1 Drawing
Drawing
Widok 3D zbiornika (zmiana przez polecenie: Zapisz widok uzytkownika)
2 Historia rewizji
Historia rewizji
Rev
ID
Rodzaj elementu
Opis elementu
DATA I GODZINA
A
F.1
WN - Kolnierz
Kolnierz metoda I
17 Nov. 2008 20:09
A
F.2
Integral - Flange
kolnierz metoda II
17 Nov. 2008 20:00
A
F.3
Integral - Flange
Ko3nierz 1591
17 Nov. 2008 20:02
A
N.1
Króciec,Blacha korpu
krociec met I
17 Nov. 2008 19:44
A
N.2
Króciec,Blacha korpu
krociec met II
17 Nov. 2008 19:44
A
N.3*
Króciec,Blacha korpu
krociec met 1591
17 Nov. 2008 19:44
A
S1.1
Plaszcz walcowy
plaszcz
17 Nov. 2008 19:44
A First Issue RR 13 Mar. 2007 18:35
3 Parametry projektowe i informacje ruchowe
Parametry projektowe i informacje ruchowe
Opis
Jednostki
DANE PROJEKTOWE
KARTA PROCESOWA
General Design Data
Przepisy projektowe i specyfikacje
EN13445:Issue23
Wewnetrzne cisnienie obliczeniowe (MPa)
MPa
1.2
Zewnetrzne cisnienie obliczeniowe (MPa)
MPa
Cisnienie proby (MPa)
MPa
1.716
Maksymalna temperatura obliczeniowa ('C)
'C
120
Minimalna temperatura obliczeniowa ('C)
'C
Temperatura robocza ('C)
'C
Naddatek korozyjny (mm)
mm
0.3
3 Parametry projektowe i informacje ruchowe
Strona: 1
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9 Operator :RR Rew.:A
Opis
Jednostki
DANE PROJEKTOWE
Zawartosc zbiornika
Ciezar wlasciwy czynnika roboczego
4 Ciezar i pojemnosc zbiornika
Ciezar i pojemnosc zbiornika
Table :
ID
No.
Ciezar-zbior.niedokoncz.
Ciezar-zbior.dokoncz.
Pojem.calkowita
S1.1
1
1569.0 kg
1520.6 kg
7.855 m3
N.1
1
12.0 kg
12.0 kg
0.031 m3
N.2
1
12.0 kg
12.0 kg
0.031 m3
F.2
2
108.0 kg
108.0 kg
0.028 m3
F.1
1
59.0 kg
59.0 kg
0.014 m3
N.3*
1
12.0 kg
12.0 kg
0.031 m3
F.3
2
108.0 kg
108.0 kg
0.028 m3
:$$12:
Total
9
1880.0 kg
1831.6 kg
8.018 m3
Table Continued
ID
Ciazar cieczy przy probie
Ciezar ruchowy cieczy
S1.1
7855.0 kg
0.0 kg
N.1
31.0 kg
0.0 kg
N.2
31.0 kg
0.0 kg
F.2
28.0 kg
0.0 kg
F.1
14.0 kg
0.0 kg
N.3*
31.0 kg
0.0 kg
F.3
28.0 kg
0.0 kg
:$$12:
Total
8018.0 kg
0.0 kg
Weight Summary/Condition
Weights
Ciezar zbiornika pustego z 5% zawartoscia
1923 kg
Calkowity ciezar zbiornika (War.proby z woda)
9941 kg
Calkowity ciezar ruchowy zbiornika
1923 kg
5 Srodek ciezkosci
Srodek ciezkosci
ID
X-pusty
Y-pusty
Z-pusty
X-proba
Y-proba
Z-proba
X-ruch.
Y-ruch.
Z-ruch.
S1.1
-25
0
1999
0
0
2000
0
0
2000
N.1
847
0
1000
847
0
1000
847
0
1000
N.2
847
0
2000
847
0
2000
847
0
2000
F.2
987
0
2000
987
0
2000
987
0
2000
F.1
987
0
1000
987
0
1000
987
0
1000
N.3*
847
0
3000
847
0
3000
847
0
3000
F.3
987
0
3000
987
0
3000
987
0
3000
CENTER OF GRAVITY AT CONDITIONS BELOW
X
Y
Z
Zbiornik pusty
86
0
1879
Warunki proby zbiornika (proba z woda)
28
0
1972
Warunki ruchowe zbiornika
86
0
1879
6 Maksymalne cisnienie dopuszczalne MAWP
Maksymalne cisnienie dopuszczalne MAWP
ID
Rodzaj elem.
Liq.Head
MAWP nowy i zimny
MAWP goracy i skorod.
S1.1
Plaszcz walcowy
0.000 MPa
1.771 MPa
1.566 MPa
N.1
Króciec,Blacha korpu
0.000 MPa
1.423 MPa
1.253 MPa
N.2
Króciec,Blacha korpu
0.000 MPa
1.423 MPa
1.253 MPa
F.2
Integral - Flange
0.000 MPa
2.314 MPa
2.314 MPa
6 Maksymalne cisnienie dopuszczalne MAWP
Strona: 2
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9 Operator :RR Rew.:A
ID
Rodzaj elem.
Liq.Head
MAWP nowy i zimny
MAWP goracy i skorod.
F.1
WN - Kolnierz
0.000 MPa
1.450 MPa
1.450 MPa
N.3*
Króciec,Blacha korpu
0.000 MPa
1.423 MPa
1.253 MPa
MAWP
1.423 MPa
1.253 MPa
Przypis: Inne warunki moga ograniczac MAWP ni? te sprawdzone powyzej.
Note : The value for MAWP is at top of vessel, with static liquid head subtracted.
7 Cisnienie próby
Cisnienie próby
CISNIENIE PROBY ZBIORNIKA - NOWY I ZIMNY W PIONIEPOZIOME
Cisnienie obliczeniowe......................: 1.200 MPa
Specified Test Pressure.................: 1.716 MPa
Temperatura obliczeniowa....................: 120.0 C
ID
Opis
Pdesign
PtMax
PtMin
Wat.Head
PtTop
PtTopMax
S1.1
Plaszcz walcowy-plaszcz
1.200
3.078
1.716
0.020
1.696
3.058
N.1
Króciec,Blacha korpu-krociec
met I
1.200
2.102
NA
0.007
NA
2.095
N.2
Króciec,Blacha korpu-krociec
met II
1.200
2.102
NA
0.007
NA
2.095
F.2
Integral - Flange-kolnierz
metoda II
1.200
2.678
NA
0.006
NA
2.672
F.1
WN - Kolnierz-Kolnierz
metoda I
1.200
2.842
NA
0.006
NA
2.836
N.3*
Króciec,Blacha korpu-krociec
met 1591
1.200
2.102
NA
0.007
NA
2.095
HYDRO-TEST
REQUIRED TEST PRESSURE AT TOP OF VESSEL PtReq(Hydro Test) ......: 1.696 MPa
TEST PRESSURE OF: 1.716 MPa AT TOP OF VESSEL IS OK FOR ABOVE COMPONENTS.
Note : Other components may limit Ptlim than the ones checked above.
NOMENCLATURE:
Pdesign- is the design pressure including liquid head at the part under
consideration.
PtMax - is the maximum allowed test pressure determined at the part under
consideration.
PtMin - is the required test pressure determined at the part under consideration.
Wat.Head - is the water head during hydrotesting at the part under consideration.
PtBot - is the required test pressure at bottom of the vessel, for the part
under consideration.
PtTop - is the required test pressure at top of the vessel, for the part under
consideration.
PtTopMax - is the maximum test pressure allowed at top of the vessel, for the
part under consideration.
PtReq - is the required minimum test pressure (largest value of PtTop) at top of
vessel for the listed components.
PtLim - is the maximum allowed test pressure (minimum value for PtTopMax) at top
of vessel for the listed components.
EN13445-5 10.2.3.3.8 Pressure of vessels under test shall be gradually increased
to a value of approximately 50 % of the specified test pressure, thereafter the
pressure shall be increased in stages of approximately 10 % of the specified test
pressure until this is reached. The required test pressure shall be maintained for
not less than 30 min. At no stage shall the vessel be approached for close
examination until the pressure has been positively reduced by at least 10 % to a
level lower than that previously attained. The pressure shall be maintained at
the specified close examination level for a sufficient length of time to permit a
visual inspection to be made of all surfaces and joints.
8 Wykaz materialow
Wykaz materialow
8 Wykaz materialow
Strona: 3
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9 Operator :RR Rew.:A
ID
No
Opis
Opis elementu
Norma materialowa
F.1
1
WN - Kolnierz-Kolnierz
metoda I
OD= 715, ID= 498.46, thk=
34, h= 40, g1= 27.7
ID 2, EN 10028-6:2003, 1.8867 P355QH
plate and strip, HT:QT
F.1
20
Sruby
M30x3 ;, Pole= 544
ID 5, EN 10269:1999, 1.1181 C35E bar,
bolt, HT:QT
F.2
1
Mating Flange
M30x3 ;, Pole= 30
F.2
2
Integral - Flange-kolnierz
metoda II
OD= 715, ID= 499.06, thk=
34.3, h= 40, g1= 7.7
ID 2, EN 10028-6:2003, 1.8867 P355QH
plate and strip, HT:QT
F.2
20
Sruby
M30x3 ;, Pole= 30
ID 5, EN 10269:1999, 1.1181 C35E bar,
bolt, HT:QT
F.3
2
Integral - Flange-Ko3nierz
1591
OD= 715, ID= 499.06, thk=
34.3, h= 40, g1= 7.7
F.3
20
Sruby
M30x3 ;, Pole= 544
N.1
1
Króciec,Blacha korpu-krociec
met I
ND500
do=508,wt=4.77,L=201.9,ho=
150,PAD OD=758
ID 1, EN 10028-2:2003, 1.0425 P265GH
plate and strip, HT:N
N.1
1
Nakladka wzmacniajaca
PAD OD=758, wt= 10,
width= 125
ID 1, EN 10028-2:2003, 1.0425 P265GH
plate and strip, HT:N
N.2
1
Króciec,Blacha korpu-krociec
met II
ND500
do=508,wt=4.77,L=201.9,ho=
150,PAD OD=758
ID 1, EN 10028-2:2003, 1.0425 P265GH
plate and strip, HT:N
N.2
1
Nakladka wzmacniajaca
PAD OD=758, wt= 10,
width= 125
ID 1, EN 10028-2:2003, 1.0425 P265GH
plate and strip, HT:N
N.3*
1
Króciec,Blacha korpu-krociec
met 1591
ND500
do=508,wt=4.77,L=201.9,ho=
150,PAD OD=758
ID 1, EN 10028-2:2003, 1.0425 P265GH
plate and strip, HT:N
N.3*
1
Nakladka wzmacniajaca
PAD OD=758, wt= 10,
width= 125
ID 1, EN 10028-2:2003, 1.0425 P265GH
plate and strip, HT:N
S1.1
1
Plaszcz walcowy-plaszcz
De= 1600, en= 10, L= 4000
ID 1, EN 10028-2:2003, 1.0425 P265GH
plate and strip, HT:N
9 Uwagi, ostrzezenia i bledy
Uwagi, ostrzezenia i bledy
ID & Comp. Description
Przypisy/Uwagi/Informacje o bledach
N.1 Króciec,Blacha korpu krociec
met I
-
NOTE/UWAGA: Szerokosc nakladki uzyta w obliczeniach jest ograniczona do ls = 122.3 mm
N.2 Króciec,Blacha korpu krociec
met II
-
NOTE/UWAGA: Szerokosc nakladki uzyta w obliczeniach jest ograniczona do ls = 122.3 mm
F.2 Integral - Flange kolnierz
metoda II
-
NOTE/NOTE: It is recommended to observe a minimum load ratio FB,min = 0,3 in assembly
condition. A smaller load ratio is in general not good practice, because then the bolts are too thick.
F.1 WN - Kolnierz Kolnierz metoda I
-
NOTE/NOTE : The design may benefit by reducing the bolting area, or reducing the allowable
stress for the bolts.
N.3* Króciec,Blacha korpu krociec
met 1591
-
NOTE/UWAGA: Szerokosc nakladki uzyta w obliczeniach jest ograniczona do ls = 122.3 mm
CALKOWITA ILOSC BLEDOW/OSTRZEZEN: 0
10 Specyfikacja kroccow
Specyfikacja kroccow
ID
Serwis
ROZMIAR
NORMA--KLASA--RODZAJ--PRZYLGA--WYKAZ
N.1
krociec met I
ND500
DIN 2633: Class PN 16
N.2
krociec met II
ND500
Non-standard flange:OD= 715, ID= 499.06, thk= 34.3, h= 40,
g1= 7.7
N.3*
krociec met 1591
ND500
Non-standard flange:OD= 715, ID= 499.06, thk= 34.3, h= 40,
g1= 7.7
11 Maksymalne wykorzystanie elementu -
Maksymalne wykorzystanie elementu - Umax
ID
Rodzaj elemen.
Umax(%)
Ograniczone przez
S1.1
Plaszcz walcowy
78.1%
Internal Pressure
N.1
Króciec,Blacha korpu
95.7%
Nozzle Reinforcement
11 Maksymalne wykorzystanie elementu -
Umax
Strona: 4
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9 Operator :RR Rew.:A
ID
Rodzaj elemen.
Umax(%)
Ograniczone przez
N.2
Króciec,Blacha korpu
95.7%
Nozzle Reinforcement
F.2
Integral - Flange
65.9%
Flange Load Ratio PhiF
F.1
WN - Kolnierz
93.4%
Radial+Hub Stress
N.3*
Króciec,Blacha korpu
95.7%
Nozzle Reinforcement
F.3
Integral - Flange
65.9%
Flange Load Ratio PhiF
Element z najwyzszym stopniem wykorzystania Umax = 95.7% N.1 krociec met I
Sredni stopien wykorzystania wszystkich elem. Usr= 84.3%
12 Dane materialowe/Wlasnosci mechaniczne
Dane materialowe/Wlasnosci mechaniczne
Table :
ID
Material Name
Temp
Rm
Rp
Rpt
f_d
f20
ftest
E-mod
Przypis
1
EN 10028-2:2003, 1.0425 P265GH plate
and strip, HT:N TG3, CS, Mat.Group:1.1, ,
Max.T= 16mm, SG=7.85
120
410
265
233.8
155.9
170.8
252.4
204605
a)
2
EN 10028-6:2003, 1.8867 P355QH plate
and strip, HT:QT TG3, CS, Mat.Group:1.1, ,
Max.T= 50mm, SG=7.85
120
490
355
300
200
204.2
338.1
204605
a)
3
EN 10028-2:2003, 1.0425 P265GH plate
and strip, HT:N TG3, CS, , Max.T= 16mm,
SG=7.85
120
410
265
233.8
155.9
170.8
252.4
204605
a)
4
EN 10269:1999, 1.1181 C35E bar, bolt,
HT:N TG3, CS, Mat.Group:1.1, , Max.T=
60mm, SG=7.93
120
500
300
262.4
155.9
176.7
150
191484
a)
5
EN 10269:1999, 1.1181 C35E bar, bolt,
HT:QT TG3 , Mat.Group:9.2, , Max.T=
60mm, SG=7.93
120
500
300
262.4
87.5
100
150
191484
a)
6
EN 10269:1999, 1.4938 X12CrNiMoV12-3
bar, bolt, HT:QT TG3, CS, Mat.Group:1.1, ,
Max.T= 160mm, SG=7.93
120
930
760
675.2
225.1
232.5
348.8
191484
a)
7
EN 10273:2000, 1.8867 P355QH bar,
HT:QT TG3, CS, Mat.Group:1.2, , Max.T=
50mm, SG=7.85
120
490
355
300
200
204.2
338.1
204605
a)
8
EN 10222-4:1998, 1.0565 P355NH forging,
HT:N TG3, CS, Mat.Group:1.2, , Max.T=
50mm, SG=7.85
120
490
355
296
197.3
204.2
338.1
204605
a)
9
EN 10222-4:1998, 1.0571 P355QH1
forging, HT:QT TG3, CS, Mat.Group:1.2, ,
Max.T= 100mm, SG=7.85
120
470
315
286.4
190.9
195.8
300
204605
a) f)
10
EN 10028-2:2003, 1.0425 P265GH plate
and strip, HT:N TG3, CS, , Max.T= 16mm,
SG=7.85
120
410
265
233.8
155.9
170.8
252.4
204605
a)
Table Continued
ID
1
2
3
4
5
6
7
8
9
10
Przypisy:
Thickness in mm, stress in N/mm2, temperature in deg.C
TG : Grupa Badan 1 do 4
t maks: Maks.grubosci dla podanego zakresu napr., 0 lub 999= Bez ograniczenia
S/C : CS = Stal weglowa, SS = Stal kwasoodp.
SG : SG = Ciezar wlasciwy (Woda = 1.0)
Rm : MIN. WYTRZYMALOSC NA ROZCIAGANIE w temp. otoczenia
Rp : MIN. GRANICA PLASTYCZNOSCI w temp. otoczenia
Rpt : MIN. GRANICA PLASTYCZNOSCI w temp. obliczeniowej
f_d : NAPREZENIE OBLICZENIOWE w temp. obliczeniowej
f20 : NAPREZENIE OBLICZENIOWE w temp. otoczenia
GRP : 1.1 = stale o okreslonej granicy plastycznosci ReH <=275 N/mm2
GRP : 1.0 = Steels with a specified minimum yield strength ReH <= 460 N/mm2 a and
with analysis in %:C <= 0,25, Si <= 0,60, Mn <= 1,70, Mo <= 0,70b, S <= 0,045, P
12 Dane materialowe/Wlasnosci mechaniczne
Strona: 5
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9 Operator :RR Rew.:A
<= 0,045, Cu <= 0,40b, Ni <= 0,5b, Cr <= 0,3 (0,4 for castings)b, Nb <= 0,05, V <=
0,12b, Ti <= 0,05
GRP : 9.2 = Nickel alloyed steels with 3,0 % < Ni <= 8 %
GRP : 9.0 = Nickel alloyed steels with Ni <= 10 %
GRP : 1.2 = Steels with a specified minimum yield strength 275 N/mm2 < ReH <= 360
N/mm2
GRP : 1.0 = Steels with a specified minimum yield strength ReH <= 460 N/mm2 a and
with analysis in %:C <= 0,25, Si <= 0,60, Mn <= 1,70, Mo <= 0,70b, S <= 0,045, P
<= 0,045, Cu <= 0,40b, Ni <= 0,5b, Cr <= 0,3 (0,4 for castings)b, Nb <= 0,05, V <=
0,12b, Ti <= 0,05
Przypis: a = Materialy powinny spelniac odpowiednie zasadnicze wymagania
bezpieczenstwa Dyrektywy 97/23/WE
Note : f = Additional requirements for forming and welding shall be considered on
a case by case basis.
HT : N = normalizowane
HT : QT = quenched and tempered
HT : N = normalizowane
HT : QT = quenched and tempered
HT : QT = quenched and tempered
HT : QT = quenched and tempered
HT : N = normalizowane
HT : QT = quenched and tempered
Section 6.3 Alternative route for steels
The Alternative Route has been used in obtaining the allowable stress for the
following materials:
4 EN 10269:1999, 1.1181 C35E bar, bolt, HT:N
8 EN 10222-4:1998, 1.0565 P355NH forging, HT:N
9 EN 10222-4:1998, 1.0571 P355QH1 forging, HT:QT
Alternative route allows the use of higher nominal design stress by reducing the
safety factor on tensile strength from 2.4 to 1.875 if all of the following
conditions are met:
a) Material requirements as specified in EN 13445-2:2002 for Design by Analysis -
Direct Route.
b) Restriction in construction and welded joints as specified in Clause 5 and in
Annex A of EN 13445-3:2002 for Design by Analysis - Direct Route.
c) All welds which must be tested by non-destructive testing (NDT) according to
the requirements of EN
13445-5:2002 shall be accessible to NDT during manufacture and also for in-service
inspection.
d) Fatigue analysis according to Clause 17 or 18 in all cases.
e) Fabrication requirements as specified in EN 13445-4:2002 for Design by Analysis
- Direct Route.
f) NDT as specified in EN 13445-5:2002 for Design by Analysis - Direct Route.
g) Appropriate detailed instructions for in-service inspections are provided in
the operating instructions by the manufacturer.
NOTE/NOTE Until sufficient in-house experience can be demonstrated, the
involvement of an independent body, appropriately qualified, is recommended for
the assessment of the design (calculations) and for assurance that all
requirements are met in materials, fabrication and NDT.
13 Polozenie elementu wzgledem osi wspolrzednych
Polozenie elementu wzgledem osi wspolrzednych
ID
Rodzaj elem.
