 Td(siu)Tj15.72 0 Td(y05.1688.25.72 0 Td("1.96 3d(ger)Tj-11.96 3d(ger)Tj-111j10.44 0 Td(rr11.96 3d(ger)Tj-"81 0938 73/R81 0.12 Tf4.44 0 Td(5)Tj/R24 0.12 Tf4.92 0 Td(;)Tj/Bf4.44 0 Td(5)itTj1044 0 Td2681 0.12 )Tj5.4.92 0 Tdyv81 0d(;)Tj/R[4etjTj/R2o7 0.12781 0f4.44r5.1683.)TTd(5)isTj5.4 0 Td(5)similar5.16(3.8(eIn)Tj15Tj5.3r3;)Tj/R8j10.9.30 it)Tj181 0d(;)Tj/R[4njTj/R2e-7 0.123r3;)Tj/R[(d.12Tj/R2e7 0.1d(;)Tj[4njTj/R2s7 0.198 736.08 Tionalj/R250.12 Tf4.ar5.1683.92 0 TdyTj10.8.6)Td(Dim)Tj1964.08 23.76xj10. Tf179.04 eptj10.8.30 it)Tjthaj10. T.)TTd(5)t10.8..12 Tf-if/R24 02 Td(5)itTj1015 Td(5)o10.9.30 it)Tj[(mp)-3/R2o7 0.129)Tjf4.44 0Tj10.442(eIn)Tj1s10.44353.92.4.92)Tj[(b)-20/R2elong 0.131!eIn.8(eIn)Tjing10.16 Tf1 0 0 th0Tj1022 Tf1 0 0 a81 0d(;)Tj/R[4rithmetjTj/R2i 0.143.;

background image

3

.6.

D

A

T

A

STR

UCTURES

IN

A XIOM

6

9

3.6.5

Flexi

bl

e

Ar

ra

ys

Flexible

ar

ra

ys

ar

e

desig

ned

to

pr

o

v

id e

th e

eÆciency

o

f

one-

d imensio

nal

a

rr

a

ys

while

r

ri-T39(pr)Tj9.3the 0 Td[1r

background image

7

0

CHAPTE

R

3.

ST

A R

TING

AXIOM

T

ype

:

F

lex

ib

leA

rr

ay

In

te

ger

d

ele

te

!(f

,5

)

[4

;

3;

4

2;

8;

2

;

28

]

T

ype

:

F

lex

ib

leA

rr

ay

In

te

ger

g

:=f

(3

..5

)

[42

;

8;

2]

T

ype

:

F

lex

ib

leA

rr

ay

In

te

ger

g

.2:

=7

;

f

[4

;

3;

4

2;

8;

2

;

28

]

T

ype

:

F

lex

ib

leA

rr

ay

In

te

ger

i

background image
background image

7

2

CHAPTE

R

3.

ST

A R

TING

AXIOMTING

background image

3

.7.

FU NCTIO

N S,

CHO

ICES,

AND

LOO

PS

7

3

:=a

+

b

)

2:8

28

42

71

24

7

4

61

90

09

76

T

ype

:

F

loa

t

No

t e

tha

t

inden

tatio

n

i s

ext rem

el

y

imp

or

t a

n

t.

If

the

exa

mple

ab

o

v

7nTu.12 Tf9. .

background image

7

4

CHAPTE

R

3.

ST

A R

TING

AXIOM

Er

ro

r

A:

Mi

ss

in

g

m

at

e.

Li

ne

2:

a:

=3.

0

Li

ne

3:

b:

=1.

0

Li

ne

4:

:

=a

+

b

Li

ne

5:

Li

ne

6:

)

...

..

..

..A

Er

ro

r

A:

(f

ro

m

A

u

p

to

A)

I

gno

re

d.

Er

ro

r

A:

Im

pr

op

er

sy

nta

x.

Er

ro

r

A:

sy

nt

ax

er

ro

r

a

t

to

p

l

ev

el

Er

ro

r

A:

Po

ss

ib

ly

mi

ssi

ng

a

)

5

e

rro

r(

s)

pa

rs

ing

a

similar

er

ro

r

will

b

e

r

aise

d .

F ina

lly

,

the

\

) "

m

background image

3

.7.

FU NCTIO

N S,

CHO

ICES,

AND

LOO

PS

7

5

3

:0

T

ype

:

F

loa

t

b

:=

1.0

1

:0

T

ype

:

F

loa

t

:=

a

+

b

4

:0

T

ype

:

F

loa

t

s

qr

t(4

.0

+

)

2:8

28

42

71

24

7

4

61

90

09

76

T

ype

:

F

loa

t

whic

h

a

c

hiev

es

the

same

r

esult

and

is

eas

ier

to

under

st a

background image

7

6

CHAPTE

RA

background image

3

.7.

FU NCTIO

N S,

CHO

ICES,

AND

LOO

PS

7

7

with

s

ome

in

v

o

ca

t io

ns

o

f

t hes

e

fun c

t io

ns:

f

()

Com

pi

li

ng

fu

nt

io

n

f

w

it

h

t

yp

e

(

)

->

Li

st

In

te

ge

r

[

]

T

yp

e:

L

ist

I

nt

ege

r

g

(4

)

Com

pi

li

ng

fu

nt

io

n

g

w

it

h

t

yp

e

I

nt

eg

er

->

Li

st

I

nte

ge

r

[4

]

T

yp

e:

L

ist

I

nt

ege

r

h

(2

,9)

Com

pi

li

ng

fu

nt

io

n

h

w

it

h

t

yp

e

(

background image

7

8

CHAPTE

R

3.

ST

A R

TING

AXIOM

p

:

I

nte

ge

r

-

>

In

teg

er

T

yp

e:

V

oid

p

x

==

(a

background image
background image

8

0

CHAPTE

R

3.

ST

A R

TING

AXIOM

i

:=1

r

epe

at

if

i

>

4

the

n

br

eak

ou

tp

ut(

i)

i:

=i

+1

the

)read

yields:

i

:=1

1

Ty

pe:

Pos

it

iv

eIn

te

ger

r

epe

at

if

i

>

4

the

n

br

eak

ou

tp

ut(

i)

i:

=i

+1

1

2

3

4

T

yp

e:

V

oid

It

w

as

m e

n

t io

background image

3

.7.

FU NCTIO

N S,

CHO

ICES,

AND

LOO

PS

8

1

0

Ty

pe:

No

nNe

ga

tiv

eI

nt

ege

r

r

ep

eat

i

:=

i

+

1

i

f

i

>

6

th

en

br

ea

k

background image

8

2

CHAPTE

R

3.

background image
background image

8

4

CHAPTE

R

3.

ST

A R

TING

AXIOM

T

ypd(T)Tj.4 0 Tde:G

background image

3

.7.

FU NCTIO

N S,

CHO

ICES,

AND

LOO

PS

8

5

4

Ty

pe

:

Po

si

tiv

eI

nt

ege

r

r

:

=

1

1

Ty

pe

:

Po

si

tiv

eI

nt

ege

r

w

hi

le

r

<=

la

st

row

r

ep

eat

:=

1

-

-

I

nd

ex

of

f

irs

t

ol

um

n

w

hil

e

<=

la

st

ol

r

epe

at

if

e

lt

(m,

r,

)

<

0

the

n

ou

tp

ut

[r

,,

el

t(

m,r

,

)â„„

r

:=

la

st

row

br

ea

k

-

-

background image
background image

3

.7.

FU NCTIO

N S,

CHO

ICES,

AND

LOO

PS

8

7

Typ

e:

background image
background image

3

.8.

N UMBE

RS

8

9

the

)read

yields:

f

or

a

in

1

..4

f

or

b

in

8.

.5

by

-

1

r

ep

ea

t

o

utp

ut

[

a,b

â„„

[1,

8â„„

[2,

7â„„

[3,

6â„„

[4,

5â„„

Typ

e:

Voi

d

No

t e

t ha

t

wit ho

ut

the

\

b

y

-

1"

t he

segmen

t

8

..5Typ

background image

9

0

CHAPTE

R

3.

ST

A R

TING

AXIOM

T

yp

e:

F

at

or

ed

In

te

ger

In

teg

ers

ca

n

a

lso

b

e

di s

pla

y

ed

t o

ba

ses

o

t her

t ha

n

1

0.