X
Y
Z
Teta
Phi
ConnID
F.1
WN - Kolnierz
0
0
155
0.0
0.0
N.1
F.2
Integral - Flange
0
0
155
0.0
0.0
N.2
F.3
Integral - Flange
0
0
155
0.0
0.0
N.3*
N.1
Króciec,Blacha korpu
795
0
1000
90.0
0.0
S1.1
N.2
Króciec,Blacha korpu
795
0
2000
90.0
0.0
S1.1
N.3*
Króciec,Blacha korpu
795
0
3000
90.0
0.0
S1.1
S1.1
Plaszcz walcowy
0
0
0
0.0
0.0
Powyzszy raport pokazuje polozenie punktow polaczen (x, y oraz z)
kazdego elementu w systemie wspolrzednych elementu glownego
(Conn ID). Punkt polaczenia (x, y oraz z) jest zawsze w osi
symetrii obrotu rozpatrywanego elementu, np. punkt
13 Polozenie elementu wzgledem osi wspolrzednych
Strona: 6
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9 Operator :RR Rew.:A
polaczenia krocca z cylindrem powinien byc na przecieciu
osi krocca z srodkiem grubosci scianki plaszcza
referenced to the shell s coordinate system. In addition the orientation s
coordinate system. In addition the orientation
osi elementu okreslone jest przez dwa katy Teta oraz
Phi, gdzie Teta jest katem pomiedzy osiami dwoch elementow, a
Phi jest orientacja plaszczyzny x-y.
Podstawa systemu koordynacji stosowanego w programie jest strona prawa
systemu koordynacyjnego z osia "z" jako geometryczna osia obrotu
elementow, a Teta jako kat polnocy i Phi jako azymut.
14 Impact Test Requirements
Impact Test Requirements
Table :
ID-Description
Material Name
en(mm)
eB(mm)
Re(N/mm2)
F.1 Kolnierz metoda I - Bolts
EN 10269:1999, 1.1181 C35E bar, bolt, HT:QT
30.0
30.0
300.0
F.1 Kolnierz metoda I - Flange
EN 10028-6:2003, 1.8867 P355QH plate and strip, HT:QT
34.0
8.5
355.0
F.1 Kolnierz metoda I - Hub
EN 10028-6:2003, 1.8867 P355QH plate and strip, HT:QT
7.7
7.7
355.0
N.1 krociec met I - Nozzle
EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N
4.8
4.8
265.0
N.1 krociec met I - Pad
EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N
10.0
10.0
265.0
N.2 krociec met II - Nozzle
EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N
4.8
4.8
265.0
N.2 krociec met II - Pad
EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N
10.0
10.0
265.0
N.3* krociec met 1591 - Nozzle
EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N
4.8
4.8
265.0
N.3* krociec met 1591 - Pad
EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N
10.0
10.0
265.0
S1.1 plaszcz - Shell
EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N
10.0
10.0
265.0
Table Continued
ID-Description
TR(C)
TKVPWHT(C)
TKVAW(C)
Comments
F.1 Kolnierz metoda I - Bolts
0.0
20
-1.1
NOTE: Steel designation unknown, this
method is only applicable for ferritic steels(C,
CMn and fine grain) and 1.5% to 5% Ni-alloy
steels.
F.1 Kolnierz metoda I - Flange
0.0
20
20
F.1 Kolnierz metoda I - Hub
0.0
20
20
N.1 krociec met I - Nozzle
0.0
20
20
N.1 krociec met I - Pad
0.0
20
20
N.2 krociec met II - Nozzle
0.0
20
20
N.2 krociec met II - Pad
0.0
20
20
N.3* krociec met 1591 - Nozzle
0.0
20
20
N.3* krociec met 1591 - Pad
0.0
20
20
S1.1 plaszcz - Shell
0.0
20
20
EN13445-2 Annex B, Requirements for Prevention of Brittle Fracture
B.2.3 Method 2 - Code of practice developed from fracture mechanics
NOMENCLATURE:
en - Nominal thickness of component under consideration(including corr.
allow.).
eB - Reference thickness of component under consideration from Table B.4-1.
Re - Minimum specified yield strength at room temperature.
AW - As Welded condition.
PWHT - Post Weld Heat Treatment.
TR - Design Reference Temperature.
TKVPWHT- Material impact test temperature for PWHT condition from Figure B.4-1
or 3, and required impact energy 27J.
TKVAW - Material impact test temperature for AW condition from Figure B.4-2, 4
or 5, and required impact energy 27J.
15 NDT - Requirements for Test Group:3a
NDT - Requirements for Test Group:3a
Table EN13445-5, 6.6.2-1:
Weld ID
Kategoria spoiny
Rodzaj spoiny
RT or UT
MT or PT
1
Full Penetration butt weld
Longitudinal joints
25%
10%
2a
Full Penetration butt weld
Circumferential joints on a shell
10%
10%
2b
Full Penetration butt weld
Circumferential joints on a shell with
backing strip (k)
NA
NA
15 NDT - Requirements for Test Group:3a
Strona: 7
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9 Operator :RR Rew.:A
Weld ID
Kategoria spoiny
Rodzaj spoiny
RT or UT
MT or PT
2c
Full Penetration butt weld
Circumferential joggle joint (k)
NA
NA
3a
Full Penetration butt weld
Circumferential joints on a nozzle di > 150
mm or e > 16 med mer
10%
10%
3b
Full Penetration butt weld
Circumferential joints on a nozzle di > 150
mm or e > 16 mm with backing strip (k)
NA
NA
4
Full Penetration butt weld
Circumferential joints on a nozzle with di <=
150 mm and e <= 16mm
0
10%
5
Full Penetration butt weld
All welds in spheres, heads and
hemispherical heads to shells
25%
10%
6
Full Penetration butt weld
Assembly of a conical shell with a cylindrical
shell angle <= 30o
10%
10%
7
Full Penetration butt weld
Assembly of a conical shell with a cylindrical
shell angle > 30o
25%
10%
8a
Circumferential lapped joints (k)
General application shell to head
NA
NA
8b
Circumferential lapped joints (k)
Bellows to shell e <= 8 med mer
0
25%
9
Assembly of a flat head or a tubesheet, with a
cylindrical shell Assembly of a flange or a collar
with a shell
With full penetration
25%
10%
10
Assembly of a flat head or a tubesheet, with a
cylindrical shell Assembly of a flange or a collar
with a shell
With partial penetration if a>16 mm (a as
defined in figure 6.6.2-1)(j)
25%
10%
11
Assembly of a flat head or a tubesheet, with a
cylindrical shell Assembly of a flange or a collar
with a shell
With partial penetration if a<=16 mm (a as
defined in figure 6.6.2-1) (j)
0
10%
12
Assembly of a flange or a collar with a nozzle
With full penetration
25%
10%
13
Assembly of a flange or a collar with a nozzle
With partial penetration (j)
0
10%
14
Assembly of a flange or a collar with a nozzle
With full or partial penetration di <= 150 mm
and e <= 16 mm j
0
10%
15
Nozzle or branch (e)
With full penetration di > 150 mm or e > 16
mm
25%
10%
16
Nozzle or branch (e)
With full penetration di <= 150 mm or e <=
16 mm
0
10%
17
Nozzle or branch (e)
With partial penetration for any di a > 16
mm (see figure 6.6.2-2)
25%
10%
18
Nozzle or branch (e)
With partial penetration di > 150 mm a <=
16 mm (see figure 6.6.2-2)
0
10%
19
Nozzle or branch (e)
With partial penetration di <= 150 mm a <=
16 mm (see figure 6.6.2-2)
0
10%
20
Tube ends into tubesheet
-
-
25%
21
Permanent attachments (f)
With full penetration or partial penetration
10%
100%
22
Pressure retaining areas after removal of
temporary attachments
-
-
100%
23
Cladding by welding
-
-
100%
24
Repairs
-
100%
100%
The above requirements are for test group TG:3a
Notes:
(a): See figure 6.6.2-3 for an explanation on Weld ID.
(b): RT=Radiographic Testing, UT=Ultrasonic Testing, MT=Magnetic Particle Testing,
PT=Penetrant Testing.
(c): 2 % if e L 30mm and same WPS as longitudinal, for steel groups 1.1 and 8.1
(d): 10 % if e > 30 mm, 0 % if e <= 30 mm
(e): Percentage in the table refers to the aggregate weld length of all the
nozzles see 6.6.1.2 b).
(f): No RT or UT for weld throat thickness <= 16 mm
(g): 10 % for steel groups 8.2, 9.1, 9.2, 9.3 and 10
(h): Volumetric testing if risks of cracks due to parent material or heat treatment
(i): For explanation of the reduction in NDT in testing group 2, see 6.6.1.2
(j): In exceptional cases or where the design or load bearing on the joint is
critical, it may be necessary to employ both techniques (i.e. RT & UT, MT & PT).
See table 6.6.3-1 for other circumstances for use of both techniques.
(k): For limitations of application see EN 134445-3:2002, 5.7.3.2.l
(l): The percentage of surface examination refers to the percentage of length of
the welds both on the inside and the outsidem.
(m): RT and UT are volumetric while MT and PT are surface testing. When referenced
in this table both volumetric and surface are necessary to the extent shown.
(n): NA means 'Not Applicable'.
(o): In case of cyclic loading refer to Annex G.2.
(p): Annex A of EN 13445-3 gives design limitations on welds.
15 NDT - Requirements for Test Group:3a
Strona: 8
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9 Operator :RR Rew.:A
EN13445-5, Table 6.6.2-3, Map of Weld Types/Weld ID.
16 DIAGRAM WYKORZYSTANIA
16 DIAGRAM WYKORZYSTANIA
Strona: 9
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9 Operator :RR Rew.:A
DIAGRAM WYKORZYSTANIA
DIAGRAM WYKORZYSTANIA
17 Uklad rurek
Uklad rurek
Uklad rurek
17 Uklad rurek
Strona: 10
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9 Operator :RR Rew.:A
18 Surface Area
Surface Area
Table Surface Area:
ID
No.
Opis
Area Outside(m2)
Area Inside(m2)
S1.1
1
Plaszcz walcowy, plaszcz
20.106
19.870
N.1
1
Króciec,Blacha korpu,
krociec met I
0.239
0.235
N.2
1
Króciec,Blacha korpu,
krociec met II
0.239
0.235
F.2
2
Integral - Flange, kolnierz
metoda II
0.678
0.232
F.1
1
WN - Kolnierz, Kolnierz
metoda I
0.339
0.116
N.3*
1
Króciec,Blacha korpu,
krociec met 1591
0.239
0.235
F.3
2
Integral - Flange, Ko3nierz
1591
0.678
0.232
Total
9
22.518
21.155
Strona: 11
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9 Operator :RR Rew.:A
19 S1.1 Plaszcz walcowy plaszcz
DANE WEJSCIOWE
ELEMENT PRZYLACZONY/POLOZENIE
DANE PROJEKTOWE
OBCIAZENIE CISNIENIEM: Obliczanie elementu tylko na cisnienie wewnetrzne
KARTA PROCESOWA: DANE PROJEKTOWE : Temp= 120°C, P= 1.2MPa, c= .3mm, Pext= 0MPa
GESTOSC WLASCIWA PLYNU ROBOCZEGO....................:SG 0.00
SLUP CIECZY.........................................:LH 2190.60 mm
DANE PLASZCZA
RODZAJ MATERIALU: Blacha
WSPÓLCZYNNIK ZLACZA SPAWANEGO: Grupa badan 3 (z=0.85)
DOBÓR SREDNICY: Obliczenie oparte o srednice zewnetrzna plaszcza
EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N THK<=16mm 120'C
Rm=410 Rp=265 Rpt=233.8 f=155.87 f20=170.83 ftest=252.38 E=204605(N/mm2) ro=7.85
SREDNICA ZEWNETRZNA PLASZCZA........................:De 1600.00 mm
DLUGOSC CZESCI WALCOWEJ PLASZCZA....................:Lcyl 4000.00 mm
RZECZYWISTA GRUBOSC SCIANKI (w stanie nie skorodowanym) :en 10.00 mm
UJEMNA TOLERANCJA WYKONANIA.........................:th 0.3000 mm
WYNIKI OBLICZEN
7.4.2 - PLASZCZE WALCOWE POD CISNIENIEM WEWNETRZNYM
Minimalna wymagana grubosc plaszcza bez naddatku na korozje: emin
emin = De * P / (2 * f * z + P) (7.4-2)
=1600*1.2/(2*155.87*0.85+1.2)= 7.21 mm
Minimalna wymagana grubosc plaszcza z naddatkiem na korozje: emin
emina = emin + c + th =7.21+0.3+0.3= 7.81 mm
Obliczenie grubosci
ea = en - c - th =10-0.3-0.3= 9.40 mm
»7.4.1. Warunki stosowania emin/De=0.0045 <= 0.16« » OK«
»Cisnienie wewnetrzne emina=7.81 <= en=10[mm] « » (U= 78.1%) OK«
MAKSYMALNE DOPUSZCZALNE CISNIENIE ROBOCZE MAWP:
Srednica wewnetrzna plaszcza
Di = De - 2 * ea =1600-2*9.4= 1581.20 mm
Srednia srednica plaszcza
Dm = (De + Di) / 2 =(1600+1581.2)/2= 1590.60 mm
MAWP STAN GORACY I SKOROD. (skorodowany w temp. obliczeniowej)
MAWPHC = 2 * f * z * ea / Dm
=2*155.87*0.85*9.4/1590.6= 1.57 MPa
MAWP STAN NOWY I ZIMNY (nowy przy temp. otoczenia)
MAWPNC = 2 * f20 * z * (ea + c) / Dm
=2*170.83*0.85*(9.4+0.3)/1590.6= 1.77 MPa
MAKSYMALNE CISNIENIE PRÓBY (Stan nieskorodowany w temp. otoczenia)
Ptmax = 2 * ftest * ztest * (ea + c) / Dm
=2*252.38*1*(9.4+0.3)/1590.6= 3.08 MPa
EN13445-5; 10.2.3.3 WYMAGANE MINIMALNE CISNIENIE PRÓBY HYDRAULICZNEJ: Ptmin
NOWY W TEMP. OTOCZENIA DLA GRUPY BADAN 1,2 i 3
Ptmin = MAX( 1.43 * Pd , 1.25 * Pd * f20 / f )
=MAX(1.43*1.2,1.25*1.2*170.83/155.87)= 1.72 MPa
19 S1.1 Plaszcz walcowy plaszcz
Umax= 78.1%
Strona: 12
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-04 Operator :RR Rev.:A
EN13445:Issue26 - 7.4.2 PLASZCZ WALCOWY
S1.1 plaszcz 17 Nov. 2008 19:44
»Cisnienie próby Ptmin=1.716 <= Ptmax=3.08[MPa] « » (U= 55.7%) OK«
MAKSYMALNA SREDNICA OTWORU NIEWZMOCNIONEGO W PLASZCZU
Promien wewnetrzny plaszcza
ris = Di / 2 (9.5-3) =1581.2/2= 790.60 mm
Dlugosc plaszcza uwzgledniana przy obliczaniu wzmocnienia
Is = Sqr(( 2 * ris + ea) * ea) (9.5-2)
=Sqr((2*790.6+9.4)*9.4)= 122.28 mm
Maks. srednica otworu w plaszczu nie wymagajacego wzmocnienia sprawdzona wg zasad
w rozdz. 9
dmax1 = (ea*Is*(f-0.5*P)/P-ris*Is)/(0.5*ris+0.5*ea) (9.5-7,22,23)
=(9.4*122.28*(155.87-0.5*1.2)/1.2-790.6*122.28)/(0.5*790.6+0.5*9.4)
= 130.13 mm
Sprawdzenie maksymalnej srednicy otworu nie wymagajacego wzmocnienia
dmax2 = 0.15 * Sqr(( 2 * ris + ea) * ea) (9.5-18)
=0.15*Sqr((2*790.6+9.4)*9.4)= 18.34 mm
Maks. srednica otworu nie wymagajacego wzmocniena
dmax = MAX( dmax1, dmax2) =MAX(130.13,18.34)= 130.13 mm
STRESZCZENIE OBLICZEN
7.4.2 - PLASZCZE WALCOWE POD CISNIENIEM WEWNETRZNYM
Minimalna wymagana grubosc plaszcza bez naddatku na korozje: emin
emin = De * P / (2 * f * z + P) (7.4-2)
=1600*1.2/(2*155.87*0.85+1.2)= 7.21 mm
Minimalna wymagana grubosc plaszcza z naddatkiem na korozje: emin
emina = emin + c + th =7.21+0.3+0.3= 7.81 mm
»Cisnienie wewnetrzne emina=7.81 <= en=10[mm] « » (U= 78.1%) OK«
MAKSYMALNE CISNIENIE PRÓBY (Stan nieskorodowany w temp. otoczenia)
Ptmax = 2 * ftest * ztest * (ea + c) / Dm
=2*252.38*1*(9.4+0.3)/1590.6= 3.08 MPa
EN13445-5; 10.2.3.3 WYMAGANE MINIMALNE CISNIENIE PRÓBY HYDRAULICZNEJ: Ptmin
NOWY W TEMP. OTOCZENIA DLA GRUPY BADAN 1,2 i 3
Ptmin = MAX( 1.43 * Pd , 1.25 * Pd * f20 / f )
=MAX(1.43*1.2,1.25*1.2*170.83/155.87)= 1.72 MPa
»Cisnienie próby Ptmin=1.716 <= Ptmax=3.08[MPa] « » (U= 55.7%) OK«
MAKSYMALNA SREDNICA OTWORU NIEWZMOCNIONEGO W PLASZCZU
Maks. srednica otworu nie wymagajacego wzmocniena
dmax = MAX( dmax1, dmax2) =MAX(130.13,18.34)= 130.13 mm
Objetosc:7.85 m3 Ciezar:1568.5 kg (SG= 7.85 )
19 S1.1 Plaszcz walcowy plaszcz
Umax= 78.1%
Strona: 13
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-04 Operator :RR Rev.:A
EN13445:Issue26 - 7.4.2 PLASZCZ WALCOWY
S1.1 plaszcz 17 Nov. 2008 19:44
20 N.1 Króciec,Blacha korpu krociec met I
DANE WEJSCIOWE
ELEMENT PRZYLACZONY/POLOZENIE
Mocowanie: S1.1 Plaszcz walcowy plaszcz
Orientacja i polozenie krócca: Promieniowo do plaszcza
Polozenie "z" krócca wzdluz osi przylaczenia........:z 1000.00 mm
Kat obrotu osi krócca w plaszczyznie x-y............:Phi 0.00 Degr.
DANE PROJEKTOWE
Rodzaj otworu: Krócce bez znormalizowanych kolnierzy ANSI lub DIN
OBCIAZENIE CISNIENIEM: Obliczanie elementu tylko na cisnienie wewnetrzne
KARTA PROCESOWA: DANE PROJEKTOWE : Temp= 120°C, P= 1.2MPa, c= .3mm, Pext= 0MPa
GESTOSC WLASCIWA PLYNU ROBOCZEGO....................:SG 0.00
SLUP CIECZY.........................................:LH 605.00 mm
DANE PLASZCZA (S1.1)
Rodzaj plaszcza: Plaszcz walcowy
SREDNICA ZEWNETRZNA PLASZCZA........................:De 1600.00 mm
RZECZYWISTA GRUBOSC SCIANKI (w stanie nie skorodowanym) :en 10.00 mm
UJEMNA TOLERANCJA WYKONANIA.........................:th 0.3000 mm
EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N THK<=16mm 120'C
Rm=410 Rp=265 Rpt=233.8 fs=155.87 f20=170.83 ftest=252.38 E=204605(N/mm2) ro=7.85
DANE MATERIALU KRÓCCA
Delivery Form: Blacha korpusu
WSPÓLCZYNNIK ZLACZA SPAWANEGO: Grupa badan 3 (z=0.85)
EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N THK<=16mm 120'C
Rm=410 Rp=265 Rpt=233.8 fb=155.87 f20=170.83 ftest=252.38 E=204605(N/mm2) ro=7.85
DANE WYMIAROWE KRÓCCA
Mocowanie: Króciec wpuszczany
Srednica krócca: Obliczanie w oparciu o Dz krócca
Ksztalt krócca/otworu: Okragly
Application:
9.4.6.3 NOT a critical fatigue area, and calc.temp.is outside creep range.
SREDNICA ZEWNETRZNA KRÓCCA..........................:deb 508.00 mm
RZECZYWISTA GRUBOSC KRÓCCA (w stanie nie skorodowanym):enb 4.77 mm
Wielkosc krócca i kolnierza: ND500
Komentarz (opcjonalnie): .SCH 5S
TOLERANCJA UJEMNA/NADDATEK NA PRZECIENIENIE.........: 0.00 mm
WYSOKOSC KRÓCCA MIERZONA OD SREDNICY ZEWNETRZNEJ ZBIORNIKA:ho 150.00 mm
20 N.1 Króciec,Blacha korpu krociec met I
Umax= 95.7%
Strona: 14
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01 Operator :RR Rev.:A
EN13445:Issue26 - 9.5 OTWORY POJEDYNCZE W PLASZCZACH
N.1 krociec met I 17 Nov. 2008 19:44 ConnID:S1.1
POLOZENIE KRÓCCÓW / ORIENTACJA
Króciec przechodzacy przez spoine: Króciec nie przechodzi przez spoine plaszcza
KAT PhiC (UKOSNA W PRZEKROJU POPRZECZNYM SEKCJI) Rys. 9.5-2:PhiC 0.00 Degr.
KAT PhiL ( UKOSNA W PRZEKROJU PODLUZNYM SEKCJI) Rys. 9.5-1 :PhiL 0.00 Degr.
DANE DOTYCZACE SPAWANIA
Nozzle/Pad to Shell Welding Area:
Wylaczyc powierzchnie spoiny laczacej króciec z plaszczem
DANE NAKLADKI WZMACNIAJACEJ
Rodzaj nakladki: Nakladka pojedyncza
GRUBOSC NAKLADKI WZMACNIAJACEJ......................:eap 10.00 mm
SZEROKOSC NAKLADKI WZMACNIAJACEJ ...................:Ip 125.00 mm
EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N THK<=16mm 120'C
Rm=410 Rp=265 Rpt=233.8 fp=155.87 f20=170.83 ftest=252.38 E=204605(N/mm2) ro=7.85
GRANICE WZMOCNIENIA
Zmniejszenie granicy wzmocnienia: Zmniejszenie granicy nie jest wymagane
WYNIKI OBLICZEN
OBLICZENIA PODSTAWOWE
Obliczeniowa grubosc plaszcza eas
eas = en - c - th =10-0.3-0.3= 9.40 mm
Obliczeniowa grubosc krócca eab
eab = enb - c - NegDev =4.77-0.3-0= 4.47 mm
Obliczeniowa grubosc nakladki wzmacniajacej ep
ep = MIN( eap, eas) (9.5-20) =MIN(10,9.4)= 9.40 mm
Zmniejszenie wytrzymalosci materialu krócca z uwagi na spoine wzdluzna krócca
fb = fb * z =155.87*0.85= 132.49 N/mm2
Wewnetrzny promien krzywizny
ris = De / 2 - eas (9.5-3) =1600/2-9.4= 790.60 mm
dib = deb - 2 * eab =508-2*4.47= 499.06 mm
Min. grubosc krócca wynikajaca z cisnienia wewnetrznego ebp
ebp = P * deb / (2 * fb * z + P)
=1.2*508/(2*155.87*0.85+1.2)= 2.29 mm
Naprezenia dopuszczalne
fob = Min( fs, fb) (9.5-8) =Min(155.87,132.49)= 132.49 N/mm2
fop = Min( fs, fp) (9.5-9) =Min(155.87,155.87)= 155.87 N/mm2
OGRANICZENIA GEOMETRYCZNE
»Sprawdz maksymalna grubosc nakladki eap=10 <= 1.5*eas=14.1[mm] «» OK«
»Sprawdenie maksymalnej srednicy krócca dib/(2*ris)=0.3156 <= .5[mm] «» OK«
»Minimalna grubosc krócca ebp=2.29 <= eab=4.47[mm] « » (U= 51.2%) OK«
9.5.2.4.4 Nozzles normal to the shell, with or without reiforcement pads.
Obliczenie efektywnej powierzchni obciazonej naprezeniem jako wzmocnienie
Area of Shell Afs
Granica wzmocnienia wzdluz plaszcza
Iso = Sqr(( 2 * ris + eas) * eas)
=Sqr((2*790.6+9.4)*9.4)= 122.28 mm
Króciec wpuszczany
Afs = eas * Is (9.5-78) =9.4*122.28= 1149.40 mm2
20 N.1 Króciec,Blacha korpu krociec met I
Umax= 95.7%
Strona: 15
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01 Operator :RR Rev.:A
EN13445:Issue26 - 9.5 OTWORY POJEDYNCZE W PLASZCZACH
N.1 krociec met I 17 Nov. 2008 19:44 ConnID:S1.1
Area of Reinforcement Pad Afp
Granica wzmocnienia wzdluz nakladki
Ip = Min( Ip, Is ) (9.5-86) =Min(125,122.28)= 122.28 mm
ep = Min( ep, eas) (9.5-87) =Min(9.4,9.4)= 9.40 mm
Afp = ep * Ip (9.5-85) =9.4*122.28= 1149.40 mm2
Area of Nozzle Afb
Granice wzmocnienia wzdluz krócca (na zewnatrz plaszcza)
Ibo = MIN( Sqr(( deb - eb) * eb), ho) (9.5-75)
=MIN(Sqr((508-4.47)*4.47,)150)= 47.44 mm
Króciec wpuszczany
Afb = eb * (Ibo + Ibi + eas) (9.5-77) =4.47*(47.44+0+9.4)= 254.09 mm2
Obliczenie powierzchni obciazonej cisnieniem
In the Nozzle Apb
Apb = 0.5 * dib * (Ibo + eas) (9.5-83) =0.5*499.06*(47.44+9.4)= 14183.88 mm2
Element walcowy w przekroju podluznym Aps
ApsL = ris * (Is + a) (9.5-93) =790.6*(122.28+254)= 2,9748E05 mm2
Element walcowy w przekroju poprzecznym Aps
ApsT = 0.5 * ris ^ 2 * (Is + a ) / (0.5 * eas + ris) (9.5-104)
=0.5*790.6^2*(122.28+258.53)/(0.5*9.4+790.6)= 1,4964E05 mm2
Aps = MAX( ApsL ApsT) =MAX(2.9748E05,1.4964E05)= 2,9748E05 mm2
9.5.2 Zasady wzmocnienia
Wymagane pole powierzchni z uwagi na cisnienie pA(req).
pAReqL = P * (ApsL + Apb) (9.5-7) =1.2*(2.9748E05+14183.88)= 374.00 kN
pAReqT = P * (ApsT + Apb + 0.5 * Apphi) (9.5-7)
=1.2*(1.4964E05+14183.88+0.5*0)= 196.59 kN
pAReq = MAX( pAReqL, pAReqT) =MAX(374.,196.59)= 374.00 kN
Dopuszczalne pole powierzchni z uwagi na cisnienie pA(aval).
pAAval = (Afs+Afw)*(fs-0.5*P)+Afp*(fop-0.5*P)+Afb*(fob-0.5*P) (9.5-7)
=(1149.4+0)*(155.87-0.5*1.2)+1149.4*(155.87-0.5*1.2)+254.09*(132.49-0.5*1.2
)= = 390.45 kN
»Wzmocnienie krócca pAAval=390.45 >= pAReq=374.[kN] « » (U= 95.7%) OK«
Maksymalne dopuszczalne cisnienie Pmax
Pmax =(Afs+Afw)*fs+Afp*fop+Afb*fob/((Aps+Apb+0.5*Apphi)+0.5*(Afs+Afw+Afb+Afp))(10)
=+0)*155.87+1149.4*155.87+254.09*132.49/((2.9748E05+14183.88+0.5*0)+0.5*(11
49.4+0+254.09+1149.4))= = 1.25 MPa
Maksymalne dopuszczalne cisnienie próby Ptmax
Ptmax = == 2.10 MPa
STRESZCZENIE OBLICZEN
9.5.2.4.4 Nozzles normal to the shell, with or without reiforcement pads.
Granica wzmocnienia wzdluz plaszcza
Iso = Sqr(( 2 * ris + eas) * eas)
=Sqr((2*790.6+9.4)*9.4)= 122.28 mm
Granica wzmocnienia wzdluz nakladki
Ip = Min( Ip, Is ) (9.5-86) =Min(125,122.28)= 122.28 mm
Granice wzmocnienia wzdluz krócca (na zewnatrz plaszcza)
Ibo = MIN( Sqr(( deb - eb) * eb), ho) (9.5-75)
=MIN(Sqr((508-4.47)*4.47,)150)= 47.44 mm
20 N.1 Króciec,Blacha korpu krociec met I
Umax= 95.7%
Strona: 16
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01 Operator :RR Rev.:A
EN13445:Issue26 - 9.5 OTWORY POJEDYNCZE W PLASZCZACH
N.1 krociec met I 17 Nov. 2008 19:44 ConnID:S1.1
Wymagane pole powierzchni z uwagi na cisnienie pA(req).
pAReqL = P * (ApsL + Apb) (9.5-7) =1.2*(2.9748E05+14183.88)= 374.00 kN
pAReqT = P * (ApsT + Apb + 0.5 * Apphi) (9.5-7)
=1.2*(1.4964E05+14183.88+0.5*0)= 196.59 kN
pAReq = MAX( pAReqL, pAReqT) =MAX(374.,196.59)= 374.00 kN
Dopuszczalne pole powierzchni z uwagi na cisnienie pA(aval).
pAAval = (Afs+Afw)*(fs-0.5*P)+Afp*(fop-0.5*P)+Afb*(fob-0.5*P) (9.5-7)
=(1149.4+0)*(155.87-0.5*1.2)+1149.4*(155.87-0.5*1.2)+254.09*(132.49-0.5*1.2
)= = 390.45 kN
»Wzmocnienie krócca pAAval=390.45 >= pAReq=374.[kN] « » (U= 95.7%) OK«
Maksymalne dopuszczalne cisnienie Pmax
Pmax =(Afs+Afw)*fs+Afp*fop+Afb*fob/((Aps+Apb+0.5*Apphi)+0.5*(Afs+Afw+Afb+Afp))(10)
=+0)*155.87+1149.4*155.87+254.09*132.49/((2.9748E05+14183.88+0.5*0)+0.5*(11
49.4+0+254.09+1149.4))= = 1.25 MPa
Objetosc:0.03 m3 Ciezar:12 kg (SG= 7.85 )
20 N.1 Króciec,Blacha korpu krociec met I
Umax= 95.7%
Strona: 17
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01 Operator :RR Rev.:A
EN13445:Issue26 - 9.5 OTWORY POJEDYNCZE W PLASZCZACH
N.1 krociec met I 17 Nov. 2008 19:44 ConnID:S1.1
21 N.2 Króciec,Blacha korpu krociec met II
N.3* krociec met 1591(Copy of N.2)
DANE WEJSCIOWE
ELEMENT PRZYLACZONY/POLOZENIE
Mocowanie: S1.1 Plaszcz walcowy plaszcz
Orientacja i polozenie krócca: Promieniowo do plaszcza
Polozenie "z" krócca wzdluz osi przylaczenia........:z 2000.00 mm
Kat obrotu osi krócca w plaszczyznie x-y............:Phi 0.00 Degr.
DANE PROJEKTOWE
Rodzaj otworu: Krócce bez znormalizowanych kolnierzy ANSI lub DIN
OBCIAZENIE CISNIENIEM: Obliczanie elementu tylko na cisnienie wewnetrzne
KARTA PROCESOWA: DANE PROJEKTOWE : Temp= 120°C, P= 1.2MPa, c= .3mm, Pext= 0MPa
GESTOSC WLASCIWA PLYNU ROBOCZEGO....................:SG 0.00
SLUP CIECZY.........................................:LH 605.00 mm
DANE PLASZCZA (S1.1)
Rodzaj plaszcza: Plaszcz walcowy
SREDNICA ZEWNETRZNA PLASZCZA........................:De 1600.00 mm
RZECZYWISTA GRUBOSC SCIANKI (w stanie nie skorodowanym) :en 10.00 mm
UJEMNA TOLERANCJA WYKONANIA.........................:th 0.3000 mm
EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N THK<=16mm 120'C
Rm=410 Rp=265 Rpt=233.8 fs=155.87 f20=170.83 ftest=252.38 E=204605(N/mm2) ro=7.85
DANE MATERIALU KRÓCCA
Delivery Form: Blacha korpusu
WSPÓLCZYNNIK ZLACZA SPAWANEGO: Grupa badan 3 (z=0.85)
EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N THK<=16mm 120'C
Rm=410 Rp=265 Rpt=233.8 fb=155.87 f20=170.83 ftest=252.38 E=204605(N/mm2) ro=7.85
DANE WYMIAROWE KRÓCCA
Mocowanie: Króciec wpuszczany
Srednica krócca: Obliczanie w oparciu o Dz krócca
Ksztalt krócca/otworu: Okragly
Application:
9.4.6.3 NOT a critical fatigue area, and calc.temp.is outside creep range.
SREDNICA ZEWNETRZNA KRÓCCA..........................:deb 508.00 mm
RZECZYWISTA GRUBOSC KRÓCCA (w stanie nie skorodowanym):enb 4.77 mm
Wielkosc krócca i kolnierza: ND500
Komentarz (opcjonalnie): .SCH 5S
TOLERANCJA UJEMNA/NADDATEK NA PRZECIENIENIE.........: 0.00 mm
WYSOKOSC KRÓCCA MIERZONA OD SREDNICY ZEWNETRZNEJ ZBIORNIKA:ho 150.00 mm
21 N.2 Króciec,Blacha korpu krociec met II
Umax= 95.7%
Strona: 18
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01 Operator :RR Rev.:A
EN13445:Issue26 - 9.5 OTWORY POJEDYNCZE W PLASZCZACH
N.2 krociec met II 17 Nov. 2008 19:44 ConnID:S1.1
POLOZENIE KRÓCCÓW / ORIENTACJA
Króciec przechodzacy przez spoine: Króciec nie przechodzi przez spoine plaszcza
KAT PhiC (UKOSNA W PRZEKROJU POPRZECZNYM SEKCJI) Rys. 9.5-2:PhiC 0.00 Degr.
KAT PhiL ( UKOSNA W PRZEKROJU PODLUZNYM SEKCJI) Rys. 9.5-1 :PhiL 0.00 Degr.
DANE DOTYCZACE SPAWANIA
Nozzle/Pad to Shell Welding Area:
Wylaczyc powierzchnie spoiny laczacej króciec z plaszczem
DANE NAKLADKI WZMACNIAJACEJ
Rodzaj nakladki: Nakladka pojedyncza
GRUBOSC NAKLADKI WZMACNIAJACEJ......................:eap 10.00 mm
SZEROKOSC NAKLADKI WZMACNIAJACEJ ...................:Ip 125.00 mm
EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N THK<=16mm 120'C
Rm=410 Rp=265 Rpt=233.8 fp=155.87 f20=170.83 ftest=252.38 E=204605(N/mm2) ro=7.85
GRANICE WZMOCNIENIA
Zmniejszenie granicy wzmocnienia: Zmniejszenie granicy nie jest wymagane
WYNIKI OBLICZEN
OBLICZENIA PODSTAWOWE
Obliczeniowa grubosc plaszcza eas
eas = en - c - th =10-0.3-0.3= 9.40 mm
Obliczeniowa grubosc krócca eab
eab = enb - c - NegDev =4.77-0.3-0= 4.47 mm
Obliczeniowa grubosc nakladki wzmacniajacej ep
ep = MIN( eap, eas) (9.5-20) =MIN(10,9.4)= 9.40 mm
Zmniejszenie wytrzymalosci materialu krócca z uwagi na spoine wzdluzna krócca
fb = fb * z =155.87*0.85= 132.49 N/mm2
Wewnetrzny promien krzywizny
ris = De / 2 - eas (9.5-3) =1600/2-9.4= 790.60 mm
dib = deb - 2 * eab =508-2*4.47= 499.06 mm
Min. grubosc krócca wynikajaca z cisnienia wewnetrznego ebp
ebp = P * deb / (2 * fb * z + P)
=1.2*508/(2*155.87*0.85+1.2)= 2.29 mm
Naprezenia dopuszczalne
fob = Min( fs, fb) (9.5-8) =Min(155.87,132.49)= 132.49 N/mm2
fop = Min( fs, fp) (9.5-9) =Min(155.87,155.87)= 155.87 N/mm2
OGRANICZENIA GEOMETRYCZNE
»Sprawdz maksymalna grubosc nakladki eap=10 <= 1.5*eas=14.1[mm] «» OK«
»Sprawdenie maksymalnej srednicy krócca dib/(2*ris)=0.3156 <= .5[mm] «» OK«
»Minimalna grubosc krócca ebp=2.29 <= eab=4.47[mm] « » (U= 51.2%) OK«
9.5.2.4.4 Nozzles normal to the shell, with or without reiforcement pads.
Obliczenie efektywnej powierzchni obciazonej naprezeniem jako wzmocnienie
Area of Shell Afs
Granica wzmocnienia wzdluz plaszcza
Iso = Sqr(( 2 * ris + eas) * eas)
=Sqr((2*790.6+9.4)*9.4)= 122.28 mm
Króciec wpuszczany
Afs = eas * Is (9.5-78) =9.4*122.28= 1149.40 mm2
21 N.2 Króciec,Blacha korpu krociec met II
Umax= 95.7%
Strona: 19
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01 Operator :RR Rev.:A
EN13445:Issue26 - 9.5 OTWORY POJEDYNCZE W PLASZCZACH
N.2 krociec met II 17 Nov. 2008 19:44 ConnID:S1.1
Area of Reinforcement Pad Afp
Granica wzmocnienia wzdluz nakladki
Ip = Min( Ip, Is ) (9.5-86) =Min(125,122.28)= 122.28 mm
ep = Min( ep, eas) (9.5-87) =Min(9.4,9.4)= 9.40 mm
Afp = ep * Ip (9.5-85) =9.4*122.28= 1149.40 mm2
Area of Nozzle Afb
Granice wzmocnienia wzdluz krócca (na zewnatrz plaszcza)
Ibo = MIN( Sqr(( deb - eb) * eb), ho) (9.5-75)
=MIN(Sqr((508-4.47)*4.47,)150)= 47.44 mm
Króciec wpuszczany
Afb = eb * (Ibo + Ibi + eas) (9.5-77) =4.47*(47.44+0+9.4)= 254.09 mm2
Obliczenie powierzchni obciazonej cisnieniem
In the Nozzle Apb
Apb = 0.5 * dib * (Ibo + eas) (9.5-83) =0.5*499.06*(47.44+9.4)= 14183.88 mm2
Element walcowy w przekroju podluznym Aps
ApsL = ris * (Is + a) (9.5-93) =790.6*(122.28+254)= 2,9748E05 mm2
Element walcowy w przekroju poprzecznym Aps
ApsT = 0.5 * ris ^ 2 * (Is + a ) / (0.5 * eas + ris) (9.5-104)
=0.5*790.6^2*(122.28+258.53)/(0.5*9.4+790.6)= 1,4964E05 mm2
Aps = MAX( ApsL ApsT) =MAX(2.9748E05,1.4964E05)= 2,9748E05 mm2
9.5.2 Zasady wzmocnienia
Wymagane pole powierzchni z uwagi na cisnienie pA(req).
pAReqL = P * (ApsL + Apb) (9.5-7) =1.2*(2.9748E05+14183.88)= 374.00 kN
pAReqT = P * (ApsT + Apb + 0.5 * Apphi) (9.5-7)
=1.2*(1.4964E05+14183.88+0.5*0)= 196.59 kN
pAReq = MAX( pAReqL, pAReqT) =MAX(374.,196.59)= 374.00 kN
Dopuszczalne pole powierzchni z uwagi na cisnienie pA(aval).
pAAval = (Afs+Afw)*(fs-0.5*P)+Afp*(fop-0.5*P)+Afb*(fob-0.5*P) (9.5-7)
=(1149.4+0)*(155.87-0.5*1.2)+1149.4*(155.87-0.5*1.2)+254.09*(132.49-0.5*1.2
)= = 390.45 kN
»Wzmocnienie krócca pAAval=390.45 >= pAReq=374.[kN] « » (U= 95.7%) OK«
Maksymalne dopuszczalne cisnienie Pmax
Pmax =(Afs+Afw)*fs+Afp*fop+Afb*fob/((Aps+Apb+0.5*Apphi)+0.5*(Afs+Afw+Afb+Afp))(10)
=+0)*155.87+1149.4*155.87+254.09*132.49/((2.9748E05+14183.88+0.5*0)+0.5*(11
49.4+0+254.09+1149.4))= = 1.25 MPa
Maksymalne dopuszczalne cisnienie próby Ptmax
Ptmax = == 2.10 MPa
STRESZCZENIE OBLICZEN
9.5.2.4.4 Nozzles normal to the shell, with or without reiforcement pads.
Granica wzmocnienia wzdluz plaszcza
Iso = Sqr(( 2 * ris + eas) * eas)
=Sqr((2*790.6+9.4)*9.4)= 122.28 mm
Granica wzmocnienia wzdluz nakladki
Ip = Min( Ip, Is ) (9.5-86) =Min(125,122.28)= 122.28 mm
Granice wzmocnienia wzdluz krócca (na zewnatrz plaszcza)
Ibo = MIN( Sqr(( deb - eb) * eb), ho) (9.5-75)
=MIN(Sqr((508-4.47)*4.47,)150)= 47.44 mm
21 N.2 Króciec,Blacha korpu krociec met II
Umax= 95.7%
Strona: 20
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01 Operator :RR Rev.:A
EN13445:Issue26 - 9.5 OTWORY POJEDYNCZE W PLASZCZACH
N.2 krociec met II 17 Nov. 2008 19:44 ConnID:S1.1
Wymagane pole powierzchni z uwagi na cisnienie pA(req).
pAReqL = P * (ApsL + Apb) (9.5-7) =1.2*(2.9748E05+14183.88)= 374.00 kN
pAReqT = P * (ApsT + Apb + 0.5 * Apphi) (9.5-7)
=1.2*(1.4964E05+14183.88+0.5*0)= 196.59 kN
pAReq = MAX( pAReqL, pAReqT) =MAX(374.,196.59)= 374.00 kN
Dopuszczalne pole powierzchni z uwagi na cisnienie pA(aval).