This

is

an

in

teger

in

bas

e

1

1.

r

adi

x(

259

37

424

60

1,

11)

1

00

00

00

00

00

Ty

pe

:

Ra

dix

Ex

pa

nsi

on

11

Roma

n

n

umera

ls

a

rTj27.12 ma

n

n

umera

background image

3

.8.

N UMBE

RS

9

1

Ty

pe

:

Si

ngl

eI

nt

ege

r

Ma

c

hine

double-pr

ecision

oa

tin g

-p

oin

t

n

um

b

ers

a

re

a

lso

a

v

aila

b le

for

n

umeric

a

nd

gr

aphica

l

applica

t io

ns.

1

23

.21

D

ou

ble

Fl

oat

12

3:2

10

00

000

00

00

01

Ty

pe:

Dou

bl

eF

loa

t

The

nor

mal

o

ating-

p

o

in

t

t

yp

e

in

A x

iom,

Fl

oa

t,

is

a

so

f t

w

ar

e

implemen

tation

o

f

o

ating-

p

o

in

t

n

u m

b

er

s

in

whic

h

the

exp

onen

t

and

the

m a

n

tissa

m a

y

ha

v

e

a

n

y

background image

9

2

CHAPTE

R

3.

ST

A R

TING

AXIOM

d

igi

ts

(40

);

ex

p(

%p

i

*

s

qrt

1

63

.0)

2

62

53

74

1

2

64

07

68

74

3:9

99

99

99

99

9

992

50

07

25

9

76

Ty

pe

:

Fl

oat

Here

ar

e

co

mpl e

x

n

um

b

ers

with

ra

tional

n

um

b

er

s

background image

3

.8.

N UMBE

RS

9

3

u

+

v

i

Typ

e:

C

om

ple

x

Po

lyn

om

ial

I

nt

ege

r

O

f

cour

se,

y

ou

can

do

co

m plex

ar

it hmetic

with

these

also

.

%

*

*

2

v

2

+

u

2

+

2

u

v

i

Typ

e:

C

om

ple

x

Po

lyn

om

ial

I

nt

ege

r

E

v

e

ry

r

ationa

l

n

u m

b

er

haor6 Tf105 26.16 T8ehaor6 Tf105

background image
background image

3

.8.

N UMBE

RS

9

5

Since

7

is

prime,

y

ou

can

in

v

er

t

nonzer

o

v

a

lues.

1

/x

3

T

yp

e:

P

rim

eF

ie

ld

7

Y

o

u

can

also

co

m pute

mo

dulo

an

i n

t eg

er

th a

t

is

n o

t

a

prime.

y

:

I

nt

eg

erM

od

6

:=

5

5

T

yp

e:

I

nte

ge

rM

od

6

All

o

f

th e

usual

ar

i thmetic

o

p

er

ations

ar

e

a

v

aila

bl e

.

y

**

3

5

T

yp

e:

I

nte

ge

rM

od

6

In

v

er

sion

is

noTd(eI(e:)Tj21 0 (e:)Tj4b:)Tj21Td(5)Tj/R81 0.12yp

Qd(5)Tj/RnfTodnoT1

background image

9

6

CHAPTE

R

3.

ST

A R

TING

AXIOM

This

denes

a

to

b

e

a

n

alg

ebra

i c

n

um

b

e

r,

that

is,

a

background image

3

.9.

D

A

T

A

STR

UCTURES

9

7

2

/%

+1

0

a

4

a

3

+

2

a

2

a

+

1

b

3

+

a

4

a

3

+

2

a

2

a

+

1

b

2

+

a

4

a

3

+

2

a

2

a

+

1

b

+

a

4

a

3

+

2

a

2

a

+

3

1

A

0

a

4

a

3

+

2

a

2

a

+

1

b

3

+

a

4

a

3

+

2

a

2

a

+

1

b

2

+

a

4

a

3

+

2

a

2

a

+

1

b

+

a

4

a

3

+

2

a

2

a

+

1

1

A

Ty

pe:

Ex

pre

ss

ion

I

nt

ege

r

B

u t

w

e

need

t o

r

ationa

background image

9

8

CHAPTE

R

3.

ST

A R

TING

AXIOM

u

:=

[

1,-

7,

11â„„

background image

3

.9.

D

A

T

A

STR

UCTURES

9

9

1;

7;

1

1;

9

T

yp

e:

L

ist

I

nt

ege

r

A

st

r

e

a m

is

a

structure

that

(p

o

t e

n

t ia

lly)

h a

s

a

n

innite

n

um

b

er

of

disti nct

e

l e

m en

t s

.

Think

o

f

a

strea

m

as

an

\

in nite

list"

where

elemen

ts

a

re

co

mpu ted

s

uccessiv

ely

.

Cr

ea

t e

an

in nite

strea

m

of

f a

ct o

re

d

in

teger

s.

Only

a

certa

i n

n

um

b

background image

1

00

CHAPTE

R

3.

ST

A R

TING

AXIOM

O

n e

-dim e

n s

ional

ar

ra

ys

a

re

also

m

u ta

ble:

y

ou

c

an

c

hang

e

their

cons

t ituen

t

elemen

ts

\in

pla

ce."

a

.3

:=

11

;

a

1

;

7

;

11

;

3

2

Ty

pe

:

On

eD

ime

ns

ion

al

Ar

ray

F

ra

ti

on

In

te

ger

Ho

w

ev

er,

one-

dim e

n s

ional

ar

ra

ys

a

re

not

exible

str

u c

t ur

es.

Y

o

u

canno

t

d e

-

str

u c

t iv

ely

ona t!

them

tog

et her

.

on

at

!(a

,o

neD

im

en

sio

na

lAr

ra

y

[1,

-2

â„„)

T

he

re

ar

e

5

e

xp

ose

d

and

0

u

nex

po

sed

l

ibr

ar

y

ope

ra

tio

ns

n

ame

d

on

a

t!

hav

in

g0.12 Tf-308.28ysedOn

background image

3

.9.

D

A

T

A

STR

UCTURES

10

1

A

exi blea rr

background image
background image

3

.9.

D

A

T

A

STR

UCTURES

10

3

Typ

e:

Mul

ti

set

I

nt

ege

r

A

t

a ble

i s

conceptually

a

set

of

\

k

ey{

v

alue"

p a

irs

and

is

a

gener

aliza

t io

n

of

a

m

u ltiset.

F

or

e

xamples

of

ta

b le

s,

s

background image

1

04

CHAPTE

R

3.

ST

A R

TING

AXIOM

d

ani

el

:

R

eo

rd

(a

ge

:

In

te

ge

r,

sa

lar

y

:

background image

3

.10

.

E

X P

AN DING

TO

H IGHER

D IME

N SIO

N S

10

5

3.10

Expa n

ding

to

Higher

Di mensions

T

o

g

et

higher

dim e

n s

ional

ag

gr

ega

t e

s,

y

background image
background image

3

.11

.

WRITING

Y O

UR

O

W N

FUNCTIONS

10

7

n

u m

b

er

s

a

s

co

eÆcien

ts.

Mor

eo

v

er,

t he

libr

ar

y

pro

vides

a

w

background image

1

08

CHAPTE

R

3.

ST

A R

TING

AXIOM

This

f unction

is

less

background image

3

.11

.

WRITING

Y O

UR

O

W N

FUNCTIONS

10

9

Ty

pe

:

Po

si

tiv

eI

nt

ege

r

The

libr

ar

y

v

er

sio

n

use

s

an

a

lgo

rithm

that

is

dieren

background image

1

10

CHAPTE

R

3.

ST

A R

TING

AXIOM

Cr

eate

a

n

exa

mpl e

matrix

to

p

er

m

ut e.

m

:=

m

atr

ix

[

[4

*i

+

j

for

j

i

n

1

..

4â„„

fo

r

i

i

n

0..

3â„„

2

6

6

4

1

2

3

4

5

6

7

8

9

10

1

1

1

2

13

14

1

5

1

6

3

7

7

5

T

ype

:

Ma

tr

ix

In

te

ger

In

ter

c

hang

e

the

se

cond

a

nd

background image

3

.11

.