pAAval = (Afs+Afw)*(fs-0.5*P)+Afp*(fop-0.5*P)+Afb*(fob-0.5*P) (9.5-7)
=(1149.4+0)*(155.87-0.5*1.2)+1149.4*(155.87-0.5*1.2)+254.09*(132.49-0.5*1.2
)= = 390.45 kN
»Wzmocnienie krócca pAAval=390.45 >= pAReq=374.[kN] « » (U= 95.7%) OK«
Maksymalne dopuszczalne cisnienie Pmax
Pmax =(Afs+Afw)*fs+Afp*fop+Afb*fob/((Aps+Apb+0.5*Apphi)+0.5*(Afs+Afw+Afb+Afp))(10)
=+0)*155.87+1149.4*155.87+254.09*132.49/((2.9748E05+14183.88+0.5*0)+0.5*(11
49.4+0+254.09+1149.4))= = 1.25 MPa
Objetosc:0.03 m3 Ciezar:12 kg (SG= 7.85 )
21 N.2 Króciec,Blacha korpu krociec met II
Umax= 95.7%
Strona: 21
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01 Operator :RR Rev.:A
EN13445:Issue26 - 9.5 OTWORY POJEDYNCZE W PLASZCZACH
N.2 krociec met II 17 Nov. 2008 19:44 ConnID:S1.1
22 F.1 WN - Kolnierz Kolnierz metoda I
DANE WEJSCIOWE
ELEMENT PRZYLACZONY/POLOZENIE
Mocowanie: N.1 Króciec,Blacha korpu krociec met I S1.1
Polozenie: Wzdluz osi "z" z1= 155
Flange Design Method: Section 11 - Taylor Forge
DANE PROJEKTOWE
KARTA PROCESOWA: DANE PROJEKTOWE : Temp= 120°C, P= 1.2MPa, c= .3mm
GESTOSC WLASCIWA PLYNU ROBOCZEGO....................:SG 0.00
SLUP CIECZY.........................................:LH 605.00 mm
B: Obciazenie cisnieniem: Kolnierz podlegajacy cisnieniu wewnetrznemu
NACIAG SRUB Z DRUGIEGO KOLNIERZA(Warunki ruchowe)...:Wm1' 0.00 kN
NACIAG SRUB Z DRUGIEGO KOLNIERZA(Warunki montazowe).:Wm2' 0.00 kN
OBCIAZENIA ZEWNETRZNE KOLNIERZA: Nie
PODAJ RODZAJ PRZYLGI KOLNIERZA I USZCZELKI
A: Kolnierz znormalizowany: Kolnierze wg DIN
C: Rodzaj kolnierza: WN Szyjkowy do przyspawania
D: Przylga kolnierza (Szkic/Opis): 1a Powierzchnia uszczelniajaca plaska
DANE PlASZCZA/KRÓCCA
PLASZCZ/WYMIARY KRÓCCA I KOMENTARZ: N.1
EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N THK<=16mm 120'C
Rm=410 Rp=265 Rpt=233.8 fs=155.87 fs20=170.83 ftest=252.38 E=204605(N/mm2) ro=7.85
SREDNICA ZEWNETRZNA CZESCI WALCOWEJ SZYJKI/KRÓCCA ..:Do 508.00 mm
GRUBOSC SCIANKI KRÓCCA/PLASZCZA (w stanie nie skorodowanym):s1 4.77 mm
Kolnierze wg DIN
E: Klasa cisnienia: DIN 2633: Klasa PN 16
DANE KOLNIERZA
KOLNIERZ WEWNETRZNY: Nie (Sruby umieszczone na zewnatrz)
METODA OBLICZANIA: A) METODA OBLICZANIA KOLNIERZA INTEGRALNEGO
SREDNICA ZEWNETRZNA KOLNIERZA.......................:A 715.00 mm
GRUBOSC KRYZY KOLNIERZA (nie skorodowany)...........:e 34.00 mm
NADDATEK NA KOROZJE DLA PRZYLGI KOLNIERZA...........:cf 0.00 mm
EN 10028-6:2003, 1.8867 P355QH plate and strip, HT:QT THK<=50mm 120'C
Rm=490 Rp=355 Rpt=300 SFO=200 SFA=204.17 ftest=338.1 E=204605(N/mm2) ro=7.85
22 F.1 WN - Kolnierz Kolnierz metoda I
Umax= 93.4%
Strona: 22
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - 11.5 KOLNIERZE Z USZCZELKAMI WASKIMI
F.1 Kolnierz metoda I 17 Nov. 2008 20:09 ConnID:N.1
DANE SZYJKI KOLNIERZA
DLUGOSC SZYJKI .....................................:h 40.00 mm
GRUBOSC SZYJKI PRZY KRYZIE w stanie skorodowanym....:g1 27.70 mm
GRUBOSC CZESCI WALCOWEJ SZYJKI W CIENSZYM KONCU w stanie skorodowanym:go 7.70
mm
EN 10028-6:2003, 1.8867 P355QH plate and strip, HT:QT THK<=50mm 120'C
Rm=490 Rp=355 Rpt=300 SHO=200 SHA=204.17 ftest=338.1 E=204605(N/mm2) ro=7.85
DANE SRUB
OBLICZENIE MOMENTU NACIAGU SRUB: Tak
NOMINALNY WYMIAR SRUB I KOMENTARZ: M30x3 ;
EFEKTYWNE POLE PRZEKROJU SRUBY......................:Ae 544.00 mm2
ZALECANY MINIMALNY ODSTEP SRODKOW SRUB OD KRAWEDZI..:Bce 30.00 mm
ZALECANY MINIMALNY PROMIENIOWY ODSTEP SRODKOW SRUB..:Bcr 44.00 mm
SREDNICA OTWORÓW POD SRUBY..........................:d 33.00 mm
LICZBA SRUB ........................................:n 20.00
SREDNICA PODZIALOWA OTWORÓW POD SRUBY ..............:C 650.00 mm
EN 10269:1999, 1.1181 C35E bar, bolt, HT:QT THK<=60mm 120'C
Rm=500 Rp=300 Rpt=262.4 Sb=87.47 Sa=100 ftest=150 E=191484(N/mm2) ro=7.93
METODA NACIAGU SRUB:
Skrecanie, (pomiar momentu i obrotu nakretki, blisko wytrzymalosci srub) eps
=-0.07 do +0.07
WSPÓLCZYNNIK TARCIA: Normalne/przecietne warunki µ=0.20
DANE USZCZELKI
Tablica H-1 Wspólczynniki m & y Przylga:
Wspólczynniki uszczelki podane przez projektanta
WSPÓLCZYNNIK USZCZELKI..............................:m 5.00
NAPREZENIE SCISKAJACE POWIERZCHNI USZCZELNIAJACEJ LUB USZCZELKI :y 15.00 N/mm2
TYP USZCZELKI (uwaga) (Opcjonalnie): PTFE KLINERtop-chem-2000
SREDNICA ZEWNETRZNA USZCZELKI.......................:Go 582.00 mm
WIEKSZA WARTOSC SREDNICY WEWNETRZNEJ USZCZELKI LUB PLASZCZYZNY PRZYLGNI
KOLNIERZA:A1 530.00 mm
TEMA RGP-RCB-11.7 Include Additional Loads from Pass Partition Plate Gasket: Nie
WYNIKI OBLICZEN
Wspólczynnik korekcyjny naprezen dla duzych srednic K
k (D < 1000 mm) = 1 =1= 1.00
SZCZEGÓLY USZCZELKI
b = MIN VALUE(2.52 * Sqr(bo), bo ) = == 9.09 mm
OBCIAZENIE KOLNIERZA
H = 0.785 * G ^ 2 * p (11.5-5) =0.785*563.83^2*1.2= 299.46 kN
HG = (2 * PI * b * G * m) * p (11.5-6)
=(2*3.14*9.09*563.83*5)*1.2= 193.22 kN
HD = 0.785 * B ^ 2 * p =0.785*499.06^2*1.2= 234.62 kN
HT = H - HD (11.5-11) =299.46-234.62= 64.85 kN
RAMIONA MOMENTÓW
hG = (C - G) / 2 (11.5-14) =(650-563.83)/2= 43.09 mm
hD = (C - B - g1) / 2 (11.5-12) =(650-499.06-27.7)/2= 61.62 mm
hT = (2 * C - B - G) / 4 (11.5-15) =(2*650-499.06-563.83)/4= 59.28 mm
OBCIAZENIE SRUB
Warunki ruchowe
Wop = H + HG (11.5-8) =299.46+193.22= 492.68 kN
Warunki montazowe
Wamb = PI * b * G * y (11.5-7) =3.14*9.09*563.83*15= 241.52 kN
22 F.1 WN - Kolnierz Kolnierz metoda I
Umax= 93.4%
Strona: 23
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - 11.5 KOLNIERZE Z USZCZELKAMI WASKIMI
F.1 Kolnierz metoda I 17 Nov. 2008 20:09 ConnID:N.1
PRZEKRÓJ SRUB
Am1 = Wop / Sb =4.9268E05/87.47= 5632.55 mm2
Am2 = Wamb / Sa =2.4152E05/100= 2415.19 mm2
Wymagany przekrój srub Am
Am (Largest value of Am1 and Am2)= Am =5632.55= 5632.55 mm2
Rzeczywisty przekrój srub Ab
Ab (num.bolts*root area) = n * Ae =20*544= 10880.00 mm2
»Sprawdzenie przekroju srub Ab=10880 >= Am=5632.55[mm2] « » (U= 51.7%) OK«
W = 0.5 * (Ab + Am) * Sa (11.5-16) =0.5*(10880+5632.55)*100= 825.63 kN
MOMENTY W KOLNIERZU
Mop = HD * hD + HT * hT + HG * hG (11.5-18)
=234.62*61.62+64.85*59.278+193.22*43.086= 26625.96 Nm
Mamb = W * hG (11.5-17) =825.63*43.086= 35572.98 Nm
ROZSTAW SRUB
Bspc = C * PI / n =650*3.14/20= 102.10 mm
Wspólczynnik korekcyjny podzialu srub
CF = MAX( Sqr( Bspc / (2 * db + 6 * e / (m + 0.5))) , 1) (11.5-20)
=MAX(Sqr(102.1/(2*30+6*34/(5+0.5))),1)= 1.03
Mo = Mop * CF / B (11.5-27) =26625.96*1.03/499.06= 54.95 Nm
Ma = Mamb * CF / B (11.5-26) =35572.98*1.03/499.06= 73.42 Nm
STALE KSZTALTU
K = A / B (11.5-21) =715/499.06= 1.43
lo = SQR( B * go) (11.5-22) =SQR(499.06*7.7)= 61.99
h/lo= 0.645 K=A/B= 1.433 g1/go= 3.597
WARTOSCI Z RYSUNKÓW 11.5 do 8
BetaT = 1.740 BetaZ = 2.900 BetaY = 5.568 BetaU = 6.119
BetaF= 0.769 BetaV = 0.106 phi = 2.963
lamda = (e*BetaF+lo)/(BetaT*lo)+e^3*BetaV/(BetaU*lo*go^2)
=(34*0.769+61.99)/(1.74*61.99)+34^3*0.1062/(6.119*61.99*7.7^2)= 1.00
Warunki ruchowe
M = Mo =54.95= 54.95 Nm
11.5.4.1 naprezenia w kolnierzu przy grubosci e= 34 mm
Naprezenia wzdluzne w kolnierzu
SigH = phi * M / (lamda * g1 ^ 2) (11.5-29)
=2.96*54.95/(1.*27.7^2)= 211.63 N/mm2
Naprezenia promieniowe w kolnierzu
Sigr = (1.333 * e * BetaF + lo) * M / (lamda * e ^ 2 * lo) (11.5-30)
=(1.333*34*0.769+61.99)*54.95/(1.*34^2*61.99)= 74.06 N/mm2
Naprezenia styczne w kolnierzu
SigTeta = BetaY*M/e^2-Sigr*(K^2+1)/(K^2-1) (11.5-31)
=5.568*54.95/34^2-74.06*(1.43^2+1)/(1.43^2-1)= 49.90 N/mm2
11.5.4.2 Naprezenia dopuszczalne
»Naprezenia w szyjce k*SigH=211.63 <= 1.5 * MIN(f;fH)=300[N/mm2] (11.5-39)«» (U= 70.5%) OK«
»Naprezenia promieniowe k*SigR=74.06 <= f=200[N/mm2] (11.5-40)«» (U= 37%) OK«
»Naprezenia styczne k*SigTeta=49.9 <= f=200[N/mm2] (11.5-41)«» (U= 24.9%) OK«
»Naprezenia promieniowe+w szyjce 0.5*k*(SigH+SigR)=142.85 <= f=200[N/mm2] (11.5-42)«» (U=
71.4%) OK«
»Naprezenia styczne+w szyjce 0.5*k*(SigH+SigTeta)=130.76 <= f=200[N/mm2] (11.5-43)«» (U=
65.3%) OK«
22 F.1 WN - Kolnierz Kolnierz metoda I
Umax= 93.4%
Strona: 24
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - 11.5 KOLNIERZE Z USZCZELKAMI WASKIMI
F.1 Kolnierz metoda I 17 Nov. 2008 20:09 ConnID:N.1
Warunki montazowe
M = Ma =73.42= 73.42 Nm
11.5.4.1 naprezenia w kolnierzu przy grubosci e= 34 mm
Naprezenia wzdluzne w kolnierzu
SigH = phi * M / (lamda * g1 ^ 2) (11.5-29)
=2.96*73.42/(1.*27.7^2)= 282.74 N/mm2
Naprezenia promieniowe w kolnierzu
Sigr = (1.333 * e * BetaF + lo) * M / (lamda * e ^ 2 * lo) (11.5-30)
=(1.333*34*0.769+61.99)*73.42/(1.*34^2*61.99)= 98.95 N/mm2
Naprezenia styczne w kolnierzu
SigTeta = BetaY*M/e^2-Sigr*(K^2+1)/(K^2-1) (11.5-31)
=5.568*73.42/34^2-98.95*(1.43^2+1)/(1.43^2-1)= 66.66 N/mm2
11.5.4.2 Naprezenia dopuszczalne
»Naprezenia w szyjce k*SigH=282.74 <= 1.5 * MIN(f;fH)=306.25[N/mm2] (11.5-39)«» (U= 92.3%) OK«
»Naprezenia promieniowe k*SigR=98.95 <= f=204.17[N/mm2] (11.5-40)«» (U= 48.4%) OK«
»Naprezenia styczne k*SigTeta=66.66 <= f=204.17[N/mm2] (11.5-41)«» (U= 32.6%) OK«
»Naprezenia promieniowe+w szyjce 0.5*k*(SigH+SigR)=190.85 <= f=204.17[N/mm2] (11.5-42)«» (U=
93.4%) OK«
»Naprezenia styczne+w szyjce 0.5*k*(SigH+SigTeta)=174.7 <= f=204.17[N/mm2] (11.5-43)«» (U=
85.5%) OK«
MOMENT NACIAGU SRUB - EN13445 ZALACZNIK G.8
kB = 1.2 * µ * dB0 (G.8-5) =1.2*0.2*30= 7.20 mm
epsn = eps * (1 + 3 / SQR( n)) / 4 (G.6-16)
=0.07*(1+3/SQR(20))/4= 0.0292
Wymagany minimalny naciag wstepny (Maksymalny z warunków obliczeniowego i
montazowego)
Fb0nom (Max. of Wop and Wamb) = Fb0req =492.68= 492.68 kN
Calkowity nominalny naciag wstepny
Fb0nom = Fb0req / (1 - epsn) (G.6-21) =492.68/(1-0.0292)= 507.52 kN
Calkowity nominalny naciag wstepny dla sruby
Fbnom = Fb0nom / n =507.52/20= 25.38 kN
Bolt Stress(Assembly Cond.)
SigBoltamb = Wamb / ((1 - epsn) * n * Ae)
=2.4152E05/((1-0.0292)*20*544)= 22.87 N/mm2
Bolt Stress(Operating Cond.)
SigBoltamb = Wop / ((1 - epsn) * n * Ae)
=4.9268E05/((1-0.0292)*20*544)= 46.65 N/mm2
»Naprezenie srub SigBolt=46.65 <= SB=87.47[N/mm2] « » (U= 53.3%) OK«
Nominalny moment naciagu sruby
Mtnom = kB * Fb0nom / n =7.2*507.52/20= 182.71 Nm
EN13445-5; 10.2.3.3 WYMAGANE MINIMALNE CISNIENIE PRÓBY HYDRAULICZNEJ: Ptmin
NOWY W TEMP. OTOCZENIA DLA GRUPY BADAN 1,2 i 3
Ptmin = MAX( 1.43 * Pd , 1.25 * Pd * f20 / f )
=MAX(1.43*1.2,1.25*1.2*204.17/200)= 1.72 MPa
»Cisnienie próby Ptmin=1.716 <= Ptmax=2.842[MPa] « » (U= 60.3%) OK«
PRESSURE AND TORQUE SUMMARY
Table PRESSURE AND TORQUE SUMMARY FOR F.1 :
Description
Temp(C)
P(MPa)
Limited By
Min.Req.Total Bolt Force(kN)
Design Pressure(corroded)
120
1.20
Radial+Hub Stress
492.68
Max.Allow.Pressure(corroded)
120
1.45
Radial+Hub Stress
595.16
22 F.1 WN - Kolnierz Kolnierz metoda I
Umax= 93.4%
Strona: 25
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - 11.5 KOLNIERZE Z USZCZELKAMI WASKIMI
F.1 Kolnierz metoda I 17 Nov. 2008 20:09 ConnID:N.1
Description
Temp(C)
P(MPa)
Limited By
Min.Req.Total Bolt Force(kN)
Max.Allow.Pressure(corroded)
Ambient
1.66
Radial+Hub Stress
681.87
Max.Allow.Test Pressure(corroded)
Ambient
2.84
Radial+Hub Stress
1166.66
Required Test Pressure
Ambient
1.72
Radial+Hub Stress
704.53
Table PRESSURE AND TORQUE SUMMARY FOR F.1 Continued
Description
Nom.Force per Bolt(kN)
Nom.Torqueper Bolt(Nm)
Design Pressure(corroded)
25.38
182.71
Max.Allow.Pressure(corroded)
30.65
220.71
Max.Allow.Pressure(corroded)
35.12
252.87
Max.Allow.Test Pressure(corroded)
60.09
432.65
Required Test Pressure
36.29
261.27
The nominal Force and Torque values are based on the following bolting up method:
Skrecanie, na wyczucie montera eps=0.3+0.5* µ
STRESZCZENIE OBLICZEN
PRZEKRÓJ SRUB
»Sprawdzenie przekroju srub Ab=10880 >= Am=5632.55[mm2] « » (U= 51.7%) OK«
Warunki ruchowe
11.5.4.1 naprezenia w kolnierzu przy grubosci e= 34 mm
Naprezenia wzdluzne w kolnierzu
SigH = phi * M / (lamda * g1 ^ 2) (11.5-29)
=2.96*54.95/(1.*27.7^2)= 211.63 N/mm2
Naprezenia promieniowe w kolnierzu
Sigr = (1.333 * e * BetaF + lo) * M / (lamda * e ^ 2 * lo) (11.5-30)
=(1.333*34*0.769+61.99)*54.95/(1.*34^2*61.99)= 74.06 N/mm2
Naprezenia styczne w kolnierzu
SigTeta = BetaY*M/e^2-Sigr*(K^2+1)/(K^2-1) (11.5-31)
=5.568*54.95/34^2-74.06*(1.43^2+1)/(1.43^2-1)= 49.90 N/mm2
11.5.4.2 Naprezenia dopuszczalne
»Naprezenia w szyjce k*SigH=211.63 <= 1.5 * MIN(f;fH)=300[N/mm2] (11.5-39)«» (U= 70.5%) OK«
»Naprezenia promieniowe k*SigR=74.06 <= f=200[N/mm2] (11.5-40)«» (U= 37%) OK«
»Naprezenia styczne k*SigTeta=49.9 <= f=200[N/mm2] (11.5-41)«» (U= 24.9%) OK«
»Naprezenia promieniowe+w szyjce 0.5*k*(SigH+SigR)=142.85 <= f=200[N/mm2] (11.5-42)«» (U=
71.4%) OK«
»Naprezenia styczne+w szyjce 0.5*k*(SigH+SigTeta)=130.76 <= f=200[N/mm2] (11.5-43)«» (U=
65.3%) OK«
Warunki montazowe
11.5.4.1 naprezenia w kolnierzu przy grubosci e= 34 mm
Naprezenia wzdluzne w kolnierzu
SigH = phi * M / (lamda * g1 ^ 2) (11.5-29)
=2.96*73.42/(1.*27.7^2)= 282.74 N/mm2
Naprezenia promieniowe w kolnierzu
Sigr = (1.333 * e * BetaF + lo) * M / (lamda * e ^ 2 * lo) (11.5-30)
=(1.333*34*0.769+61.99)*73.42/(1.*34^2*61.99)= 98.95 N/mm2
Naprezenia styczne w kolnierzu
SigTeta = BetaY*M/e^2-Sigr*(K^2+1)/(K^2-1) (11.5-31)
=5.568*73.42/34^2-98.95*(1.43^2+1)/(1.43^2-1)= 66.66 N/mm2
22 F.1 WN - Kolnierz Kolnierz metoda I
Umax= 93.4%
Strona: 26
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - 11.5 KOLNIERZE Z USZCZELKAMI WASKIMI
F.1 Kolnierz metoda I 17 Nov. 2008 20:09 ConnID:N.1
11.5.4.2 Naprezenia dopuszczalne
»Naprezenia w szyjce k*SigH=282.74 <= 1.5 * MIN(f;fH)=306.25[N/mm2] (11.5-39)«» (U= 92.3%) OK«
»Naprezenia promieniowe k*SigR=98.95 <= f=204.17[N/mm2] (11.5-40)«» (U= 48.4%) OK«
»Naprezenia styczne k*SigTeta=66.66 <= f=204.17[N/mm2] (11.5-41)«» (U= 32.6%) OK«
»Naprezenia promieniowe+w szyjce 0.5*k*(SigH+SigR)=190.85 <= f=204.17[N/mm2] (11.5-42)«» (U=
93.4%) OK«
»Naprezenia styczne+w szyjce 0.5*k*(SigH+SigTeta)=174.7 <= f=204.17[N/mm2] (11.5-43)«» (U=
85.5%) OK«
»Naprezenie srub SigBolt=46.65 <= SB=87.47[N/mm2] « » (U= 53.3%) OK«
EN13445-5; 10.2.3.3 WYMAGANE MINIMALNE CISNIENIE PRÓBY HYDRAULICZNEJ: Ptmin
NOWY W TEMP. OTOCZENIA DLA GRUPY BADAN 1,2 i 3
Ptmin = MAX( 1.43 * Pd , 1.25 * Pd * f20 / f )
=MAX(1.43*1.2,1.25*1.2*204.17/200)= 1.72 MPa
»Cisnienie próby Ptmin=1.716 <= Ptmax=2.842[MPa] « » (U= 60.3%) OK«
Objetosc:0.01 m3 Ciezar:59 kg (SG= 7.85 )
22 F.1 WN - Kolnierz Kolnierz metoda I
Umax= 93.4%
Strona: 27
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - 11.5 KOLNIERZE Z USZCZELKAMI WASKIMI
F.1 Kolnierz metoda I 17 Nov. 2008 20:09 ConnID:N.1
23 F.2 Integral - Flange kolnierz metoda II
DANE WEJSCIOWE
ELEMENT PRZYLACZONY/POLOZENIE
Mocowanie: N.2 Króciec,Blacha korpu krociec met II S1.1
Polozenie: Wzdluz osi "z" z1= 155
Flange Design Method:
Annex G - Alternative design rules for flanges and gasketed flange connections.
DANE PROJEKTOWE
KARTA PROCESOWA: DANE PROJEKTOWE : Temp= 120°C, P= 1.2MPa, c= .3mm
Mating Flange: Similar
INCLUDE MATING FLANGE AS PART OF DESIGN MODEL: Tak
FLANGE TYPE Side 1
Flange Type: Integral - Flange
Connecting Shell: Cylindrical or Conical Shell
Selected Sketch of Flange: Tapered hub with no thickening in the bore
FLANGE GEOMETRY Side 1
Equivalent axial thickness of flange................:eF 34.00 mm
Axial thickness radially loaded by pressure.........:eP 34.00 mm
Inside diameter of flange(corroded).................:d0 499.06 mm
Average diameter of hub, thin end...................:d1 506.76 mm
Average diameter of hub, thick end..................:d2 526.76 mm
Outside diameter of flange..........................:d4 715.00 mm
Diameter of bolt holes..............................:d5 33.00 mm
Min. wall thickness thin end of hub(corroded).......:e1 27.70 mm
Wall thickness at thick end of hub(corroded)........:e2 7.70 mm
Length of hub.......................................:lH 40.00 mm
Inclination of shell................................:PhiS 0.00 degr.
EN 10028-6:2003, 1.8867 P355QH plate and strip, HT:QT THK<=50mm 120'C
Rm=490 Rp=355 Rpt=300 fF=200 fF20=204.17 ftest=338.1 E=204605(N/mm2) ro=7.85
SHELL DATA Side 1
EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N THK<=16mm 120'C
Rm=410 Rp=265 Rpt=233.8 f=155.87 f20=170.83 ftest=252.38 E=204605(N/mm2) ro=7.85
Shell thickness(corroded)...........................:eS 0.00 mm
Average diameter of shell...........................:dS 0.00 mm
23 F.2 Integral - Flange kolnierz metoda II
Umax= 65.9%
Strona: 28
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES
F.2 kolnierz metoda II 17 Nov. 2008 20:00 ConnID:N.2
DANE SRUB
Waisted Bolt: Nie
Specify Minimum Bolt Load for Assembly Condition, FBmin: Nie
NOMINALNY WYMIAR SRUB I KOMENTARZ: M30x3 ;
Bolt circle diameter................................:d3 650.00 mm
Number of bolts.....................................:nB 20.00
Nominal diameter....................................:dB0 30.00 mm
Effective diameter..................................:dBe 26.72 mm
Number of reassemblies during service...............:NR 10.00
Length of clamp.....................................:lB 0.00 mm
Carbon Steel Bolt Material: Tak
EN 10269:1999, 1.1181 C35E bar, bolt, HT:QT THK<=60mm 120'C
Rm=500 Rp=300 Rpt=262.4 fB=174.93 fB20=200 ftest=285.71 E=191484(N/mm2) ro=7.93
BOLTING TORQUE
METODA NACIAGU SRUB:
Skrecanie, (pomiar momentu i obrotu nakretki, blisko wytrzymalosci srub) eps
=-0.07 do +0.07
WSPÓLCZYNNIK TARCIA: Normalne/przecietne warunki µ=0.20
GASKET FORM AND GEOMETRY
Gasket Form: Flat gaskets, soft or composite materials or pure metallic.
Inside diameter.....................................:dG1 530.00 mm
Outside diameter....................................:dG2 582.00 mm
Axial thickness.....................................:eG 3.00 mm
Maximum rotation and deformation of flange..........:ThetaMax 1.00 degr.
GASKET TYPE AND MATERIAL
Rodzaj uszczelki: Non-metallic flat gasket(soft), also with metal insertion
Gasket Material: PTFE
Table GASKET PROPERTIES:
Opis
ID
Assembly(T=20C)
Operating(T=120C)
Min. required compressive
stress in gasket(MPa)
Qmin
10
0
Max. allowable
compressive stress in
gasket(MPa)
Qmax
50
32
Compressive E-modulus of
gasket at zero compressive
stress(MPa)
E0
600
480
Rate of change of
compressive modulus of
elasticity
K1
20
20
Gasket compression factor
mi
1.3
1.3
Gasket creep factor
gC
.9
.66
PRZYPADKI OBCIAZEN
Table FLANGE LOADS:
Opis
ID
Assembly
Test
Oper.Cond.1
Internal pressure(MPa)
Pi
0
1.8
1.2
External Axial Force(kN)
FA
23 F.2 Integral - Flange kolnierz metoda II
Umax= 65.9%
Strona: 29
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES
F.2 kolnierz metoda II 17 Nov. 2008 20:00 ConnID:N.2
Opis
ID
Assembly
Test
Oper.Cond.1
External
Bend.Moment(kNm)
MA
Not Applicable(for future
use)
0
0
0
Test Condition (Yes/No)
Te
YES
YES
No
Temperature
D=Design/A=Ambient
T
A
A
D
Overall Axial Thermal
Expansion(mm)
DeltaU
NA
WYNIKI OBLICZEN
ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES
G.5.1 Flange parameters
G.5.1.2.1 Bolt holes
Pitch between bolts pB
pB = PI * d3 / nB (G.5-1) =3.14*650/20= 102.10 mm
Effective diameter of the bolt hole d5e
d5e = d5 * Sqr( d5 / pB) (G.5-2) =33*Sqr(33/102.1)= 18.76 mm
Effective bolt circle diameter d3e
d3e = d3 * ( 1 - 2 / nB ^ 2) (G.5-4) =650*(1-2/20^2)= 646.75 mm
CosPhiS = Cos( PhiS) =Cos(0)= 1.00
TanPhiS = Tan( PhiS) =Tan(0)= 0.00
CosPhiSm = Cos( PhiSm) =Cos(0)= 1.00
TanPhiSm = Tan( PhiSm) =Tan(0)= 0.00
G.5.1.2.2Effective dimensions of flange ring
For an integral flange and blind flange (see Figures G.3-4 to G.3-9), calculate:
bF = (d4 - d0) / 2 - d5e (G.5-5) =(715-499.06)/2-18.76= 89.21 mm
dF = (d4 + d0) / 2 (G.5-6) =(715+499.06)/2= 607.03 mm
Mating Flange
For an integral flange and blind flange (see Figures G.3-4 to G.3-9), calculate:
bFm = (d4m - d0m) / 2 - d5e (G.5-5) =(715-499.06)/2-18.76= 89.21 mm
dFm = (d4m + d0m) / 2 (G.5-6) =(715+499.06)/2= 607.03 mm
G.5.1.3 Connected shell
G.5.1.3.1 Tapered hub
beta = e2 / e1 (G.5-16) =7.7/27.7= 0.2780
eE = e1*(1+(beta-1)*lH/((beta/3)*Sqr(d1*e1)+lH)) (G.5-15)
=27.7*(1+(0.278-1)*40/((0.278/3)*Sqr(506.76*27.7)+40))= 12.01 mm
dE = (MIN(d1-e1+eE,d2+e2-eE)+MAX(d1+e1-eE,d2-e2+eE))/2 (G.5-17)
=(MIN(506.76-27.7+12.01,526.76+7.7-12.01)+MAX(506.76+27.7-12.01,526.76-7.7+
12.01))/2= = 511.07 mm
Mating Flange
G.5.1.3.1 Tapered hub
betam = e2m / e1m (G.5-16) =7.7/27.7= 0.2780
eEm = e1m*(1+(betam-1)*lHm/((betam/3)*Sqr(d1m*e1m)+lHm)) (G.5-15)
=27.7*(1+(0.278-1)*40/((0.278/3)*Sqr(506.76*27.7)+40))= 12.01 mm
dEm = (MIN(d1m-e1m+eEm,d2m+e2m-eEm)+MAX(d1m+e1m-eEm,d2m-e2m+eEm))/2 (G.5-17)
=(MIN(506.76-27.7+12.01,526.76+7.7-12.01)+MAX(506.76+27.7-12.01,526.76-7.7+
12.01))/2= = 511.07 mm
G.4.1 Conditions of applicability
»G.4.1.1 Geometry, the method applies when:
»a) Zlacze doczolowe gdzie wewnetrzna i zewnetrzna powierzchnie przechodza
lagodnie w stozek i cylinder bez miejscowego zmniejszenia grubosci
»- there are two similar or dissimilar flanges, or one flange and a blind flange;
»- the whole assembly is axisymmetric;
»- there are four or more identical, uniformly distributed bolts;
23 F.2 Integral - Flange kolnierz metoda II
Umax= 65.9%
Strona: 30
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES
F.2 kolnierz metoda II 17 Nov. 2008 20:00 ConnID:N.2
»- there is a circular gasket, located within the bolt circle on plane surfacesand
compressed axially;
»- the flange dimensions met the following conditions:
»a) 0.2=0.2 <= bF/eF=2.62« » OK«
»a) bF/eF=2.62 <= 5.0=5« » OK«
»c) CosPhiS=1 >= 1/(1+0.01*dS/eS)=0« » OK«
»NOTE/NOTE 1: Condition a) need not to be met for a collar in combination with a
loose flange, see Figure G.3-10 a) and b).
»NOTE/NOTE 2: Condition b) is to limit non-uniformity of gasket pressure due
tospacing of bolts. The values 0,01 and 0,10 are to be applied for soft (non-
metallic) and hard (metallic) gaskets respectively. A more precise criterion is
given in G.8.1.
»The following configurations are excluded from the scope of the method:
»- flanges of essentially non-axisymmetric geometry, e.g. split loose flanges,
oval flanges or gusset reinforced flanges;
»- flange joints having metal to metal contact between the flanges or between the
flanges and a spacer ring fitted either inside or outside the gasket or inside or
outside the bolts. An example is a spiral wound gasket on a high pressure
application.
G.4.1.2 Material characteristics
»Values of nominal design stress for bolts shall be determined as for shells
inclause 6.
»Material properties for gaskets may be taken from G.9.
»NOTE/NOTE: For gaskets which undergo large deformation (e.g. soft rubber) the
results can be conservative (e.g. required bolt load too high, allowable fluid
pressure too low, etc.) because the method presupposes small deformations.
G.4.1.3 Loads
»This method applies to the following loads:
»- fluid pressure : internal or external.
»- external loads : axial forces and bending moment.
»- axial thermal expansion of flanges, bolts and gasket.
»The following are not taken into account:
»- External torsional moments and external shear loads, e.g. due to pipework.
G.4.2 Mechanical model
»The method is based on the following mechanical model:
»- Geometry of both flanges and gasket is axisymmetric. Small deviations suchas
those due to a finite number of bolts, are permitted.
»- Flange ring cross section on a radial cut remains undeformed. Only
circumferential stresses and strains in the ring are considered. Radial and axial
stresses and strains are neglected. This leads to the conditions in G.4.1.1 a).
»- Shell connected to the flange ring is cylindrical. A tapered hub is treated
as an equivalent cylindrical shell. It has a calculated wall thickness which is
different for elastic and plastic behaviour but always lies between the
thicknesses of the thin and thick end of the hub. Conical and spherical shells are
treated as equivalent cylindrical shells with same wall thickness as the actual
shell; the differences in shape are explicitly taken into account in the formulae.
This simplification leads to the condition in G.4.1.1 c). The method assumes equal
radial deformation and rotation of the flange ring and the shell at their junction.
»- Gasket is in contact with the flange faces over an annular area which the
method determines. The effective radial width bGe of the gasket, which may be less
»- Modulus of elasticity of gasket material may increase with the compressiv
e stress Q on the gasket. The method uses a linear model: EG == E0 + K1×Q, in which
»- Creep of gasket material is taken into account approximately by factor gC.
»- Thermal and mechanical axial deformations of flanges, bolts and gaskets are
taken into account.
»- Loading of the whole flange connection is axisymmetric. An external bending
moment is treated as an equivalent axial force transmitted by the bolts; see
equation (G.6-2).
»- Load changes between load conditions cause changes in the bolt and gasket
forces. These are calculated taking account of elastic deformations of all
components. The required initial assembly force is calculated (see G.6.4) to
ensure that the required forces on the gasket to ensure leak tightness are
achieved under all conditions (see G.6.3).
23 F.2 Integral - Flange kolnierz metoda II
Umax= 65.9%
Strona: 31
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES
F.2 kolnierz metoda II 17 Nov. 2008 20:00 ConnID:N.2
»- Load limit checks are based on limit loads for each component. Excessive
plastic deformations are prevented. The load limit for gaskets, which depends on
Qmax , is an approximation.
»The following are not taken into account in the model:
»- Bolt bending stiffness and bending strength. Ignoring bolt bending is a
conservative simplification. Calculated tensile stiffness of bolts includes
deformation of the bolt threads within a nut or tapped hole, see equation (G.5-36).
»- Creep of flanges and bolts. This is due to lack of relevant material data for
deformation.
»- Different radial deformations of the flanges. With two equal flanges this is
not relevant as the radial deformations are the same.
G.5.2 Bolt parameters
NOTE/NOTE: The bolt dimensions are shown in Figure G.3-2. Diameters of
standardised metric series bolts (in accordance to ISO 4014 and ISO 4016) are
given in G.8.2.
G.5.2.1 Effective cross-section area of bolts
AB = nB * PI / 4 * MIN( dBe, dBs) ^ 2 (G.5-53)
=20*3.14/4*MIN(26.72,26.72)^2= 11214.83 mm2
le = lB - lS =0-0= 0.00 mm
G.5.2.2 Flexibility modulus of bolts
XB = 4/(PI*nB)*(lS/dBs^2+le/(dBe)^2+0.8/dB0) (G.5-54)
=4/(3.14*20)*(0/26.72^2+0/(26.72)^2+0.8/30)= 0.0017 mm-1
The thickness of any washers shall be included in lengths ls and le.
kB = 1.2 * µ * dB0 (G.8-5) =1.2*0.2*30= 7.20 mm
Scatter values for bolting up eps+ = .07
epsp = eps1 * (1 + 3 / SQR( nB)) / 4 (G.6-15)
=0.07*(1+3/SQR(20))/4= 0.0292
Scatter values for bolting up eps- = .07
epsn = eps * (1 + 3 / SQR( nB)) / 4 (G.6-16)
=0.07*(1+3/SQR(20))/4= 0.0292
G.5.3 Gasket parameters
bGt = (dG2 - dG1) / 2 (G.5-55) =(582-530)/2= 26.00 mm
dGt = (dG2 + dG1) / 2 (G.5-56) =(582+530)/2= 556.00 mm
AGt = PI * dGt * bGt (G.5-57) =3.14*556*26= 45414.86 mm2
PRZYPADEK OBCIAZENIA Nr: 1 - ASSEMBLY
FR0 = FA0 + 4 * MA0 / d3e (G.6-2) =0+4*0/646.75= 0.00 kN
Effective gasket width and effective gasket area
bGe = MIN( bGi, bGt) (G.5-59) =MIN(14.24,26)= 14.24 mm
dGe = dG2 - bGe =582-14.24= 567.76 mm
AGe = PI * dGe * bGe (G.5-60) =3.14*567.76*14.24= 25407.74 mm2
NOTE/NOTE 3: The effective gasket diameter dGe is the diameter where the
gasketforce acts. It is also determined from Table G.5-1.