WRITING

Y O

UR

O

W N

FUNCTIONS

11

1

1

:0

T

ype

:

F

loa

t

Her

e

w

e

dene

o

u r

o

wn

(user

-dened)

f unction.

os

inv

(y

)

==

o

s(1

/y

)

Typ

e:

Voi

d

P

a

ss

t his

f unction

a

s

an

a

rg

um en

t

t o

t.

t

(

osi

nv

,

5.2

05

8)

1:

3

background image
background image

3

.12

.

P

OL

YNOMIALS

11

3

m

:

MP

OL

Y(

[x,

yâ„„

,IN

T)

:

=

(

x*

*2-

x*

y**

3+

3*

y)*

*2

x

4

2

y

3

x

3

+

y

6

+

6

y

x

2

6

y

4

x

+

9

y

2

Ty

pe

:

Mu

lt

iva

ri

ate

Po

lyn

om

ia

l([

background image

1

14

CHAPTE

R

3.

ST

A R

TING

background image

3

.14

.

SE

R IE

S

11

5

l

im

it(

sq

rt

(y*

*2

)/y

,y

=

0)

[l ef

tH

andLi

mit

=

1

;

r

ig

htH

andL

imi

t

=

1]

Ty

pe:

Uni

on

(R

eo

rd

(le

ft

Ha

ndL

im

it:

Uni

on

(O

rde

re

dCo

mp

le

tio

n

Ex

pr

ess

io

n

Int

eg

er,

"f

ail

ed

")

,ri

gh

tHa

nd

Li

mit

:

U

nio

n(

Ord

er

ed

Com

pl

eti

on

E

xpr

es

sio

n

Int

eg

er

,"f

ai

led

")

),

...

)

AsTy6Td())Tj/R81 0.915.72 0pprTd(s)Tj

background image

1

16

CHAPTE

R

3.

ST

A R

TING

AXIOM

T

yp

e:

U

ni

var

ia

te

Pui

se

uxS

er

ies

Tnr

te

background image

3

.14

.

SE

R IE

S

11

7

f

*

*

2

1

+

2

background image

1

18

CHAPTE

R

3.

ST

A R

TING

AXIOM

E

v

a

luate

the

serie

s

a

t

the

v

background image

3

.15

.

DERIV

A

TIVES

11

9

Y

o

u

ca

n

als

o

comput e

par

tial

d er

iv

ativ

es

b

y

sp

ecifying

t he

or

der

of

diere

n

t ia

-

tio

n .

g

:

=

s

in

(x

**2

+ Td(n)Tj5.28 -1000(0/R81 0.12 Tf262.2 0 Td(11)Tj9.96 0 Td(9)Tj-338.64 2 0 27(x)Tj2

background image

1

20

CHAPTE

R

3.

ST

A R

TING

AXIOM

Y

ou

c

an

use

F,

x ,

and

y

in

expr

essio

ns.

a

:=

F

(x

z,

y

z,

z

**2

)

+

x

y

(z

+1)

x

(y

( z

+

1))

+

F

x

(z

 0 Td(+)Tj10.567[(; 0 4Td[yA)-10 0 cm BT/R81 12 Tf Tf6.84 0 Td(()Tj/R24 0.12 Tf3.96 0 Td(z)Tj/R815sio

 0 Td(+)Tj10.567[(; 0 4Td[zA)-10 0366

F

background image

3

.16

.

INTEGRA

TION

12

1

0

B

B

B

B

2

z

2

+

2

z

background image

1

22

CHAPTE

R

3.

ST

A R

TING

AXIOM

omp

le

xIn

te

gra

te

(1

/(x

**

2

+

a

),

x)

lo

g

x

p

a+a

p

a

log

x

p

a

a

p

a

2

p

a

T

yp

e:

E

xp

res

si

on

In

te

ger

The

f o

llo

wing

t

w

o

examples

illu s

t r

ate

t he

limit a

t io

ns

o

f

table-ba

sed

appro

ac

hes.

The

t

w

o

in

tegr

ands

ar

e

v

ery

similar

,

but

the

a

nsw

er

to

one

of

them

r

equires

the

a

d dition

of

t

w

o

new

alg

eb r

aic

n

um

b

ers.

This

o

ne

is

t he

e

asy

o

ne.

The

next

one

lo

o

ks

v

ery

s

i mila

r

but

the

a

nsw

er

is

m

uc

h

more

co

m plica

t ed.

i

nte

gr

ate

(x

**3

/

(

a+b

*x

)**

(1

/3

),x

)

12

0

b

3

x

3

13

5

a

b

2

x

2

+

1

62

a

2

b

x(3)Tj/R395 0.12 T 0 i72 Tf6.72 3.72 T4(b)Tj/R366 0.12 1

62

background image

3

.16

.

INTEGRA

TION

12

3

c

onclusiv

e

ly

pr

o

v

es

that

an

in

tegr

al

canno

t

b

e

expres

sed

i n

terms

o

f

elemen

tar

y

functions.

When

A x

iom

returns

a

n

i n

t eg

ra

l

sign,

it

has

pr

o

v

ed

th a

t

no

answ

er

exists

a

s

an

e

l e

m en

t a

ry

f unction.

i

nt

egr

at

e(

log

(1

+

sq

rt

(a*

x

+

b

))

/

x,

x)

Z

x

log

p

b

+

%Q

a

+

1

%Q

d%Q

T

yp

e:

U

nio

n(

Exp

re

ss

ion

I

nte

ge

r,

...

)

Axio

m

can

ha

ndl e

complica

t ed

mixed

f unctions

m

u c

h

b

ey

o

n d

wh a

t

y

o

u

can

 nd

in

background image

1

24

CHAPTE

R

3.

ST

A R

TING

AXIOM

1.

If

x

=

tan

t

and

g

=

t a

n(t=3

)

then

the

follo

wing

a

lgebr

aic

r

elation

is

t r

background image

3

.17

.

DIFF E

RENTIAL

E

QUA

TIONS

12

5

y

:

=

o

pe

ra

tor

'

y

y

Ty

pe

:

Ba

si

Op

er

ato

r

Her

e

w

e

so

lv

e

a

third

or

d e

r

eq

u a

tion

with

p

olyno

mial

co eÆ c

ien

ts.

d

eq

:=

x

**

3

*

D

(y

x,

x

,

3

)

+

x

**

2

*

D

(y

x,

x

,

2

)

-

2

*

x

*

D(

y

x

,

x

)

+

2

*

y

x

=

2

*

x

**

4

x

3

y

;;;

( x)

+

x

2

y

;;

( x)

2

x

y

;

( x)

+

2

y

(x)

=

2

x

4

T

ype

:

Eq

ua

tio

n

Ex

pre

ss

ion

I

nt

ege

r

s

ol

ve(

de

q,

y,

x

)

h

par

tiu

l

ar

=

x

5

10

x

3

+20

x

2

+4

15

x

;

b

asis

=

2

x

3

3

x

2

+

1

background image
background image

3

.18

.

SOL

U TIO

N

OF

E

QUA

background image

1

28

CHAPTE

R

3.

ST

A R

TING

AXIOM

T

yp

e:

V

oid

Find

the

re

al

r

o

ots

of

S

(1

9)

with

r

ationa

l

ar

it hmetic,

co

rr

ect

to

wit hin

background image

3

.18

.

SOL

U TIO

N

OF

E

QUA

TIONS

12

9

e

qn

s

:

=

[x

**2

-

y

+

z,

x**

2*

z

+

x

**4

-

b

*y,

y

**2

*

z

-

a

-

b*

xâ„„

*

background image
background image

C

hapte r

4

G

raphis

Figure

4.1

:

background image

1

32

CH AP

TER

4

.

GRAPHICS

background image

13

3

Pl

otting

2D

gra phs

of

1

v

ariable

The

gener

al

fo

rmat

fo

r

dr

a

w

i ng

a

fu nctio

n

dened

b

y

a

for

m

ula

f

(x )

is

:

d

raw

(f

(x

),

x

=

a

..

b,

o ptions)

wher

e

a

: :b

denes

th e

r

ange

o

f

x ,

and

wher

e

background image

1

34

CH AP

TER

4

.