G.5.1.5 Flexibility-related flange parameters
G.5.1.5.1 Integral flange, stub or collar
gamma = eE * dF / (bF * dE * CosPhiS) (G.5-33)
=12.01*607.03/(89.21*511.07*1)= 0.1599
teta = 0.55 * CosPhiS * Sqr( dE * eE) / eF (G.5-34)
=0.55*1*Sqr(511.07*12.01)/34= 1.27
lamda = 1 - eP / eF (G.5-35) =1-34/34= 0.00
Cf = (1+gamma*teta)/(1+gamma*teta*(4*(1-3*lamda+3*lamda^2)+6*(1-
2*lamda)*teta+6*teta^2)+3*gamma^2*teta^4) (G.5-36)
=(1+0.1599*1.27)/(1+0.1599*1.27*(4*(1-3*0+3*0^2)+6*(1-2*0)*1.27+6*1.27^2)+3
*0.1599^2*1.27^4)= =0.2186
hS = eF*1.1*Sqr(eE/dE)*(1-2*lamda+teta)/(1+gamma*teta) (G.5-37)
=34*1.1*Sqr(12.01/511.07)*(1-2*0+1.27)/(1+0.1599*1.27)= 10.81 mm
hT = eF*(1-2*lamda-gamma*teta^2)/(1+gamma*teta) (G.5-38)
=34*(1-2*0-0.1599*1.27^2)/(1+0.1599*1.27)= 21.01 mm
kQ = 0.85 / CosPhiS (G.5-41) =0.85/1= 0.8500
kR = -0.15 / CosPhiS (G.5-42) =-0.15/1= -.15
hQ = (hS*kQ+hT*(2*dF*eP/dE^2-0.5*TanPhiS))*(dE/dGe)^2 (G.5-39)
=(10.81*0.85+21.01*(2*607.03*34/511.07^2-0.5*0))*(511.07/567.76)^2= 10.13 mm
23 F.2 Integral - Flange kolnierz metoda II
Umax= 65.9%
Strona: 32
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES
F.2 kolnierz metoda II 17 Nov. 2008 20:00 ConnID:N.2
hR = hS * kR - hT * 0.5 * TanPhiS (G.5-40)
=10.81*-0.15-21.01*0.5*0= -1.62 mm
ZF = 3 * dF * Cf / (PI * bF * eF ^ 3) (G.5-45)
=3*607.03*0.2186/(3.14*89.21*34^3)= 3,6148E-05 mm-3
ZL = 0 (G.5-46) =0= 0.00
Mating Flange (m)
G.5.1.5.1 Integral flange, stub or collar
gammam = eEm * dFm / (bFm * dEm * CosPhiSm) (G.5-33)
=12.01*607.03/(89.21*511.07*1)= 0.1599
tetam = 0.55 * CosPhiSm * Sqr( dEm * eEm) / eFm (G.5-34)
=0.55*1*Sqr(511.07*12.01)/34= 1.27
lamdam = 1 - ePm / eFm (G.5-35) =1-34/34= 0.00
Cfm = (1+gammam*tetam)/(1+gammam*tetam*(4*(1-3*lamdam+3*lamdam^2)+6*(1-
2*lamdam)*tetam+6*tetam^2)+3*gammam^2*tetam^4) (G.5-36)
=(1+0.1599*1.27)/(1+0.1599*1.27*(4*(1-3*0+3*0^2)+6*(1-2*0)*1.27+6*1.27^2)+3
*0.1599^2*1.27^4)= =0.2186
hSm = eFm*1.1*Sqr(eEm/dEm)*(1-2*lamdam+tetam)/(1+gammam*tetam) (G.5-37)
=34*1.1*Sqr(12.01/511.07)*(1-2*0+1.27)/(1+0.1599*1.27)= 10.81 mm
hTm = eFm*(1-2*lamdam-gammam*tetam^2)/(1+gammam*tetam) (G.5-38)
=34*(1-2*0-0.1599*1.27^2)/(1+0.1599*1.27)= 21.01 mm
kQm = 0.85 / CosPhiSm (G.5-41) =0.85/1= 0.8500
kRm = -0.15 / CosPhiSm (G.5-42) =-0.15/1= -.15
hQm = (hSm*kQm+hTm*(2*dFm*ePm/dEm^2-0.5*TanPhiSm))*(dEm/dGe)^2 (G.5-39)
=(10.81*0.85+21.01*(2*607.03*34/511.07^2-0.5*0))*(511.07/567.76)^2= 10.13 mm
hRm = hSm * kRm + hTm * 0.5 * TanPhiSm (G.5-40)
=10.81*-0.15+21.01*0.5*0= -1.62 mm
ZFm = 3 * dFm * Cfm / (PI * bFm * eFm ^ 3) (G.5-45)
=3*607.03*0.2186/(3.14*89.21*34^3)= 3,6148E-05 mm-3
ZLm = 0 (G.5-46) =0= 0.00
G.5.1.4.2 Integral flange and blind flange
hG = (d3e - dGe) / 2 (G.5-24) =(646.75-567.76)/2= 39.50 mm
hH = (d3e - dE) / 2 (G.5-25) =(646.75-511.07)/2= 67.84 mm
hL = 0 (G.5-26) =0= 0.00 mm
Lever arm for integral flange and blind flange:
hG0 = (d3e - dGe) / 2 (G.5-61) =(646.75-567.76)/2= 39.50 mm
Mating Flange (m)
G.5.1.4.2 Integral flange and blind flange
hGm = (d3e - dGe) / 2 (G.5-24) =(646.75-567.76)/2= 39.50 mm
hHm = (d3e - dEm) / 2 (G.5-25) =(646.75-511.07)/2= 67.84 mm
hLm = 0 (G.5-26) =0= 0.00 mm
Lever arm for integral flange and blind flange:
hG0m = (d3e - dGe) / 2 (G.5-61) =(646.75-567.76)/2= 39.50 mm
Table G.5-1 Effective gasket geometry
EGm = EG0 + 0.5 * K1 * FG0 / AGe
=600+0.5*20*6.8759E05/25407.74= 870.62
ASSEMBLY
bGi =
Sqr((eG/(PI*dGe*EGm)/(hG0*ZF/EF0+hG0m*ZFm/EF0m))+(FG0/(PI*dGe*Qmax0))^2)(Table G.5-
1)
=Sqr((3/(3.14*567.76*870.62)/(39.5*3.6148E-05/2.1177E05+39.5*3.6148E-05/2.1
177E05))+(6.8759E05/(3.14*567.76*50))^2)= = 14.24 mm
G.5.3.3 Axial flexibility modulus of gasket
XG = eG / AGt * (bGt + eG / 2) / (bGe + eG / 2) (G.5-65)
=3/45414.86*(26+3/2)/(14.24+3/2)= 1,1538E-04 mm-1
G.5.1.4 Lever arms
hP = ((dGe-dE)^2*(2*dGe+dE)/6+2*eP^2*dF)/dGe^2 (G.5-22)
=((567.76-511.07)^2*(2*567.76+511.07)/6+2*34^2*607.03)/567.76^2= 7.09 mm
hPm = ((dGe-dEm)^2*(2*dGe+dEm)/6+2*ePm^2*dFm)/dGe^2 (G.5-22)
=((567.76-511.07)^2*(2*567.76+511.07)/6+2*34^2*607.03)/567.76^2= 7.09 mm
23 F.2 Integral - Flange kolnierz metoda II
Umax= 65.9%
Strona: 33
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES
F.2 kolnierz metoda II 17 Nov. 2008 20:00 ConnID:N.2
G.6.2 Applied Loads
Fluid Pressure
FQ = PI / 4 * dGe ^ 2 * p (G.6-1) =3.14/4*567.76^2*0= 0.00 MPa
Additional External Loads
FR = FA0 + 4 * MA0 / d3e (G.6-2) =0+4*0/646.75= 0.00 N
Q0 = FG0 / AGe =6.8759E05/25407.74= 27.06 MPa
EGI = EG0 + K1 * Q0 =600+20*27.06= 1141.24 MPa
G.6.3 Compliance of the joint
Tmp1 = (ZL * hL ^ 2 / EL0 + ZLm * hLm ^ 2 / EL0m + XB / EB0)
=(0*0^2/212000+0*0^2/212000+0.0017/199964)= 8,4898E-09 mm/N
YGI = ZF*hG^2/EF0+ZFm*hGm^2/EF0m+Tmp1+XG/(EGI*gC) (G.6-5)
=3.6148E-05*39.5^2/2.1177E05+3.6148E-05*39.5^2/2.1177E05+8.4898E-09+1.1538E
-04/(1141.24*0.9)= =6,534E-07 mm/N
YQI = ZF*hG*(hH-hP+hQ)/EF0+ZFm*hGm*(hHm-hPm+hQm)/EF0m+Tmp1+XG/(EG0*gC) (G.6-6)
=3.6148E-05*39.5*(67.84-7.09+10.13)/2.1177E05+3.6148E-05*39.5*(67.84-7.09+1
0.13)/2.1177E05+8.4898E-09+1.1538E-04/(600*0.9)= =9,6432E-07 mm/N
YRI = ZF*hG*(hH+hR)/EF0+ZFm*hGm*(hHm+hRm)/EF0m+Tmp1+XG/(EG0*gC) (G.6-7)
=3.6148E-05*39.5*(67.84+-1.62)/2.1177E05+3.6148E-05*39.5*(67.84+-1.62)/2.11
77E05+8.4898E-09+1.1538E-04/(600*0.9)= =9,014E-07 mm/N
FG0min = AGe * Qmin (G.6-8) =25407.74*10= 2,5408E05 N
FG0req = Max( FG0min, FGDelta) (G.6-11)
=Max(2.5408E05,6.8759E05)= 687.59 kN
FB0req = FG0req + FR0 (G.6-12) =687.59+0= 687.59 kN
Calkowity nominalny naciag wstepny
Fb0nom = FB0req / (1 - epsn) (G.6-21) =687.59/(1-0.0292)= 708.30 kN
Calkowity nominalny naciag wstepny dla sruby
Fbnom = FB0nom / nB =708.3/20= 35.41 kN
Nominal Required Torque per Bolt
Mtnom = kB * FBnom =7.2*35.41= 254.99 kN
Minimum force
FB0min = FB0nom * (1 - epsn) (G.6-19) =708.3*(1-0.0292)= 687.59 kN
Maximum forces to be used for the load limit calculation.
FB0max = FB0nom * (1 + epsp) (G.6-23) =708.3*(1+0.0292)= 729.01 kN
FG0max = FB0max - FR0 (G.6-24) =729.01-0= 729.01 kN
G.7 Load limits
Load Ratio of Bolts
PhiB = FBI / (AB * fB0) * Sqr( 1 + (CB * 3.2 * µ ) ^ 2) (G.7-3)
=7.2901E05/(11214.83*285.71)*Sqr(1+(1*3.2*0.2)^2)= 0.2701
»Bolt Load Ratio PhiB PhiB=0.2701 <= 1 =1« » (U= 27%) OK«
Load Ratio of Gasket
CG = 1 + bGt / (20 * eG) (G.7-5) =1+26/(20*3)= 1.43
PhiG = FGI / (AGt * CG * Qmax) (G.7-4)
=7.2901E05/(45414.86*1.43*50)= 0.2240
»Gasket Load Ratio PhiG PhiG=0.224 <= 1 =1« » (U= 22.3%) OK«
hG = (d3e - dGe) / 2 (G.5-24) =(646.75-567.76)/2= 39.50 mm
hH = (d3e - dE) / 2 (G.5-25) =(646.75-511.07)/2= 67.84 mm
hL = 0 (G.5-26) =0= 0.00 mm
G.7.4 Integral flange, stub or collar
eD = e1*(1+(beta-1)*lH/((beta/3)^4*(d1*e1)^2+lH^4)^0.25) (G.7-8)
=27.7*(1+(0.278-1)*40/((0.278/3)^4*(506.76*27.7)^2+40^4)^0.25)= 7.73 mm
fE = Min( fF0, fS0) (G.7-9) =Min(338.1,252.38)= 252.38 N/mm2
deltaQ = p * dE / (fE * 2 * eD * CosPhiS) (G.7-10)
=0*511.07/(252.38*2*7.73*1)= 0.00
deltaR = FR / (fE * PI * dE * eD * CosPhiS) (G.7-11)
=0/(252.38*3.14*511.07*7.73*1)= 0.00
jM = Sgn( FGI * hG + FQ * (hH - hP) + FR * hH) (G.7-16)
23 F.2 Integral - Flange kolnierz metoda II
Umax= 65.9%
Strona: 34
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES
F.2 kolnierz metoda II 17 Nov. 2008 20:00 ConnID:N.2
=Sgn(7.2901E05*39.5+0*(67.84-7.09)+0*67.84)= 1.00
cM = SQR(1.333*(1-0.75*(0.5*deltaQ+deltaR)^2*(1-(0.75*deltaQ^2+deltaR^2))) (G.7-
12/14)
=SQR(1.333*(1-0.75*(0.5*0+0)^2*(1-(0.75*0^2+0^2)))= 1.15
PsiOpt = jM * (2 * eP / eF - 1) (G.7-21) =1*(2*34/34-1)= 1.00
PsiMax(jS(1) , kM(1) ,kS(1))= 0.0805
Psi0 (jS(0) , kM(0) ,kS(0))= 0.0000
PsiMin(jS(-1) , kM(-1) ,kS(1))= -.0805
PsiZ = PsiMax =0.0805= 0.0805
WF = PI/4*(fF0*2*bF*eF^2*(1+2*PsiOpt*PsiZ-PsiZ^2)+fE*dE*eD^2*cM*jM*kM)
=3.14/4*(338.1*2*89.21*34^2*(1+2*1*0.0805-0.0805^2)+252.38*511.07*7.73^2*1.
15*1*1)= = 70215.66 Nm
PhiF0 = Abs( FGI * hG + FQ * (hH - hP) + FR * hH) / WF (G.7-6)
=Abs(7.2901E05*39.5+0*(67.84-7.09)+0*67.84)/70215.66= 0.4101
»Flange Load Ratio PhiF PhiF=0.4101 <= PhiMax =1« » (U= 41%) OK«
G.8.1 Requirements for limitation of non-uniformity of gasket stress
»Limitation of non-uniformity of gasket stress(bolting pitch) eFmin
=13.23 <= = eF =34«» OK«
G.8.5 Flange Rotation
FGImin = (FG0min*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI (G.8-22)
=(6.8759E05*6.534E-07-(0*9.6432E-07+0*9.014E-07-0*9.014E-07+0))/6.534E-07
= 687.59 kN
FGImax = (FG0max*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI (G.8-23)
=(7.2901E05*6.534E-07-(0*9.6432E-07+0*9.014E-07-0*9.014E-07+0))/6.534E-07
= 729.01 kN
FBImin = FGImin + FQ + FR (G.8-24) =687.59+0+0= 687.59 kN
FBImax = FGImax + FQ + FR (G.8-25) =729.01+0+0= 729.01 kN
ThetaFmax = ZF/EF0*(FGImax*hG+FQ*(hH-hP+hQ)+FR*(hH+hR)) (G.8-16)
=3.6148E-05/2.1177E05*(729.01*39.5+0*(67.84-7.09+10.13)+0*(67.84+-1.62))
=0.2820 Degr.
ThetaFmaxm = ZFm/EF0m*(FGImax*hGm+FQ*(hHm-hPm+hQm)+FR*(hHm+hRm)) (G.8-16)
=3.6148E-05/2.1177E05*(729.01*39.5+0*(67.84-7.09+10.13)+0*(67.84+-1.62))
=0.2820 Degr.
»Flange Rotation ThetaFmax=0.282 <= ThetaMax =1« » OK«
»Loose Flange Rotation ThetaLmax=0 <= ThetaMax =1« » OK«
»Mating Flange Rotation ThetaFmaxm=0.282 <= ThetaMax =1« » OK«
»Mating Loose Flange Rotation ThetaLmaxm=0 <= ThetaMax =1« » OK«
PRZYPADEK OBCIAZENIA Nr: 2 - TEST----
G.5.3.3 Axial flexibility modulus of gasket
XG = eG / AGt * (bGt + eG / 2) / (bGe + eG / 2) (G.5-65)
=3/45414.86*(26+3/2)/(14.24+3/2)= 1,1538E-04 mm-1
G.5.1.4 Lever arms
hP = ((dGe-dE)^2*(2*dGe+dE)/6+2*eP^2*dF)/dGe^2 (G.5-22)
=((567.76-511.07)^2*(2*567.76+511.07)/6+2*34^2*607.03)/567.76^2= 7.04 mm
hPm = ((dGe-dEm)^2*(2*dGe+dEm)/6+2*ePm^2*dFm)/dGe^2 (G.5-22)
=((567.76-511.07)^2*(2*567.76+511.07)/6+2*34^2*607.03)/567.76^2= 7.04 mm
G.6.2 Applied Loads
Fluid Pressure
FQ = PI / 4 * dGe ^ 2 * p (G.6-1) =3.14/4*567.76^2*1.8= 4,5471E05 MPa
Additional External Loads
FR = FA0 + 4 * MA0 / d3e (G.6-2) =0+4*0/646.75= 0.00 N
23 F.2 Integral - Flange kolnierz metoda II
Umax= 65.9%
Strona: 35
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES
F.2 kolnierz metoda II 17 Nov. 2008 20:00 ConnID:N.2
G.6.3 Compliance of the joint
Tmp1 = (ZL * hL ^ 2 / EL0 + ZLm * hLm ^ 2 / EL0m + XB / EB0)
=(0*0^2/212000+0*0^2/212000+0.0017/199964)= 8,4898E-09 mm/N
YGI = ZF*hG^2/EF0+ZFm*hGm^2/EF0m+Tmp1+XG/(EGI*gC) (G.6-5)
=3.6148E-05*39.5^2/2.1177E05+3.6148E-05*39.5^2/2.1177E05+8.4898E-09+1.1538E
-04/(1141.24*0.9)= =6,534E-07 mm/N
YQI = ZF*hG*(hH-hP+hQ)/EF0+ZFm*hGm*(hHm-hPm+hQm)/EF0m+Tmp1+XG/(EG0*gC) (G.6-6)
=3.6148E-05*39.5*(67.84-7.04+10.13)/2.1177E05+3.6148E-05*39.5*(67.84-7.04+1
0.13)/2.1177E05+8.4898E-09+1.1538E-04/(600*0.9)= =9,6494E-07 mm/N
YRI = ZF*hG*(hH+hR)/EF0+ZFm*hGm*(hHm+hRm)/EF0m+Tmp1+XG/(EG0*gC) (G.6-7)
=3.6148E-05*39.5*(67.84+-1.62)/2.1177E05+3.6148E-05*39.5*(67.84+-1.62)/2.11
77E05+8.4898E-09+1.1538E-04/(600*0.9)= =9,014E-07 mm/N
QImin = mi * p =1.3*1.8= 2.34 MPa
FGImin = Max( AGe * QImin, - ( FQ + FR)) (G.6-9)
=Max(25407.74*2.34,-(4.5471E05+0))= 59.45 kN
FGDelta = (FGImin*YGI+FQ*YQI+(FR*YRI-FR0*YR0)+DeltaU)/YG0) (G.6-10)
=(59.45*6.534E-07+4.5471E05*9.6494E-07+(0*9.014E-07-0*9.014E-07)+0)/6.534E-
07)= = 730.97 kN
Minimum force
FB0min = FB0nom * (1 - epsn) (G.6-19) =752.98*(1-0.0292)= 730.97 kN
Maximum forces to be used for the load limit calculation.
FB0max = FB0nom * (1 + epsp) (G.6-23) =752.98*(1+0.0292)= 775.00 kN
FG0max = FB0max - FR0 (G.6-24) =775.-0= 775.00 kN
The calculation forces in subsequent conditions shall be based on a design
assembly gasket force FG0,d
FG0d = Max( FGDelta, 2 / 3 * (1 - 10 / NR) * FB0max - FR0) (G.6-25)
=Max(730.97,2/3*(1-10/10)*775.-0)= 730.97 kN
Gasket force for load limit calculations
FGI = (FG0d*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI (G.6-26)
=(730.97*6.534E-07-(4.5471E05*9.6494E-07+0*9.014E-07-0*9.014E-07+0))/6.534E
-07= = 59.45 kN
Bolt force for load limit calculations
FBI = FGI + FQ + FR (G.6-27) =59.45+4.5471E05+0= 514.16 kN
G.7 Load limits
Load Ratio of Bolts
PhiB = FBI / (AB * fB0) * Sqr( 1 + (CB * 3.2 * µ ) ^ 2) (G.7-3)
=514.16/(11214.83*285.71)*Sqr(1+(0*3.2*0.2)^2)= 0.1605
»Bolt Load Ratio PhiB PhiB=0.1605 <= 1 =1« » (U= 16%) OK«
Load Ratio of Gasket
CG = 1 + bGt / (20 * eG) (G.7-5) =1+26/(20*3)= 1.43
PhiG = FGI / (AGt * CG * Qmax) (G.7-4)
=59.45/(45414.86*1.43*50)= 0.0183
»Gasket Load Ratio PhiG PhiG=0.0183 <= 1 =1« » (U= 1.8%) OK«
hG = (d3e - dGe) / 2 (G.5-24) =(646.75-567.76)/2= 39.81 mm
hH = (d3e - dE) / 2 (G.5-25) =(646.75-511.07)/2= 67.84 mm
hL = 0 (G.5-26) =0= 0.00 mm
G.7.4 Integral flange, stub or collar
eD = e1*(1+(beta-1)*lH/((beta/3)^4*(d1*e1)^2+lH^4)^0.25) (G.7-8)
=27.7*(1+(0.278-1)*40/((0.278/3)^4*(506.76*27.7)^2+40^4)^0.25)= 7.73 mm
fE = Min( fF0, fS0) (G.7-9) =Min(338.1,252.38)= 252.38 N/mm2
deltaQ = p * dE / (fE * 2 * eD * CosPhiS) (G.7-10)
=1.8*511.07/(252.38*2*7.73*1)= 0.2358
deltaR = FR / (fE * PI * dE * eD * CosPhiS) (G.7-11)
=0/(252.38*3.14*511.07*7.73*1)= 0.00
jM = Sgn( FGI * hG + FQ * (hH - hP) + FR * hH) (G.7-16)
=Sgn(59.45*39.81+4.5471E05*(67.84-7.04)+0*67.84)= 1.00
cM = SQR(1.333*(1-0.75*(0.5*deltaQ+deltaR)^2*(1-(0.75*deltaQ^2+deltaR^2))) (G.7-
12/14)
23 F.2 Integral - Flange kolnierz metoda II
Umax= 65.9%
Strona: 36
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES
F.2 kolnierz metoda II 17 Nov. 2008 20:00 ConnID:N.2
=SQR(1.333*(1-0.75*(0.5*0.2358+0)^2*(1-(0.75*0.2358^2+0^2)))= 1.15
PsiOpt = jM * (2 * eP / eF - 1) (G.7-21) =1*(2*34/34-1)= 1.00
PsiMax(jS(1) , kM(1) ,kS(1))= 0.0574
Psi0 (jS(0) , kM(0) ,kS(0))= -.0152
PsiMin(jS(-1) , kM(-1) ,kS(1))= -.1022
PsiZ = PsiMax =0.0574= 0.0574
WF = PI/4*(fF0*2*bF*eF^2*(1+2*PsiOpt*PsiZ-PsiZ^2)+fE*dE*eD^2*cM*jM*kM)
=3.14/4*(338.1*2*89.21*34^2*(1+2*1*0.0574-0.0574^2)+252.38*511.07*7.73^2*1.
15*1*1)= = 67821.87 Nm
PhiF0 = Abs( FGI * hG + FQ * (hH - hP) + FR * hH) / WF (G.7-6)
=Abs(59.45*39.81+4.5471E05*(67.84-7.04)+0*67.84)/67821.87=0.4425
»Flange Load Ratio PhiF PhiF=0.4425 <= PhiMax =1« » (U= 44.2%) OK«
G.8.5 Flange Rotation
FGImin = (FG0min*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI (G.8-22)
=(6.8759E05*6.534E-07-(4.5471E05*9.6494E-07+0*9.014E-07-0*9.014E-07+0))/6.5
34E-07= = 16.07 kN
FGImax = (FG0max*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI (G.8-23)
=(7.2901E05*6.534E-07-(4.5471E05*9.6494E-07+0*9.014E-07-0*9.014E-07+0))/6.5
34E-07= = 57.49 kN
FBImin = FGImin + FQ + FR (G.8-24) =16.07+4.5471E05+0= 470.78 kN
FBImax = FGImax + FQ + FR (G.8-25) =57.49+4.5471E05+0= 512.20 kN
ThetaFmax = ZF/EF0*(FGImax*hG+FQ*(hH-hP+hQ)+FR*(hH+hR)) (G.8-16)
=3.6148E-05/2.1177E05*(57.49*39.5+4.5471E05*(67.84-7.04+10.13)+0*(67.84+-1.
62))= =0.3380 Degr.
ThetaFmaxm = ZFm/EF0m*(FGImax*hGm+FQ*(hHm-hPm+hQm)+FR*(hHm+hRm)) (G.8-16)
=3.6148E-05/2.1177E05*(57.49*39.5+4.5471E05*(67.84-7.04+10.13)+0*(67.84+-1.
62))= =0.3380 Degr.
»Flange Rotation ThetaFmax=0.338 <= ThetaMax =1« » OK«
»Loose Flange Rotation ThetaLmax=0 <= ThetaMax =1« » OK«
»Mating Flange Rotation ThetaFmaxm=0.338 <= ThetaMax =1« » OK«
»Mating Loose Flange Rotation ThetaLmaxm=0 <= ThetaMax =1« » OK«
PRZYPADEK OBCIAZENIA Nr: 3 - OPER.COND.1
G.5.3.3 Axial flexibility modulus of gasket
XG = eG / AGt * (bGt + eG / 2) / (bGe + eG / 2) (G.5-65)
=3/45414.86*(26+3/2)/(14.24+3/2)= 1,1538E-04 mm-1
G.5.1.4 Lever arms
hP = ((dGe-dE)^2*(2*dGe+dE)/6+2*eP^2*dF)/dGe^2 (G.5-22)
=((567.76-511.07)^2*(2*567.76+511.07)/6+2*34^2*607.03)/567.76^2= 7.04 mm
hPm = ((dGe-dEm)^2*(2*dGe+dEm)/6+2*ePm^2*dFm)/dGe^2 (G.5-22)
=((567.76-511.07)^2*(2*567.76+511.07)/6+2*34^2*607.03)/567.76^2= 7.04 mm
G.6.2 Applied Loads
Fluid Pressure
FQ = PI / 4 * dGe ^ 2 * p (G.6-1) =3.14/4*567.76^2*1.2= 3,0314E05 MPa
Additional External Loads
FR = FA0 + 4 * MA0 / d3e (G.6-2) =0+4*0/646.75= 0.00 N
G.6.3 Compliance of the joint
Tmp1 = (ZL * hL ^ 2 / EL0 + ZLm * hLm ^ 2 / EL0m + XB / EB0)
=(0*0^2/212000+0*0^2/212000+0.0017/191484)= 8,8658E-09 mm/N
YGI = ZF*hG^2/EF0+ZFm*hGm^2/EF0m+Tmp1+XG/(EGI*gC) (G.6-5)
=3.6148E-05*39.5^2/2.0461E05+3.6148E-05*39.5^2/2.0461E05+8.8658E-09+1.1538E
-04/(1141.24*0.66)= =7,1328E-07 mm/N
23 F.2 Integral - Flange kolnierz metoda II
Umax= 65.9%
Strona: 37
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES
F.2 kolnierz metoda II 17 Nov. 2008 20:00 ConnID:N.2
YQI = ZF*hG*(hH-hP+hQ)/EF0+ZFm*hGm*(hHm-hPm+hQm)/EF0m+Tmp1+XG/(EG0*gC) (G.6-6)
=3.6148E-05*39.5*(67.84-7.04+10.13)/2.0461E05+3.6148E-05*39.5*(67.84-7.04+1
0.13)/2.0461E05+8.8658E-09+1.1538E-04/(480*0.66)= =9,9881E-07 mm/N
YRI = ZF*hG*(hH+hR)/EF0+ZFm*hGm*(hHm+hRm)/EF0m+Tmp1+XG/(EG0*gC) (G.6-7)
=3.6148E-05*39.5*(67.84+-1.62)/2.0461E05+3.6148E-05*39.5*(67.84+-1.62)/2.04
61E05+8.8658E-09+1.1538E-04/(480*0.66)= =9,3305E-07 mm/N
QImin = mi * p =1.3*1.2= 1.56 MPa
FGImin = Max( AGe * QImin, - ( FQ + FR)) (G.6-9)
=Max(25407.74*1.56,-(3.0314E05+0))= 39.64 kN
FGDelta = (FGImin*YGI+FQ*YQI+(FR*YRI-FR0*YR0)+DeltaU)/YG0) (G.6-10)
=(39.64*7.1328E-07+3.0314E05*9.9881E-07+(0*9.3305E-07-0*9.014E-07)+0)/6.534
E-07)= = 687.59 kN
Minimum force
FB0min = FB0nom * (1 - epsn) (G.6-19) =708.3*(1-0.0292)= 687.59 kN
Maximum forces to be used for the load limit calculation.
FB0max = FB0nom * (1 + epsp) (G.6-23) =708.3*(1+0.0292)= 729.01 kN
FG0max = FB0max - FR0 (G.6-24) =729.01-0= 729.01 kN
The calculation forces in subsequent conditions shall be based on a design
assembly gasket force FG0,d
FG0d = Max( FGDelta, 2 / 3 * (1 - 10 / NR) * FB0max - FR0) (G.6-25)
=Max(687.59,2/3*(1-10/10)*729.01-0)= 687.59 kN
Gasket force for load limit calculations
FGI = (FG0d*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI (G.6-26)
=(687.59*6.534E-07-(3.0314E05*9.9881E-07+0*9.3305E-07-0*9.014E-07+0))/7.132
8E-07= = 205.38 kN
Bolt force for load limit calculations
FBI = FGI + FQ + FR (G.6-27) =205.38+3.0314E05+0= 508.52 kN
G.7 Load limits
Load Ratio of Bolts
PhiB = FBI / (AB * fB0) * Sqr( 1 + (CB * 3.2 * µ ) ^ 2) (G.7-3)
=508.52/(11214.83*174.93)*Sqr(1+(0*3.2*0.2)^2)= 0.2592
»Bolt Load Ratio PhiB PhiB=0.2592 <= 1 =1« » (U= 25.9%) OK«
Load Ratio of Gasket
CG = 1 + bGt / (20 * eG) (G.7-5) =1+26/(20*3)= 1.43
PhiG = FGI / (AGt * CG * Qmax) (G.7-4)
=205.38/(45414.86*1.43*32)= 0.0986
»Gasket Load Ratio PhiG PhiG=0.0986 <= 1 =1« » (U= 9.8%) OK«
hG = (d3e - dGe) / 2 (G.5-24) =(646.75-567.76)/2= 39.81 mm
hH = (d3e - dE) / 2 (G.5-25) =(646.75-511.07)/2= 67.84 mm
hL = 0 (G.5-26) =0= 0.00 mm
G.7.4 Integral flange, stub or collar
eD = e1*(1+(beta-1)*lH/((beta/3)^4*(d1*e1)^2+lH^4)^0.25) (G.7-8)
=27.7*(1+(0.278-1)*40/((0.278/3)^4*(506.76*27.7)^2+40^4)^0.25)= 7.73 mm
fE = Min( fF0, fS0) (G.7-9) =Min(200,155.87)= 155.87 N/mm2
deltaQ = p * dE / (fE * 2 * eD * CosPhiS) (G.7-10)
=1.2*511.07/(155.87*2*7.73*1)= 0.2546
deltaR = FR / (fE * PI * dE * eD * CosPhiS) (G.7-11)
=0/(155.87*3.14*511.07*7.73*1)= 0.00
jM = Sgn( FGI * hG + FQ * (hH - hP) + FR * hH) (G.7-16)
=Sgn(205.38*39.81+3.0314E05*(67.84-7.04)+0*67.84)= 1.00
cM = SQR(1.333*(1-0.75*(0.5*deltaQ+deltaR)^2*(1-(0.75*deltaQ^2+deltaR^2))) (G.7-
12/14)
=SQR(1.333*(1-0.75*(0.5*0.2546+0)^2*(1-(0.75*0.2546^2+0^2)))= 1.15
PsiOpt = jM * (2 * eP / eF - 1) (G.7-21) =1*(2*34/34-1)= 1.00
PsiMax(jS(1) , kM(1) ,kS(1))= 0.0579
Psi0 (jS(0) , kM(0) ,kS(0))= -.0172
PsiMin(jS(-1) , kM(-1) ,kS(1))= -.1084
PsiZ = PsiMax =0.0579= 0.0579
WF = PI/4*(fF0*2*bF*eF^2*(1+2*PsiOpt*PsiZ-PsiZ^2)+fE*dE*eD^2*cM*jM*kM)
23 F.2 Integral - Flange kolnierz metoda II
Umax= 65.9%
Strona: 38
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES
F.2 kolnierz metoda II 17 Nov. 2008 20:00 ConnID:N.2
=3.14/4*(200*2*89.21*34^2*(1+2*1*0.0579-0.0579^2)+155.87*511.07*7.73^2*1.15
*1*1)= = 40329.97 Nm
PhiF0 = Abs( FGI * hG + FQ * (hH - hP) + FR * hH) / WF (G.7-6)
=Abs(205.38*39.81+3.0314E05*(67.84-7.04)+0*67.84)/40329.97=0.6597
»Flange Load Ratio PhiF PhiF=0.6597 <= PhiMax =1« » (U= 65.9%) OK«
G.8.5 Flange Rotation
FGImin = (FG0min*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI (G.8-22)
=(6.8759E05*6.534E-07-(3.0314E05*9.9881E-07+0*9.3305E-07-0*9.014E-07+0))/7.
1328E-07= = 205.38 kN
FGImax = (FG0max*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI (G.8-23)
=(7.2901E05*6.534E-07-(3.0314E05*9.9881E-07+0*9.3305E-07-0*9.014E-07+0))/7.
1328E-07= = 243.32 kN
FBImin = FGImin + FQ + FR (G.8-24) =205.38+3.0314E05+0= 508.52 kN
FBImax = FGImax + FQ + FR (G.8-25) =243.32+3.0314E05+0= 546.46 kN
ThetaFmax = ZF/EF0*(FGImax*hG+FQ*(hH-hP+hQ)+FR*(hH+hR)) (G.8-16)
=3.6148E-05/2.0461E05*(243.32*39.5+3.0314E05*(67.84-7.04+10.13)+0*(67.84+-1
.62))= =0.3150 Degr.
ThetaFmaxm = ZFm/EF0m*(FGImax*hGm+FQ*(hHm-hPm+hQm)+FR*(hHm+hRm)) (G.8-16)
=3.6148E-05/2.0461E05*(243.32*39.5+3.0314E05*(67.84-7.04+10.13)+0*(67.84+-1
.62))= =0.3150 Degr.
»Flange Rotation ThetaFmax=0.315 <= ThetaMax =1« » OK«
»Loose Flange Rotation ThetaLmax=0 <= ThetaMax =1« » OK«
»Mating Flange Rotation ThetaFmaxm=0.315 <= ThetaMax =1« » OK«
»Mating Loose Flange Rotation ThetaLmaxm=0 <= ThetaMax =1« » OK«
Maximum Test Pressure Ptmax = 2.678 MPa, Limited by:Flange Load Ratio PhiF
Maximum Allowable Pressure Pmax = 2.314 MPa, Limited by:Flange Load Ratio PhiF
EN13445-5; 10.2.3.3 WYMAGANE MINIMALNE CISNIENIE PRÓBY HYDRAULICZNEJ: Ptmin
NOWY W TEMP. OTOCZENIA DLA GRUPY BADAN 1,2 i 3
Ptmin = MAX( 1.43 * Pd , 1.25 * Pd * f20 / f )
=MAX(1.43*1.2,1.25*1.2*204.17/155.87)= 1.72 MPa
»Cisnienie próby Ptmin=1.716 <= Ptmax=2.678[MPa] « » (U= 64%) OK«
STRESZCZENIE OBLICZEN
ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES
PRZYPADEK OBCIAZENIA Nr: 1 - ASSEMBLY
bGe = MIN( bGi, bGt) (G.5-59) =MIN(14.24,26)= 14.24 mm
dGe = dG2 - bGe =582-14.24= 567.76 mm
FG0req = Max( FG0min, FGDelta) (G.6-11)
=Max(2.5408E05,6.8759E05)= 687.59 kN
FB0req = FG0req + FR0 (G.6-12) =687.59+0= 687.59 kN
Calkowity nominalny naciag wstepny
Fb0nom = FB0req / (1 - epsn) (G.6-21) =687.59/(1-0.0292)= 708.30 kN
Nominal Required Torque per Bolt
Mtnom = kB * FBnom =7.2*35.41= 254.99 kN
PhiB = FBI / (AB * fB0) * Sqr( 1 + (CB * 3.2 * µ ) ^ 2) (G.7-3)
=7.2901E05/(11214.83*285.71)*Sqr(1+(1*3.2*0.2)^2)= 0.2701
»Bolt Load Ratio PhiB PhiB=0.2701 <= 1 =1« » (U= 27%) OK«
PhiG = FGI / (AGt * CG * Qmax) (G.7-4)
=7.2901E05/(45414.86*1.43*50)= 0.2240
23 F.2 Integral - Flange kolnierz metoda II
Umax= 65.9%
Strona: 39
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES
F.2 kolnierz metoda II 17 Nov. 2008 20:00 ConnID:N.2
»Gasket Load Ratio PhiG PhiG=0.224 <= 1 =1« » (U= 22.3%) OK«
PhiF0 = Abs( FGI * hG + FQ * (hH - hP) + FR * hH) / WF (G.7-6)
=Abs(7.2901E05*39.5+0*(67.84-7.09)+0*67.84)/70215.66= 0.4101
»Flange Load Ratio PhiF PhiF=0.4101 <= PhiMax =1« » (U= 41%) OK«
PRZYPADEK OBCIAZENIA Nr: 2 - TEST----
PhiB = FBI / (AB * fB0) * Sqr( 1 + (CB * 3.2 * µ ) ^ 2) (G.7-3)
=514.16/(11214.83*285.71)*Sqr(1+(0*3.2*0.2)^2)= 0.1605
»Bolt Load Ratio PhiB PhiB=0.1605 <= 1 =1« » (U= 16%) OK«
PhiG = FGI / (AGt * CG * Qmax) (G.7-4)
=59.45/(45414.86*1.43*50)= 0.0183
»Gasket Load Ratio PhiG PhiG=0.0183 <= 1 =1« » (U= 1.8%) OK«
PhiF0 = Abs( FGI * hG + FQ * (hH - hP) + FR * hH) / WF (G.7-6)
=Abs(59.45*39.81+4.5471E05*(67.84-7.04)+0*67.84)/67821.87=0.4425
»Flange Load Ratio PhiF PhiF=0.4425 <= PhiMax =1« » (U= 44.2%) OK«
PRZYPADEK OBCIAZENIA Nr: 3 - OPER.COND.1
PhiB = FBI / (AB * fB0) * Sqr( 1 + (CB * 3.2 * µ ) ^ 2) (G.7-3)
=508.52/(11214.83*174.93)*Sqr(1+(0*3.2*0.2)^2)= 0.2592
»Bolt Load Ratio PhiB PhiB=0.2592 <= 1 =1« » (U= 25.9%) OK«
PhiG = FGI / (AGt * CG * Qmax) (G.7-4)
=205.38/(45414.86*1.43*32)= 0.0986
»Gasket Load Ratio PhiG PhiG=0.0986 <= 1 =1« » (U= 9.8%) OK«
PhiF0 = Abs( FGI * hG + FQ * (hH - hP) + FR * hH) / WF (G.7-6)
=Abs(205.38*39.81+3.0314E05*(67.84-7.04)+0*67.84)/40329.97=0.6597
»Flange Load Ratio PhiF PhiF=0.6597 <= PhiMax =1« » (U= 65.9%) OK«
TABLE OF SUMMARY
Table LOAD CONDITIONS AND LOAD RATIOS FOR F.2 (m=mating flange):
DESCRIPTION
ID
ASSEMBLY
TEST
OPER.COND.1
Design Pressure(MPa)
P
0.000
1.800
1.200
Resulting Force(kN)
FR
0.000
0.000
0.000
Axial Fluid-Pressure Force(kN)
FQ
0.000
454.709
303.139
Gasket Force(kN)
FG
729.005
59.454
205.376
Total Bolt Force(all bolts)(kN)
FB
729.005
514.163
508.515
Minimum Gasket Seating Force(kN)
FGmin
254.077
59.454
39.636
Bolt Load Ratio
PhiB
0.270
0.160
0.259
Gasket Load Ratio
PhiG
0.224
0.018
0.099
Flange Load Ratio
PhiF
0.410
0.443
0.660
Flange Rotation(degr.)
ThetaF
0.282
0.338
0.315
Loose Flange Rotation(degr.)
ThetaL
0.000
0.000
0.000
Nominal Bolt Force(per bolt)(kN)
FBnom
35.415
0.000
0.000
Nominal Bolt Torque(per bolt)(Nm)
Mtnom
254.986
0.000
0.000
Bolt Elongation at Assembly(mm)
DeltaB
0.000
0.000
0.000
EN13445-5; 10.2.3.3 WYMAGANE MINIMALNE CISNIENIE PRÓBY HYDRAULICZNEJ: Ptmin
NOWY W TEMP. OTOCZENIA DLA GRUPY BADAN 1,2 i 3
Ptmin = MAX( 1.43 * Pd , 1.25 * Pd * f20 / f )
=MAX(1.43*1.2,1.25*1.2*204.17/155.87)= 1.72 MPa
23 F.2 Integral - Flange kolnierz metoda II
Umax= 65.9%
Strona: 40
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES
F.2 kolnierz metoda II 17 Nov. 2008 20:00 ConnID:N.2
24 F.3 Integral - Flange Ko3nierz 1591
DANE WEJSCIOWE
ELEMENT PRZYLACZONY/POLOZENIE
Mocowanie: N.3* Króciec,Blacha korpu krociec met 1591 S1.1
Polozenie: Wzdluz osi "z" z1= 155
DANE PROJEKTOWE
KARTA PROCESOWA: DANE PROJEKTOWE : Temp= 120°C, P= 1.2MPa, c= .3mm
Mating Flange: Similar
INCLUDE MATING FLANGE AS PART OF DESIGN MODEL: Tak
FLANGE TYPE Side 1
Flange Type: Integral - Flange
Connecting Shell: Cylindrical or Conical Shell
Selected Sketch of Flange: Tapered hub with no thickening in the bore
FLANGE GEOMETRY Side 1
Equivalent axial thickness of flange................:eF 34.00 mm
Axial thickness radially loaded by pressure.........:eP 34.00 mm
Inside diameter of flange(corroded).................:d0 499.06 mm
Average diameter of hub, thin end...................:d1 506.76 mm
Average diameter of hub, thick end..................:d2 526.76 mm
Outside diameter of flange..........................:d4 715.00 mm
Diameter of bolt holes..............................:d5 33.00 mm
Min. wall thickness thin end of hub(corroded).......:e1 27.70 mm
Wall thickness at thick end of hub(corroded)........:e2 7.70 mm
Length of hub.......................................:lH 40.00 mm
Inclination of shell................................:PhiS 0.00 degr.
EN 10028-6:2003, 1.8867 P355QH plate and strip, HT:QT THK<=50mm 120'C
Rm=490 Rp=355 Rpt=300 fF=200 fF20=204.17 ftest=338.1 E=204605(N/mm2) ro=7.85
SHELL DATA Side 1
EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N THK<=16mm 120'C
Rm=410 Rp=265 Rpt=233.8 f=155.87 f20=170.83 ftest=252.38 E=204605(N/mm2) ro=7.85
Shell thickness(corroded)...........................:eS 0.00 mm
Average diameter of shell...........................:dS 0.00 mm
24 F.3 Integral - Flange Ko3nierz 1591
Umax= 65.9%
Strona: 41
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01T Operator :RR Rev.:A
EN1591 - Design Rules for Gasketed Circular Flanges Connection
F.3 Ko3nierz 1591 17 Nov. 2008 20:02 ConnID:N.3*
DANE SRUB
Waisted Bolt: Nie
Specify Minimum Bolt Load for Assembly Condition, FBmin: Nie
NOMINALNY WYMIAR SRUB I KOMENTARZ: M30x3 ;
Bolt circle diameter................................:d3 650.00 mm
Number of bolts.....................................:nB 20.00
Nominal diameter....................................:dB0 30.00 mm
Effective diameter..................................:dBe 26.72 mm
Number of reassemblies during service...............:NR 10.00
Length of clamp.....................................:lB 0.00 mm
Carbon Steel Bolt Material: Tak
EN 10269:1999, 1.1181 C35E bar, bolt, HT:QT THK<=60mm 120'C
Rm=500 Rp=300 Rpt=262.4 fB=87.47 fB20=100 ftest=150 E=191484(N/mm2) ro=7.93
BOLTING TORQUE
METODA NACIAGU SRUB:
Skrecanie, (pomiar momentu i obrotu nakretki, blisko wytrzymalosci srub) eps
=-0.07 do +0.07
WSPÓLCZYNNIK TARCIA: Normalne/przecietne warunki µ=0.20
GASKET FORM AND GEOMETRY
Gasket Form: Flat gaskets, soft or composite materials or pure metallic.
Inside diameter.....................................:dG1 530.00 mm
Outside diameter....................................:dG2 582.00 mm
Axial thickness.....................................:eG 3.00 mm
Maximum rotation and deformation of flange..........:ThetaMax 1.00 degr.
GASKET TYPE AND MATERIAL
Rodzaj uszczelki: Non-metallic flat gasket(soft), also with metal insertion
Gasket Material: PTFE
Table GASKET PROPERTIES:
Opis
ID
Assembly(T=20C)
Operating(T=120C)
Min. required compressive
stress in gasket(MPa)
Qmin
10
0
Max. allowable
compressive stress in
gasket(MPa)
Qmax
50
32
Compressive E-modulus of
gasket at zero compressive
stress(MPa)
E0
600
480
Rate of change of
compressive modulus of
elasticity
K1
20
20
Gasket compression factor
mi
1.3
1.3
Gasket creep factor
gC
.9
.66
Metal-jacketed gaskets
c1
PRZYPADKI OBCIAZEN
Table FLANGE LOADS:
Opis
ID
Assembly
Test Cond.