GRAPHICS

Plo

t ti

ng

2D

para m

background image

13

5

Pl

otting

2D

a l

gebrai

 urv

es

The

g

enera

l

f o

rma

t

fo

r

dra

wing

a

non-

singular

so

lu tio

n

c

u r

v

e

giv

e

n

b

y

a

p

olyno

mial

o

f

th e

f o

rm

p( x;

y

)

=

0

is:

dr

aw

(p

(x,

y)

=

0,

x,

y

,

ran

ge

==

[

a.

.b,

..d

â„„,

op t

i ons)

wher

e

th e

s

econd

a

n d

third

ar

gumen

ts

na

m e

the

rs

t

a

nd

s

econd

indep

e

n den

t

v

a

riables

of

p.

A

r

an

ge

option

is

a

lw

a

ys

g

iv

en

to

designa

te

a

b

ounding

r

ectang

u la

r

r

egio

n

of

the

plane

a

x

b

;

y

d.

Z

ero

or

mor

e

additi o

nal

o

pt io

ns

a

s

des

crib

ed

in

4

.0.1

on

pa

ge

13

6

m a

y

b

e

giv

en.

A

third

k

i nd

o

f

t

w

o-

dim e

n s

ional

g

ra

background image

1

36

CH AP

TER

4

.

GRAPHICS

co

me

to

a

p

o

in

t

(cusp).

Algebr

aica

lly

background image

13

7

adaptiv

e

T

h e

ad

apt

iv

e

o

pti o

n

turns

ada

p tiv

e

plotting

o

n

o

r

o

 .

Ada

p tiv

e

plotting

us

es

a

n

background image

1

38

CH AP

TER

4

.

GRAPHICS

background image

13

9

Fig

u r

e

4

.6:

Tw

o-dimensio

nal

co

n

tro

l-panel.

background image
background image

14

1

Pi

k :

k :

background image

1

42

CH AP

TER

4

.

GRAPHICS

ax e

sCol

orD e

f ault

([

o l

or (dar k

bl ue()) ])

sets

o

r

indica

t es

th e

def a

ult

colo

r

o

f

t he

axes

in

a

t

w

o-

dim e

n s

ional

gr

aph

viewp

o

rt.

li

pP

oi

n

ts

darda(ul)

(

[o

background image
background image

1

44

CH AP

TER

4

.

GRAPHICS

regi

on

(

viewp

o rt,

int e

ge r(1) ,

str i

ng ("of f"))

d e

clar

es

whether

g

ra

ph

i nt

e

ger

is

or

is

no

t

to

b

e

displa

y

ed

wit h

a

b

o

undi ng

rectang

le.

rese

t

(vi

e wp

or

background image
background image

1

46

CH AP

TER

4

.

GRAPHICS

p

8

:

=

poi

nt

[.

5,

1â„„

$(P

oi

nt

DF

LO

AT)

background image
background image

1

48

CH AP

TER

4

.

GRAPHICS

p

3

:=

pa

st

el

ye

ll

ow(

)

[ Hue:

1

1W

eigh

t:

1

:0]

fr

om8i48 20 TdasTj4.6 te

background image
background image

1

5068 762571 0.12 Tf216.482 0 Td[(CH)-1000(AP)]TJ284.92 0 TdTER068 24.792 0 Td41

background image
background image
background image

15

3

f

or

p

in

lp

r

epe

at

o

mp

on

ent

(g

,p,

po

in

tCo

lo

rDe

fa

ult

()

,l

ine

Co

lor

De

fa

ult

()

,

po

in

tSi

ze

De3f0sCdfafa

inin

lorp

lorplorin

ofa

m(in)Tj15.72 0ak())Tj10.44 0 TdViinine

on

inlorpoinDe3f0sCdDe

,3ze)

De

background image

1

54

CH AP

TER

4

.

GRAPHICS

background image

15

5

Pl

otting

3D

fun tio

ns

of

2

v

a riabl

es

The

gener

al

f o

rma

t

f o

r

dra

wing

a

surfac

e

dened

a

background image

1

56CH AP1t tipara metr ispac ec urv

background image

15

7

Pl

otting

3D

pa ram

etri

surfa es

background image

1

58

background image

15

9

4.0.9

Three- Di

m

en si

ona l

Con

trol

-P

ane l

O

nce

y

oC7ron

background image

1

60

CH AP

TER

4

.

GRAPHICS

ob

je

 t:

The

ob

jet

button

indicates

that

the

ro

tation

is

to

o

ccur

with

res

p

ec

t

to

t he

cen

ter

o

f

v

o

l ume

o

f

t he

o

b

ject,

indep

enden

t

of

the

ax

es'

or

igin

p

os

it io

n.

Sa l

e:

A

scaling

t r

ans

f o

rmatio

n

o ccurs

b

y

clic

king

t he

mo

use

background image
background image

1

62

CH AP

TER

4

.

GRAPHICS

BW

co

n

v

er

ts

a

co

lor

viewp

or

t

to

b la

c

k

and

whi te,

or

vic

e-v

e

rsa

.

When

this

b utton

is

selected

th e

con

tr

ol-pa

nel

and

viewp

or

t

switc

h

to

a

n

imm

ut a

ble

colo

rmap

co

mp

o

sed

o

f

a

ra

nge

o

f

gr

ey

sca

le

patterns

or

t iles

t ha

t

ar

e

used

wh e

rev

eTj8.88 s is

neces

sar

y

.

Ligh

t

ta

k

esj8.88 s

background image

16

3

Vi

ew

V

ol

um

e

The

V i

ew

V

o

lum

e

but to

n

c

hang

es

the

co

n

background image

1

background image

16

5

s

etAda pti

v

e3D

(b

o

ol

e 0 Td e(o)Tj4.39[Tjt6 0 Tdrue)D16

background image
background image

16

7

vi

ewS ale

D e

f aul

t

([o

a t

background image

1

68

CH AP

TER68TER

background image

C

background image

1

70

CHAPTE

R

5.

U SING

TYPE

S

AND

M O

D E

S

-

3

3

Ty

pe

:

In

te

ger

Here

w

e

crea

te

a

r

ationa

l

n

um

b

er

bu t

i t

lo

oks

lik

e

the

las

t

res

ult .

background image

5

.1.

TH E

BASIC

I

D E

A

17

1

An

y

doma

in

can

b

e

re

 ned

t o

a

su

b

d omai n

b

y

a

mem

b

er

ship

p

re

di

at

e.

A

p

re

di

at

e

is

a

f unction

t ha

t ,

when

a

pp244 0 an

background image

1

72

CHAPTE

R

background image

5

.1.

TH E

BASIC

I

D E

A

17

3

background image

1

74

CHAPTE

R

5.

U SING

TYPE

S

AND

M O

D E

S

P

oly

n o

mial

Squa

reMa

trix(7,Co

mp le

x

In

teg

er)

T

yp

e:

D

om

ain

Another

common

c

atego

ry

is

F

iel

d,

the

cla

ss

o

f

al24 0 4oelds68 0 29 0.12 Tf5A6 0 Td(o)]TJ10eld0 Td(S36y)Tj12.24 0 3 0.12 Tf9a4 0 Td(ss)Tj11Td(An 0.12 Tf9ing 0 Td((om)Tj10with 0 T1 04S36yTd88 Tf9a4 0 40(O)]TJ16.d 0 Td[ditiona-1000(6y)Tj12l28 0 T7,Co)Tj39o6 02Td[era-100004S1O)]TJ16.t 0 Td[i[(n)-101Td(x)Tj8ns68 0 d((o)]TJ10.84 0 Td(x)Tj8or2 0 Tdd(,)Tj5example.28 041Td(x)Tj8a4 0 7Td(o)Tj4eld0 Td(S36y)Tj12ha6 0 Td(om)Tj10s92 0 T9er)Tj38.74 0 3 3,Co

M

background image

5

.1.

TH E

BASIC

I

D E

A

17

5

1.

a

n a

me

(f o

r

e

xample,

R

in

g),

use

d

t o

background image

1

76

CHAPTE

R

5.

U SING

background image

5

.2.

W RITING

TYP

ES

AND

M O

DES

17

7

When

migh

t

y

background image
background image

5

.2.

W RITING

TYP

ES

AND

M O

DES

17

9

If

the

t

y

p

e

it se

lf

ha

s

pa

ren

t hese

s

a

ro

u nd

it

and

w

e

ar

e

no

t

in

t he

cas

e

o

f

the

r

st

exa

mpl e

ab

o

v

e,

t hen

t he

p a

ren

t hes

es

ca

n

usua

ll y

b

e

omitted.

(

2/

3)

Fr

a

tio

n(

Pol

yn

om

ial

I

nte

ge

r)

2

3

T

ype

:

Fr

a

tio

n

Po

lyn

om

ial

I

nt

ege

r

If

t he

t

yp

e

i s

use

d

in

a

d e

clar

ation

and

t he

ar

gumen

t

is

a

single-

w

or

d

t

y

p

e,

in

t eg

er

or

sym

b

o

l,

th e

n

t he

par

en

theses

can

usua

lly

b

e

o

mi tted.

(

d,

f,g

)

:

Co

mp

lex

P

ol

yno

mi

al

In

teg

er

Typ

e:

Voi

e:

background image

1

80

CHAPTE

R

5.

U SING

TYPE

S

AND

M O

D E

S

?

(In

te

ger

),

Ma

tr

ix(

?

(P

ol

yno

mi

al

)),

Sq

ua

reM

at

ri

x(?

,

Int

eg

er

)

( it

re

-

quir

es

a

n

um e

ric

ar

gumen

t)

a

n d

Sq

ua

reM

at

rix

(?

,

?)

a

re

all

in

v

alid.Fhe 0 Td26.5j-340.32 14 0 Td9re

background image
background image

1

82

CHAPTE

R

5.

U SING

TYPE

S

AND

M O

D E

S

Y

ou

can

alw

a

ys

co

m

bine

a

decla

ra

ti o

n

with

an

a

ssig

nmen

t.

When

y

ou

do,

it

is

equiv

ale

n

t

t o

r

st

giv

i ng

a

declar

atio

n

statemen

t,

then

g

i v

in g

a

n

Scan(n76TJ16.68 0 Td4ar)Tj26:0 Td(sine)Tj21I16 05(st)Tj1(nte0 Td(sine)Tj21s(n)Tj96TJ16.68yV[T8f1e)Tj21I16 05(yp)Tj21s(n)Tj9e:Tj8.0n

background image

5

.3.

D E

CLARA

TIO

N S

18

3

(

p,

q,r

)

:

Ma

tr

ix

Po

ly

nom

ia

l

?

Typ

e:

Voi

d

h(ia)Tj10.44 0 Tdhis7.3.72 0 Tdnis8.0.44 0 Tdeg(?)Tj..72 0 Td(tr)Tj138.62 0 Tdrea(?)Tj.3.72 0 Td(l)T6 0.12 0 Tdan(d)T1910.44 0 Tdmaoir(ly)Tj218.48 0 Tdp(N)-100a(E)]TJ10.56 0 Tdrts.(3)Tj/R83 0.12 Tf2-3388 24 0.12 Td)

:l:

d5d3

background image

1

84

CHAPTE

R

5.

U SING

TYPE

S

AND

M O

D E

S

i

x

+

1

7

y

+

4

i

T

yp

e:

M

atr

ix

Po

ly

no

mia

l

Com

pl

ex

In

te

ger

Note

the

dierence

b

et

w

een

this

a

nd

t he

n e

xt

example.

This

is

a

complex

ob

ject

with

p

olyno

m ia

l

r

eal

a

nd

imag

inary

par

ts.

f

:

C

OMP

LE

X

P

OL

Y

?

:

=

(x

+

7

background image

5

.4.

RECO

R DS

18

5

Ty

pe

:

Re

or

d(

a:

I

nt

ege

r,

b:

S

tr

ing

)

T

o

acce

ss

a

co

mp

o

nen

a

background image
background image

5

.4.

RECO

R DS

18

7

Rec

ords

ma

y

b

e

nested

and

the

selec

t o

r

na

mes

ca

n

b

e

shar

ed

at

dieren

t

lev

els.

r

:

R

e

or

d(a

:

R

e

or

d(b

:

In

te

ger

,

:

I

nt

ege

r)

,

b:

I

nte

ge

r)

Typ

e:

Voi

d

The

reco

rd

d

background image
background image

5

.5.

U NIO

N S

18

9

It

is

p

os

sible

to

cre

ate

unio

n s

lik

e

Un

io

n(

Int

eg

er,

P

osi

ti

ve

Int

eg

er)

but

they

a

re

diÆ c

u lt

to

w

o

rk

with

b

e

cause

of

the

o

v

erla

p

in

the

bra

nc

h

t

background image

1

90

CHAPTE

R

5.

U SING

TYPE

S

AND

M O

D E

S

1.

A xio

m

nor

mally

co

n

v

erts

a

r

esult

t o

the

tar

get

v

a

lu e

b

efo

re

pa

ssing

it

t o

t he

funct io

n.

If

w

e

left

the

decla

ra

t io

n

in fo

rmation

o

ut

o

f

t his

functi o

n

d e

 nition

th e

n

the

s

a

yBr an

h

background image

5

.5.

U NIO

N S

19

1

3

Ty

pe:

Un

ion

(I

background image

1

92

CHAPTE

R

5.

U SING

TYPE

S

AND

M O

D E

S

5.5.2

Un i

ons

Wi

t

h

Sel

tors

Lik

e

r

ecor

ds,

y

ou

ca

n

wr

it e

background image
background image

1

94

CHAPTE

R

5.

U SING

TYPE

S

AND

M O

D E

S

1

;

7:2

;

3

2

;

x

2

;

"w

al

ly"

Typ

e:

Lis

t

Any

When

w

e

ask

for

th e

elemen

ts,

Axio

m

displa

ys

these

t

yp

e

s.

u

.1

1

Ty

pe:

Pos

it

iv

eIn

te

ger

Actually

,

th e

se

ob

jects

b

elong

to

A

ny

but

A x

iom

automa

t ica

lly

background image

5

.7.

CONVERSION

19

5

B

y

default,

3

has

t he

t

yp

e

Po

si

tiv

eI

nt

ege

r.

3

background image

1

96

CHAPTE

R

5.

U SING

TYPE

S

AND

M O

D E

S

x

3

i

4

y

2

z

+

1

2

3

i

7

y

4

x

60

9

i

5

Ty

pe:

Sq

uar

eM

atr

ix

(2

,Po

ly

nom

ia

l

F

ra

t

ion

C

omp

le

x

Int

eg

er)

In

ter

c

hang

e

the

P

oly

no

mia

l

and

the

F

ra

ti

on

lev

e

l s

.

m

2

:

=

m1

::

S

qu

ar

eMa

tr

ix(

2,

FR

AC

PO

LY

CO

MPL

EX

I

NT)

"

4

x

3

i

4

2

y

2

z

+1

2

3

i

y

4

7

x

7

60

9

i

5

#

Ty

pe:

Sq

uar

eM

atr

ix

(2

,Fr

a

tio

n

Pol

yn

om

ial

C

omp

le

x

Int

eg

er)

In

ter

c

hang

e

the

P

oly

no

mia

l

and

the

C

omp

le

x

le

v

els.

m

3

:

=

m2

::

S

qu

ar

eMa

tr

ix(

2,

FR

AC

CO

MPL

EX

PO

LY

I

NT)

"

4

x

3

i

4

2

y

2

z

+1

2

background image

5

.7.

CONVERSION

19

7

c

atego

ry

background image
background image

19

9

F

ur

t her

m o

re

,

unl e

ss

y

o

u

a

re

a

ssig

n ing

an

in

t e

Tm-e.84 0 Tdtore

aaTm-).84 Td(GAIN)Tj/100012 06ug1(Tf22.84 Td3GAIN)Tj/59cm B24.

background image

2

00

CHAPTE

R

5.

U SING

TYPE

S

AND

M O

D E

S

T

yp

e:

F

ra

ti

on

In

te

ger

It

mak

es

sense

t hen

tha

t

t his

is

a

list

o

f

background image
background image

2

02

CHAPTE

R

5.

U SING

TYPE

S

AND

M O

D E

S

Ty

pe

:

Fl

oat

P

erha

ps

w

e

a

background image

5

.9.

P

A

CK

A

GE

CALLING

AND

T

A R

G E

T

TYP

ES

20

3

So

met imes

it

m a

k

es

sense,

a

s

in

this

expr

essio

n,

to

s

a

y

\c

ho

os

e

th e

op

era

tions

in

t his

expres

sion

so

t ha

t

t he

nal

r

esult

is

Flo

at.

(

2/

3)

Fl

oa

t

0:6

66

66

66

66

666

66

66

66

67

T

ype

:

F

loa

t

Her

e

w

e

used

\

background image

2

04

CHAPTE

R

5.

U SING

TYPE

S

AND

M O

D E

S

This

sa

ys

th a

t

the

o

p

e

ra

t io

ns

s

hould

b

e

c

hos

en

so

that

t he

re

sult

is

a

Po

lyn

om

ial

o

b

j e

ct .

(

(x

+

y

*

%

i)*

*2

)

(Po

ly

nom

ia

l

Com

pl

ex

In

teg

i(eU.%m0(e)(re)Tj8.2i 0 Td(s)Tj3.8x0 Td(is)Tjy Td(ial)Tj/R81 7eU.pfyTd(+ Td(i(eU.%m0(e)9 Tf0)10.4x 0 Tlud66eU.%m0(e)NG)â„„T-d()10.42 Td(ia)â„„TJ/R83 03d(s)TYP3327.96T 0 Td(%)Tj5.1ype Td(teg)Tj15.7: Td(teg)Tj15.72 0 Td(Po)Tj10.44 0 Td(ly)Tj10.44 0 Td(ly)Tj10.4m2 0 Td(Po)Tj15.72 0 Td(l)Tj10.44 0 Td(Com)Tj15.72 0 Td(pl)Tj10.44 0 Td(ex)Tj15.72 0 Td(In)Tj10.44 0 Td(In)Tj10.4g2 0 Td(ial)Tj/R81 0.12 Tf%(Com)TW 0 Td(t7 Tf0)10.4d 0 Td3(2)Tj4.9y 0 Td0)Tj10.4 12 Td(o)Tj4.(u0 Td(ra)Tj8.88 0 Td[(hink)-100oul)Tj10.4m2ghTd(Thi2)â„„TJ14.4 0 T0.12 Tf7.3h 0 Td(ia)Tj10.92 0 Td[(p0 Td[(bn)-100o4om)Tj15.72f 0 T9 2)â„„TJ14.w 0 Td(s)Tj3.8e 0 T0.a

background image

5

.10

.

RE

S O

L

VING

TYPE

S

20

5

1

8

1

6

1

4

1

9

Ty

pe:

Mat

background image
background image
background image

2

08

CHAPTE

R

5.

U SING

TYPE

S

AND

M O

D E

S

ate

go

rie

s

A

be

lia

nG

ro

up

A

BE

LGR

P

A

be

lia

nM

on

oid

A

BE

LMO

N

A

be

lia

nM

on

oid

Ri

ng

A

MR

A

be

lia

nS

em

iGr

ou

p

A

BE

LSG

A

gg

reg

at

e

A

GG

A

lg

ebr

a

A

LG

EBR

A

A

lg

ebr

ai

a

lly

Cl

ose

dF

ie

ld

A

CF

A

lg

ebr

ai

a

lly

Cl

ose

dF

un

ti

on

Spa

e

A

CF

S

A

r

Hyp

er

bo

li

Fu

nt

io

nC

ate

go

ry

A

HY

P

.

..

F

or

eac

h

co

nstructor

in

a

gr

oup,

the

f ull

name

a

n d

the

abbre

viation

is

g

i v

en.

Ther

e

a

re

other

gr

oups

in

e

x p

o

sed.

ls

p

but

init ia

lly

o

nly

the

constr

u c

t o

rs

in

exp

os

ure

g

ro

ups

\

basic"

\

categ

or

ies"

\na

glink"

and

\

anna

"

a

re

exp

osed.

As

an

in

t er

activ

e

user

o

f

Axiom,

y

o

u

do

background image

5

.12

.

CO

MM AND S

F

OR

SNOO

PING

20

9

This

is

a

p

olyno

mi a

l.

x

+

x

2

x

Ty

pe:

Po

lyn

om

ial

I

nt

ege

r

E

xp

ose

Ou

tpu

tF

or

m.

)

se

t

e

xp

os

e

a

dd

o

ns

tr

ut

or

Ou

tp

utF

or

m

Out

pu

tF

orm

i

s

n

ow

e

xpl

i

itl

y

exp

os

ed

in

f

ram

e

G8

232

2

This

is

wha

t

w

e

get

when

O

ut

pu

tFo

rm

is

a

utomatica

l ly

a

v

ailable.

x

+

x

x

+

x

T

ype

:

Ou

tp

ut

For

m

Hide

O

ut

put

Fo

rm

so

w

e

don't

run

in

t o

pro

blems

with

a

n

y

la

ter

e

xamples!

)

se

t

e

xp

os

e

d

ro

p

on

st

ru

to

r

O

ut

put

Fo

rm

Out

pu

tF

orm

i

s

n

ow

e

xpl

i

itl

y

hid

de

n

in

fr

ame

G

82

322

Fina

l ly

,

exp

os

u r

e

is

d o

ne

on

a

f r

ame-

b

y-fra

me

ba

sis.

A

f r

a me

is

one

of

p

o

background image

2

10

CHAPTE

R

5.

U SING

TYPE

S

AND

M O

D E

S

o

p

er

ations

.

T

h e

mos

t

p

o

background image

5

.12

.

CO

MM AND S

F

OR

SNOO

PING

21

1

RM

ATC

AT

-

Re

ta

ngu

la

rM

atr

ix

Cat

eg

ory

&

RM

ATR

IX

Re

ta

ngu

la

rM

atr

ix

SM

ATC

AT

-

Squ

ar

eMa

tr

ix

Cat

eg

ory

&

SQ

MAT

RI

X

Squ

ar

eMa

tr

ix

Similar

ly

,

if

y

ou

wis

h

to

see

a

ll

p a

c

k

a

ges

w

h o

se

na

m e

s

con

t a

in

\g

aus

s"

,

en

ter

this.

)

wh

at

pa

k

age

g

aus

s

-

--

---

--

--

---

--

---

--

--

Pa

k

age

s

---

--

--

---

--

---

--

--

---

-

P

a

kag

es

w

ith

n

ame

s

ma

th

in

g

p

at

ter

ns

:

g

au

ss

GA

USS

FA

C

Gau

ss

ian

Fa

t

ori

za

tio

nP

ak

ag

e

This

co

m ma

background image

2

12

CHAPTE

R

5.

U SING

TYPE

S

AND

M O

D E

S

)

dis

pl

ay

op

era

ti

on

o

mp

lex

T

her

e

is

on

e

e

xp

os

ede

background image

C

hapte r

6

U

si

ng

Hy

p

erDo

Fig

ure

6.1:

The

Hyp

er

D o c

r

o

ot

windo

w

pa

ge

Hyp

erDo

c

is

the

ga

t ew

a

y

to

Axio

m.

It's

b

oth

an

on-line

tut o

ria

l

a

nd

a

n

on-line

r

eference

ma

n

ual.

It

also

enables

y

ou

to

use

Axio

m

s

im ply

b

y

using

the

m o

use

a

nd

llin g

in

background image
background image

6

.3.

SCR

OLL

BARS

21

5

Do

wn

Arr o

w

Scro

ll

do

wn

one

line.

P

a g

e

Up

Scr

oll

up

o

ne

pag

e.

P

a g

e

ro

ll

Sr

oll

do

wn

o

ne

pag

background image

2

16

CHAPTE

R

6

.

USIN G

HYPE

RD O

C

The

inpu t

ar

ea

g

ro

ws

to

a

ccommo

date

as

m a

n

y

c

ha

ra

cters

a

s

y

o

u

t

yp

e.

Use

the

Ba

k s

pa e

k

ey

to

era

se

c

ha

ra

ct er

s

to

t he

left .

T

o

mo

dif y

wha

t

y

o

u

t

y

p

e,

u s

e

the

r

igh

t -

ar

ro

w

!

background image

6

.7.

EXAMPLE

P

A

GE

S

21

7

The

glos

sar

y

ha

s

an

input

ar

ea

a

t

it s

b

o

tt o

m.

W

e

review

t he

v

a

rio

u s

kinds

o

f

s

ear

c

h

s

t r

ings

y

o

u

can

en 0 Td

background image

2

18

CHAPTE

R

6

.

USIN G

HYPE

RD O

C

its

t ex

t !

Wh en

y

o

u

d o

,

the

example

lin e

is

co

p ie

d

in

to

a

new

in

tera

cti v

e

A x

iom

bu e

r

for

this

Hyp

erDo

c

page

.

Sometimes

one

exa

mple

line

ca

n no

t

b

e

run

b

efor

e

y

o

u

r

un

a

n

ea

rlier

one.

Don't

w

o

r0 Td[(U2F[(d)-1000(o)]T447.4 0 Tmaticalld(y)4349.44 0 Td(sne.)Tjj12 0 Tdllits)Tj4.92 0 Td(the)T7j8.16 0 Tdc(un)Tj20.28 0 Tesstera

background image
background image
background image

C

hapte r

7

I

nput

Fil

es

and

Output

St

y

les

In

this

c

ha

p ter

background image
background image

7

.3.

COMMON

FE

A

TURE

S

OF

USING

OUTP

U T

F

ORMA

TS

22

3

background image

2

24

CHA P

TER

7.

background image

7

.5.

TEX

F

O

RMA

T

22

5

T

ur

n

T

E

X

output

on

a

ga

in.

)

se

t

o

ut

pu

t

t

ex

on

The

c

har

acters

u s

ed

f o

r

the

m a

trix

bra

c

k

ets

ab

o

v

e

a

re

ra

ther

ugly

.

Y

ou

g

et

this

c

har

acter

set

when

y

ou

iss

u e

)s

et

ou

tp

ut

h

ara

t

ers

p

la

in.

This

c

ha

ra

cter

s

et

should

b

e

used

wh e

n

y

o

u

ar

e

r

u nning

on

a

mac

hine

th a

t

do

es

n o

t

supp

o

rt

the

IBM

ex

t ended

ASCI

I

c

har

ac

t er

set.

If

y

o

u

ar

e

running

o

n

an

IBM

w

or

k-

s

t a

tion,

for

example,

i s

sue

)se

t

out

pu

t

ha

ra

te

rs

d

efa

ul

t

t o

get

b

et

background image

2

26

CHA P

TER

7.

IN P

UT

FILES

A ND

OUTP

U T

STY LE

S

\

def

\

sh

{\

mat

ho

p{

\rm

sh

}\

no

lim

it

s}

\

def

\e

rf{

\m

ath

op

{\

rm

er

f}\

no

li

mit

s}

\

def

\z

ag#

1#

2{

{{

\h

fil

l

\le

ft

.

{#1

}

\ri

gh

t|

}

\

ov

er

{

\l

eft

|

{#2

}

\r

igh

t.

\h

fi

ll

}

}

}

7. 6

IBM

Sript

F

o rm

ula

F

o rmat

Axiom

can

pr

o

duce

IBM

Script

F

or

m

ula

F

o

rmat

o

background image

7

.7.

F

OR

TRAN

F

ORMA

T

22

7

Since

so

me

v

er

sio

n s

of

F

OR

TRAN

ha

v

e

restr

ict io

ns

on

the

n

um

b

e

r

of

lines

p

er

sta

t emen

t ,

Axiom

brea

ks

long

expr

essio

ns

in

t o

s

egmen

ts

wit h

a

maxim

um

o

f

13

20

c

har

acter

s

(20

li nes

of

66

c

ha

ra

ct er

s)

p

e

r

seg

men

t.

If

y

ou

w

an

t

c

longj4.92 0 Td8n s6cwayTj10.44 , Td(w)Tj6.84 0 Td[(t)-1000(o)]ysegchara66haued(seg)th

background image

2

28

background image

7

.7.

F

OR

TRAN

F

ORMA

T

22

9

Ty

pe:

Po

lyn

om

ial

I

nt

ege

r

This

c

background image

2

30

CHA P

TER

7.

IN P

UT

FILES

A ND

OUTP

U T

STY LE

S

R8=

SI

N(E

XP

background image
background image
background image

C

hapte r

8

Axi

om

Sy

stem

Commands

This

c

ha

p ter

descr

ib

es

sys

t e

m

commands,

the

co

mmand-line

facilities

u s

ed

to

c

on

background image
background image

8

.2.

) ABB

R E

VIA

TIO

N

23

5

8.2

)a b

brevi ati on

Use

r

Lev

e

l

R

equired:

compiler

background image

2

36CH AP

background image

8

.5.) CL

background image

238

background image

8

.7.

) CO

MPILE

23

9

)

l

ear

v

al

ue

al

l

)

l

ear

v

a

ll

This

re

t a

ins

wha

t e

v

er

decla

ra

t io

ns

the

ob

jects

h a

d.

T

o

r

emo

v

e

d enitions

and

v

a

lues

for

the

sp

ecic

o

b

jects

x

,

y

a

nd

f,

i s

sue

)

l

ear

v

al

ue

x

y

f

)

l

ear

v

x

y

f

T

o

re

m o

v

e

th e

declar

background image

2

40

CH AP

TER

8

.

AXIOM

SYSTEM

COMMAN DS

)o

mp

ile

l eName.a

l

)o

mp

ile

di r

e

Desriptio(mp)51.20.44 0 Tn:ile

background image

8

.38) CO

background image

2

42

CH AP

TER

8

.

AXIOM

SYSTEM

COMMAN DS

-

O

-

Fa

sy

-F

ao

-F

ls

p

-

la

xio

m

-M

no-

AX

L_W

_W

ill

Ob

so

let

e

-DA

xi

om

These

options

mean:

-O:

p

er

f o

rm

all

o

pt imiza

t io

ns,

-Fa

sy

:

gener

ate

a

.

asy

le,

-Fa

o:

g

enera

t e

a

.a

o

le,

-Fl

sp

:

gener

ate

a

.

background image

8

.7.

) CO

MPILEMPILE

background image

2

44

CH AP

TER

8

.

AXIOM

SYSTEM

COMMAN DS

)

om

pi

le

ma

tri

x.

sp

ad

)

edi

t

)

om

pi

le

will

call

the

c

ompiler,

edit,

and

t hen

ca

l l

the

compiler

a

ga

in

o

n

the

le

m

a-

trix.s

pa d.

If

y

o

u

do

no

t

s

p

ecify

a

d ir

e

t

background image

8

.8.

) DISPL

A

Y

24

5

8.8

)displa

y

Use

r

Lev

e

l

R

equired:

i n

t er

preter

Co

m

m

a nd

Syn

tax:

)d

is

pla

y

all

)d

is

pla

y

pro

pe

rti

es

)d

is

pla

y

pro

pe

rti

es

a

ll

)d

is

pla

y

pro

pe

rti

es

[tax:es

[

background image

2

46

CH AP

TER

8

.

AXIOM

SYSTEM

COMMAN DS

background image

8

.10

.

)FIN

24

7

)

sy

ste

m

em

as

/

et

/r

.

tp

ip

c

alls

e

ma

s

background image

2

48

CH AP

TER

8

.

AXIOM

SYSTEM

COMMAN DS

Some

fra

m es

a

re

crea

ted

b

y

the

Hyp

erDo

c

pro

gr

am

background image
background image

2

50

CH AP

TER

8

.

AXIOM

SYSTEM

COMMAN DS

)

hel

p

le

ar

will

displa

y50)

background image

8

.14

.

)HISTOR

Y

25

1

ha

s

b

een

is

sued.

Issuing

eit her

)

se

t

h

is

to

ry

of

f

)

hi

sto

ry

)

off

will

d is

con

tin

ue

t he

reco

rding

of

infor

m a

tion.

Whether

the

facilit

y

is

disa

b led

or

not,y

background image

2

52

CH AP

TER

8

.

AXIOM

SYSTEM

COMMAN DS

)

res

et

will

 us

h

the

in

t er

nal

list

o

f

the

mo

st

r

ecen

t

w

o

rkspa

ce

calcula

t io

ns

so

t ha

t

t he

d a

ta

s

t r

uct ur

es

ma

y

b

e

g

ar

bag

e

co

llect e

d

b

y

the

underly

i ng

Common

Lisp

sy

stem.

Lik

e

)h

ist

or

y

)

h

ang

e,

t his

option

only

has

rea

l

e ect

w

h en

hi s

t o

ry

data

is

b

eing

sa

v

ed

in

a

le.

)

res

to

re

[sav e

d HistoryName

]

co

mp letely

clear

s

the

en

v

iro

n men

t

a

nd

re

store

s

i t

t o

a

s

a

v

ed

s

essio

n ,

if

p

o

ssible.

The

)s

av

e

option

background image

8

.16

.

)LISP

25

3

)l

ib

rar

y

)no

ex

pos

e

Co

m

m

a nd

Des

 ripti

on:

This

comma

n d

repla

ces

the

)lo

ad

sys

t em

command

tha

t

w

as

a

v

aila

b le

in

Axiom

r

elea

ses

background image

2

54

CH AP

TER

8

.

AXIOM

SYSTEM

COMMAN DS

Since

th is

co

mmand

is

only

useful

fo

r

ev

alua

t ing

s

in g

le

expre

ssions

,

t he

)

fin

co

mm a

nd

ma

y

background image

8

.19

.

)QUIT

25

5

8.19

)qui t

Use

r

Lev

e

l

R

equired:

i n

t er

preter

Co

m

m

a nd

Syn

tax:

)q

ui

t

)s

et

qu

it

pr

ot

et

ed

|

un

pr

ote

t

ed

Co

m

m

a nd

Des

 ripti

on:

This

comma

n d

background image

2

56

CH AP

TER

8

.

AXIOM

SYSTEM

COMMAN DS

will

rea

d

the

c

on

ten

ts

of

t he

le

m

a trix.

input

in

t o

Axio

m.

T

h e

\

.i nput"

le

extensio

n

is

o

pti o

nal.

This

co

mmand

remem

b

er

s

the

previo

us

le

y

o

u

edited,

rea

d

or

compiled.

If

y

o

u

do

not

sp

ecify

a

le

na

me,

th e

prev

ious

le

will

b

e

rea

d.

The

)

if

the

re

option

c

hec

ks

t o

see

whet her

the

background image

8

.22

background image

2

58

CH AP

TER

8

.

AXIOM

SYSTEM

COMMAN DS

)

sho

w

POL

Y

INT

)

op

era

ti

ons

)

sho

w

Pol

yn

omi

al

I

nte

ge

r

)

sho

w

Pol

yn

omi

al

I

nte

ge

r

)

op

er

ati

on

s

a

re

a

mong

th e

com

rm2 T

background image

8

.25

.

)SYS TE

M

25

9

This

command

is

used

to

cr

ea

t e

shor

t

synon

yrrop9e624i

background image

2

60

CH AP

TER

8

.

AXIOM

SYSTEM

COMMAN DS

W

e

do

no

t

r

background image

8

.26

.

)TRA

CE

26

1

background image
background image

8

.26

.

background image
background image

8

.28

.

)WH A

T

26

background image

2

66

CH AP

TER

8

.

AXIOM

SYSTEM

COMMAN DS

)ap

ro

pos

p

att

ern1

[p

a t

tern2

.. .]

Com

m

and

Desriptio

n:

This

co

m ma

nd

is

used

background image

8

.29

.

MAKE

FILE

26

7267

background image
background image

Bi

bliograph

y

[1]

Jenks

,

R.J.

and

S uto

r,

R .S.

\Axio

m

{

The

S c-1000u33i 0 Td[eS

background image

I

n dex

Mult iplica

t io

n,

39

E

xp

onen

tiatio

n ,

39

+

Ad dition,

39

Nu mer

ical

N eg

atio

n ,

39

Sub tr

action,

39

=

D iv

ision,

3

9

<

less

t ha

n,

39

<

=

les

s

than

o

r

equal,

39

=

>

blo

c

k

exit,

7

8,

80

,

81

>

gr

eater

than,

3

9

>

=

g

rea

ter

tha

n

or

equa

l,

39

~

L

og

i c

al

Neg

ation,

3

9

)abb,

1

80

)abbr

eviation,

18

0,

2

44

)b

o ot,

2

36

,

25

4,

2

60

,

2

64

)cd,

2

36

,

25

3,

258

)clear

,

5

0,

2

388 Td(+)Tj11.04 0 Td[4)cd,

background image
background image
background image

INDEX

27

3

s

t a

rt-up

pr

ole,

2

22

n,

2

47

r

st,

5

5,

9

8

rst

,

97

r

stD eno

m,

46

r

stN umer

,

4

6

Flexible

A r

ra

ys

,

69

FlexibleAr

ra

y

,

6

7

ex

ib leAr

ra

y

,

1

01

Flo

at,

9

1,

1

69

,

2

01

o

ating

p

o

in

t,

91

fo

n

t ,

21

8

fo

r,

8

5

fo

r

b

y

,

88

fo

r

list,

8

5

fo

r

s

egmen

t,

8

5

F

OR

TRA N,

1

3

F

OR

TRA N

o

utp ut

for

mat,

2

26

a

rr

a

ys,

2

30

br

eak

i ng

in

to

m

ultiple

s

t a

t e

m en

t s

,

2

27

da

t a

t

yp

es,

22

8

in

t eg

ers

vs.

o

ats,

22

8

line

l e

n g

th,

22

7

o

pt imiza

t io

n

lev

el,

22

8

pr

ecisio

n ,

22

9

F

r

action,

18

,

17

4,

17

6,

191

,

2

01

,

2

04

fr

action

pa

rtial,

93

F

r

action(Complex(In

teg

er)),

17

4

F

r

action(In

tege

r),

1

74

fr

actionP

ar

t,

35

fr

ame,

2

09

,

24

7

ex

p

o

sure

and,

2

09

fr

ame

dr

op,

2

48

fr

ame

f1.88 Td(fr)Tj6f1.88 Tdn6 0 Td(24)Tj9.96 0 T(48)T73-88.56 12 Td(fr)Tj6.84 0 Td(ame)Tj21.12 0 Tla(in)Tj16.68 0 Td(st,)Tj13.92 0 Td(24)Tj9.96 0 T(48)T59-92.52 11.88 Td(fr)Tj6.84 0 Td(ame)Tj21.12 0 (n(da)Tj10.44 0 Tdm[(l)-1000(e)]Tj81.72 0 Ts(r,)Tj10.08 0 Td(2)Tj4.92 0 Td(48)Tj-66.12 12 Td(fr)Tj6.84 0 Td(ame)Tj21.12 0 (newame,)Tj16 0 Td(24)Tj9.96 0 T(48)Tj-13.08 12 Td(fr)Tj6.84 0 Td(ame)Tj21.12 0 (nex(mat,)T522.2 0 Td(2)Tj4.92 0 Td(48)Tj-058.8 11.88 Tdun(action,)j-41.92 0 Td(1)Tj4.92 0 T0(27)Tj6-41.76 12 Tca(dr)Tj9.36 0 Tld(gial,)Tj9.96 0 Td(3)Tj4.92 0 T0(30)Tj912.08 12 Tdiece-al,)Tj6.84 0 Twis(ame)Tj81.72 0 Tdeni(action,)j7j8.04 0 Td(1)Tj4.92 0 T0(27)T1Tj10.Tj6. 0 TGalev)Tj81.72 0 Tussiaametege

ra

74

,t,

o

1ar

,48

background image
background image

INDEX

27

5

a

daptiv

e,

14

1

a

xes

colo

r,

1

42

clip

p

o

in

t s

,

14

2

line

colo

r,

1

42

ma

x

p

oin

ts,

14

2

min

p

oin

ts,

14

2

p

oin

t

colo

r,

1

42

p

oin

t

size,

1

42

r

eset

v

i e

wp

o

rt,

1

42

s

creen

reso

lut io

n,

1

42

to

sca

le,

1

42

units

co

lor

,

1

42

v

i e

wp

o

rt

p

os

background image
background image

INDEX

27

7

P

o

stScript,

13

2,

14

1,

1

62

,

background image
background image