Oper.Cond.1
Internal pressure(MPa)
Pi
0
1.8
1.2
24 F.3 Integral - Flange Ko3nierz 1591
Umax= 65.9%
Strona: 42
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01T Operator :RR Rev.:A
EN1591 - Design Rules for Gasketed Circular Flanges Connection
F.3 Ko3nierz 1591 17 Nov. 2008 20:02 ConnID:N.3*
Opis
ID
Assembly
Test Cond.
Oper.Cond.1
External Axial Force(kN)
FA
External
Bend.Moment(kNm)
MA
Not Applicable(for future
use)
0.3
0.3
0.3
Test Condition (Yes/No)
Te
YES
YES
No
Temperature
D=Design/A=Ambient
T
A
A
D
Overall Axial Thermal
Expansion(mm)
DeltaU
NA
WYNIKI OBLICZEN
Design Rules for Gasketed Circular Flanges Connection
4.1 Flange parameters
4.1.1.1 Bolt holes
Pitch between bolts pB
pB = PI * d3 / nB ((1)) =3.14*650/20= 102.10 mm
Effective diameter of the bolt hole d5e
d5e = d5 * Sqr( d5 / pB) ((2)) =33*Sqr(33/102.1)= 18.76 mm
Effective bolt circle diameter d3e
d3e = d3 * ( 1 - 2 / nB ^ 2) ((4)) =650*(1-2/20^2)= 646.75 mm
CosPhiS = Cos( PhiS) =Cos(0)= 1.00
TanPhiS = Tan( PhiS) =Tan(0)= 0.00
CosPhiSm = Cos( PhiSm) =Cos(0)= 1.00
TanPhiSm = Tan( PhiSm) =Tan(0)= 0.00
4.1.1.2 Effective dimensions of flange ring
For an integral flange and blind flange , calculate:
bF = (d4 - d0) / 2 - d5e ((5)) =(715-499.06)/2-18.76= 89.21 mm
dF = (d4 + d0) / 2 ((5)) =(715+499.06)/2= 607.03 mm
Mating Flange
For an integral flange and blind flange, calculate:
bFm = (d4m - d0m) / 2 - d5e ((5)) =(715-499.06)/2-18.76= 89.21 mm
dFm = (d4m + d0m) / 2 ((5)) =(715+499.06)/2= 607.03 mm
4,1,2 Connected shell
4.1.2.1 Tapered hub
beta = e2 / e1 ((9)) =7.7/27.7= 0.2780
eE = e1*(1+(beta-1)*lH/((beta/3)*Sqr(d1*e1)+lH)) ((9))
=27.7*(1+(0.278-1)*40/((0.278/3)*Sqr(506.76*27.7)+40))= 12.01 mm
dE = (MIN(d1-e1+eE,d2+e2-eE)+MAX(d1+e1-eE,d2-e2+eE))/2 ((10))
=(MIN(506.76-27.7+12.01,526.76+7.7-12.01)+MAX(506.76+27.7-12.01,526.76-7.7+
12.01))/2= = 511.07 mm
Mating Flange
4.1.2.1 Tapered hub
betam = e2m / e1m ((9)) =7.7/27.7= 0.2780
eEm = e1m*(1+(betam-1)*lHm/((betam/3)*Sqr(d1m*e1m)+lHm)) ((9))
=27.7*(1+(0.278-1)*40/((0.278/3)*Sqr(506.76*27.7)+40))= 12.01 mm
dEm = (MIN(d1m-e1m+eEm,d2m+e2m-eEm)+MAX(d1m+e1m-eEm,d2m-e2m+eEm))/2 ((10))
=(MIN(506.76-27.7+12.01,526.76+7.7-12.01)+MAX(506.76+27.7-12.01,526.76-7.7+
12.01))/2= = 511.07 mm
16.6.4 WARUNKI STOSOWANIA
»Geometry, the method applies when:
»a) Zlacze doczolowe gdzie wewnetrzna i zewnetrzna powierzchnie przechodza
lagodnie w stozek i cylinder bez miejscowego zmniejszenia grubosci
»- there are two similar or dissimilar flanges, or one flange and a blind flange;
»- the whole assembly is axisymmetric;
»- there are four or more identical, uniformly distributed bolts;
24 F.3 Integral - Flange Ko3nierz 1591
Umax= 65.9%
Strona: 43
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01T Operator :RR Rev.:A
EN1591 - Design Rules for Gasketed Circular Flanges Connection
F.3 Ko3nierz 1591 17 Nov. 2008 20:02 ConnID:N.3*
»- there is a circular gasket, located within the bolt circle on plane surfacesand
compressed axially;
»- the flange dimensions met the following conditions:
»a) 0.2=0.2 <= bF/eF=2.62« » OK«
»a) bF/eF=2.62 <= 5.0=5« » OK«
»c) CosPhiS=1 >= 1/(1+0.01*dS/eS)=0« » OK«
»NOTE/NOTE 1: Condition a) need not to be met for a collar in combination with a
loose flange, see Figure G.3-10 a) and b).
»NOTE/NOTE 2: Condition b) is to limit non-uniformity of gasket pressure due
tospacing of bolts. The values 0,01 and 0,10 are to be applied for soft (non-
metallic) and hard (metallic) gaskets respectively. A more precise criterion is
given in G.8.1.
»The following configurations are excluded from the scope of the method:
»- flanges of essentially non-axisymmetric geometry, e.g. split loose flanges,
oval flanges or gusset reinforced flanges;
»- flange joints having metal to metal contact between the flanges or between the
flanges and a spacer ring fitted either inside or outside the gasket or inside or
outside the bolts. An example is a spiral wound gasket on a high pressure
application.
G.4.1.2 Material characteristics
»Values of nominal design stress for bolts shall be determined as for shells
inclause 6.
»Material properties for gaskets may be taken from G.9.
»NOTE/NOTE: For gaskets which undergo large deformation (e.g. soft rubber) the
results can be conservative (e.g. required bolt load too high, allowable fluid
pressure too low, etc.) because the method presupposes small deformations.
G.4.1.3 Loads
»This method applies to the following loads:
»- fluid pressure : internal or external.
»- external loads : axial forces and bending moment.
»- axial thermal expansion of flanges, bolts and gasket.
»The following are not taken into account:
»- External torsional moments and external shear loads, e.g. due to pipework.
G.4.2 Mechanical model
»The method is based on the following mechanical model:
»- Geometry of both flanges and gasket is axisymmetric. Small deviations suchas
those due to a finite number of bolts, are permitted.
»- Flange ring cross section on a radial cut remains undeformed. Only
circumferential stresses and strains in the ring are considered. Radial and axial
stresses and strains are neglected. This leads to the conditions in G.4.1.1 a).
»- Shell connected to the flange ring is cylindrical. A tapered hub is treated
as an equivalent cylindrical shell. It has a calculated wall thickness which is
different for elastic and plastic behaviour but always lies between the
thicknesses of the thin and thick end of the hub. Conical and spherical shells are
treated as equivalent cylindrical shells with same wall thickness as the actual
shell; the differences in shape are explicitly taken into account in the formulae.
This simplification leads to the condition in G.4.1.1 c). The method assumes equal
radial deformation and rotation of the flange ring and the shell at their junction.
»- Gasket is in contact with the flange faces over an annular area which the
method determines. The effective radial width bGe of the gasket, which may be less
»- Modulus of elasticity of gasket material may increase with the compressiv
e stress Q on the gasket. The method uses a linear model: EG == E0 + K1×Q, in which
»- Creep of gasket material is taken into account approximately by factor gC.
»- Thermal and mechanical axial deformations of flanges, bolts and gaskets are
taken into account.
»- Loading of the whole flange connection is axisymmetric. An external bending
moment is treated as an equivalent axial force transmitted by the bolts; see
equation (G.6-2).
»- Load changes between load conditions cause changes in the bolt and gasket
forces. These are calculated taking account of elastic deformations of all
components. The required initial assembly force is calculated (see G.6.4) to
ensure that the required forces on the gasket to ensure leak tightness are
achieved under all conditions (see G.6.3).
24 F.3 Integral - Flange Ko3nierz 1591
Umax= 65.9%
Strona: 44
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01T Operator :RR Rev.:A
EN1591 - Design Rules for Gasketed Circular Flanges Connection
F.3 Ko3nierz 1591 17 Nov. 2008 20:02 ConnID:N.3*
»- Load limit checks are based on limit loads for each component. Excessive
plastic deformations are prevented. The load limit for gaskets, which depends on
Qmax , is an approximation.
»The following are not taken into account in the model:
»- Bolt bending stiffness and bending strength. Ignoring bolt bending is a
conservative simplification. Calculated tensile stiffness of bolts includes
deformation of the bolt threads within a nut or tapped hole, see equation (G.5-36).
»- Creep of flanges and bolts. This is due to lack of relevant material data for
deformation.
»- Different radial deformations of the flanges. With two equal flanges this is
not relevant as the radial deformations are the same.
4.2 Bolt parameters
NOTE/NOTE: The bolt dimensions are shown in Figure 2. Diameters of standardised
metric series bolts (in accordance to ISO 4014 and ISO 4016) are given in Annex B
4.2.1 Effective cross-section area of bolts
AB = nB * PI / 4 * MIN( dBe, dBs) ^ 2 ((33))
=20*3.14/4*MIN(26.72,26.72)^2= 11214.83 mm2
le = lB - lS =0-0= 0.00 mm
4.2.2 Flexibility modulus of bolts
XB = 4/(PI*nB)*(lS/dBs^2+le/(dBe)^2+0.8/dB0) ((34))
=4/(3.14*20)*(0/26.72^2+0/(26.72)^2+0.8/30)= 0.0017 mm-1
The thickness of any washers shall be included in lengths ls and le.
kB = 1.2 * µ * dB0 =1.2*0.2*30= 7.20 mm
Scatter values for bolting up eps+ = .07
epsp = eps1 * (1 + 3 / SQR( nB)) / 4
=0.07*(1+3/SQR(20))/4= 0.0292
Scatter values for bolting up eps- = .07
epsn = eps * (1 + 3 / SQR( nB)) / 4
=0.07*(1+3/SQR(20))/4= 0.0292
4.3 Gasket parameters
bGt = (dG2 - dG1) / 2 ((35)) =(582-530)/2= 26.00 mm
dGt = (dG2 + dG1) / 2 ((35)) =(582+530)/2= 556.00 mm
AGt = PI * dGt * bGt ((36)) =3.14*556*26= 45414.86 mm2
PRZYPADEK OBCIAZENIA Nr: 1 - ASSEMBLY
FR0 = FA0 + 4 * MA0 / d3e =0+4*0/646.75= 0.00 kN
Effective gasket width and effective gasket area
bGe = MIN( bGi, bGt) =MIN(14.24,26)= 14.24 mm
dGe = dG2 - bGe =582-14.24= 567.76 mm
AGe = PI * dGe * bGe ((39)) =3.14*567.76*14.24= 25407.74 mm2
NOTE/NOTE 3: The effective gasket diameter dGe is the diameter where the
gasketforce acts. It is also determined from Table 1
4.1.4 Flexibility-related flange parameters
4.1.4.1 Integral flange, stub or collar
gamma = eE * dF / (bF * dE * CosPhiS) ((17))
=12.01*607.03/(89.21*511.07*1)= 0.1599
teta = 0.55 * CosPhiS * Sqr( dE * eE) / eF ((18))
=0.55*1*Sqr(511.07*12.01)/34= 1.27
lamda = 1 - eP / eF ((19)) =1-34/34= 0.00
Cf = (1+gamma*teta)/(1+gamma*teta*(4*(1-3*lamda+3*lamda^2)+6*(1-
2*lamda)*teta+6*teta^2)+3*gamma^2*teta^4) ((20))
=(1+0.1599*1.27)/(1+0.1599*1.27*(4*(1-3*0+3*0^2)+6*(1-2*0)*1.27+6*1.27^2)+3
*0.1599^2*1.27^4)= =0.2186
hS = eF*1.1*Sqr(eE/dE)*(1-2*lamda+teta)/(1+gamma*teta) ((21))
=34*1.1*Sqr(12.01/511.07)*(1-2*0+1.27)/(1+0.1599*1.27)= 10.81 mm
hT = eF*(1-2*lamda-gamma*teta^2)/(1+gamma*teta) ((22))
=34*(1-2*0-0.1599*1.27^2)/(1+0.1599*1.27)= 21.01 mm
kQ = 0.85 / CosPhiS ((25)) =0.85/1= 0.8500
kR = -0.15 / CosPhiS ((26)) =-0.15/1= -.15
hQ = (hS*kQ+hT*(2*dF*eP/dE^2-0.5*TanPhiS))*(dE/dGe)^2 ((23))
=(10.81*0.85+21.01*(2*607.03*34/511.07^2-0.5*0))*(511.07/567.76)^2= 10.13 mm
hR = hS * kR - hT * 0.5 * TanPhiS ((24))
24 F.3 Integral - Flange Ko3nierz 1591
Umax= 65.9%
Strona: 45
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01T Operator :RR Rev.:A
EN1591 - Design Rules for Gasketed Circular Flanges Connection
F.3 Ko3nierz 1591 17 Nov. 2008 20:02 ConnID:N.3*
=10.81*-0.15-21.01*0.5*0= -1.62 mm
ZF = 3 * dF * Cf / (PI * bF * eF ^ 3) ((27))
=3*607.03*0.2186/(3.14*89.21*34^3)= 3,6148E-05 mm-3
ZL = 0 ((27)) =0= 0.00
Mating Flange (m)
4.1.4.1 Integral flange, stub or collar
gammam = eEm * dFm / (bFm * dEm * CosPhiSm) ((17))
=12.01*607.03/(89.21*511.07*1)= 0.1599
tetam = 0.55 * CosPhiSm * Sqr( dEm * eEm) / eFm ((18))
=0.55*1*Sqr(511.07*12.01)/34= 1.27
lamdam = 1 - ePm / eFm ((19)) =1-34/34= 0.00
Cfm = (1+gammam*tetam)/(1+gammam*tetam*(4*(1-3*lamdam+3*lamdam^2)+6*(1-
2*lamdam)*tetam+6*tetam^2)+3*gammam^2*tetam^4) ((20))
=(1+0.1599*1.27)/(1+0.1599*1.27*(4*(1-3*0+3*0^2)+6*(1-2*0)*1.27+6*1.27^2)+3
*0.1599^2*1.27^4)= =0.2186
hSm = eFm*1.1*Sqr(eEm/dEm)*(1-2*lamdam+tetam)/(1+gammam*tetam) ((21))
=34*1.1*Sqr(12.01/511.07)*(1-2*0+1.27)/(1+0.1599*1.27)= 10.81 mm
hTm = eFm*(1-2*lamdam-gammam*tetam^2)/(1+gammam*tetam) ((22))
=34*(1-2*0-0.1599*1.27^2)/(1+0.1599*1.27)= 21.01 mm
kQm = 0.85 / CosPhiSm ((25)) =0.85/1= 0.8500
kRm = -0.15 / CosPhiSm ((26)) =-0.15/1= -.15
hQm = (hSm*kQm+hTm*(2*dFm*ePm/dEm^2-0.5*TanPhiSm))*(dEm/dGe)^2 ((23))
=(10.81*0.85+21.01*(2*607.03*34/511.07^2-0.5*0))*(511.07/567.76)^2= 10.13 mm
hRm = hSm * kRm + hTm * 0.5 * TanPhiSm ((24))
=10.81*-0.15+21.01*0.5*0= -1.62 mm
ZFm = 3 * dFm * Cfm / (PI * bFm * eFm ^ 3) ((27))
=3*607.03*0.2186/(3.14*89.21*34^3)= 3,6148E-05 mm-3
ZLm = 0 ((27)) =0= 0.00
4.1.3.2 Integral flange and blind flange
hG = (d3e - dGe) / 2 ((14)) =(646.75-567.76)/2= 39.50 mm
hH = (d3e - dE) / 2 ((14)) =(646.75-511.07)/2= 67.84 mm
hL = 0 ((14)) =0= 0.00 mm
Lever arm for integral flange and blind flange:
hG0 = (d3e - dGe) / 2 =(646.75-567.76)/2= 39.50 mm
Mating Flange (m)
4.1.3.2 Integral flange and blind flange
hGm = (d3e - dGe) / 2 ((14)) =(646.75-567.76)/2= 39.50 mm
hHm = (d3e - dEm) / 2 ((14)) =(646.75-511.07)/2= 67.84 mm
hLm = 0 ((14)) =0= 0.00 mm
Lever arm for integral flange and blind flange:
hG0m = (d3e - dGe) / 2 =(646.75-567.76)/2= 39.50 mm
Table 1 Effective gasket geometry
EGm = EG0 + 0.5 * K1 * FG0 / AGe
=600+0.5*20*6.8759E05/25407.74= 870.62
ASSEMBLY
bGi =
Sqr((eG/(PI*dGe*EGm)/(hG0*ZF/EF0+hG0m*ZFm/EF0m))+(FG0/(PI*dGe*Qmax0))^2)(Table 1)
=Sqr((3/(3.14*567.76*870.62)/(39.5*3.6148E-05/2.1177E05+39.5*3.6148E-05/2.1
177E05))+(6.8759E05/(3.14*567.76*50))^2)= = 14.24 mm
4.3.3 Axial flexibility modulus of gasket
XG = eG / AGt * (bGt + eG / 2) / (bGe + eG / 2) ((42))
=3/45414.86*(26+3/2)/(14.24+3/2)= 1,1538E-04 mm-1
4.1.3 Lever arms
hP = ((dGe-dE)^2*(2*dGe+dE)/6+2*eP^2*dF)/dGe^2 ((13))
=((567.76-511.07)^2*(2*567.76+511.07)/6+2*34^2*607.03)/567.76^2= 7.09 mm
hPm = ((dGe-dEm)^2*(2*dGe+dEm)/6+2*ePm^2*dFm)/dGe^2 ((13))
=((567.76-511.07)^2*(2*567.76+511.07)/6+2*34^2*607.03)/567.76^2= 7.09 mm
24 F.3 Integral - Flange Ko3nierz 1591
Umax= 65.9%
Strona: 46
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01T Operator :RR Rev.:A
EN1591 - Design Rules for Gasketed Circular Flanges Connection
F.3 Ko3nierz 1591 17 Nov. 2008 20:02 ConnID:N.3*
5.1 Applied Loads
Fluid Pressure
FQ = PI / 4 * dGe ^ 2 * p ((43)) =3.14/4*567.76^2*0= 0.00 MPa
Additional External Loads
FR = FA0 + 4 * MA0 / d3e ((44)) =0+4*0/646.75= 0.00 N
Q0 = FG0 / AGe =6.8759E05/25407.74= 27.06 MPa
EGI = EG0 + K1 * Q0 =600+20*27.06= 1141.24 MPa
5.2 Compliance of the joint
Tmp1 = (ZL * hL ^ 2 / EL0 + ZLm * hLm ^ 2 / EL0m + XB / EB0)
=(0*0^2/212000+0*0^2/212000+0.0017/199964)= 8,4898E-09 mm/N
YGI = ZF*hG^2/EF0+ZFm*hGm^2/EF0m+Tmp1+XG/(EGI*gC) ((46))
=3.6148E-05*39.5^2/2.1177E05+3.6148E-05*39.5^2/2.1177E05+8.4898E-09+1.1538E
-04/(1141.24*0.9)= =6,534E-07 mm/N
YQI = ZF*hG*(hH-hP+hQ)/EF0+ZFm*hGm*(hHm-hPm+hQm)/EF0m+Tmp1+XG/(EG0*gC) ((47))
=3.6148E-05*39.5*(67.84-7.09+10.13)/2.1177E05+3.6148E-05*39.5*(67.84-7.09+1
0.13)/2.1177E05+8.4898E-09+1.1538E-04/(600*0.9)= =9,6432E-07 mm/N
YRI = ZF*hG*(hH+hR)/EF0+ZFm*hGm*(hHm+hRm)/EF0m+Tmp1+XG/(EG0*gC) ((48))
=3.6148E-05*39.5*(67.84+-1.62)/2.1177E05+3.6148E-05*39.5*(67.84+-1.62)/2.11
77E05+8.4898E-09+1.1538E-04/(600*0.9)= =9,014E-07 mm/N
FG0min = AGe * Qmin ((49)) =25407.74*10= 2,5408E05 N
FG0req = Max( FG0min, FGDelta) ((52))
=Max(2.5408E05,6.8759E05)= 687.59 kN
FB0req = FG0req + FR0 ((53)) =687.59+0= 687.59 kN
Calkowity nominalny naciag wstepny
Fb0nom = FB0req / (1 - epsn) ((63)) =687.59/(1-0.0292)= 708.30 kN
Calkowity nominalny naciag wstepny dla sruby
Fbnom = FB0nom / nB =708.3/20= 35.41 kN
Nominal Required Torque per Bolt
Mtnom = kB * FBnom =7.2*35.41= 254.99 kN
Minimum force
FB0min = FB0nom * (1 - epsn) ((60)) =708.3*(1-0.0292)= 687.59 kN
Maximum forces to be used for the load limit calculation.
FB0max = FB0nom * (1 + epsp) ((61)) =708.3*(1+0.0292)= 729.01 kN
FG0max = FB0max - FR0 ((66)) =729.01-0= 729.01 kN
6 Load limits
Load Ratio of Bolts
MtB = Mtnom * (1 + epsp) =254.99*(1+0.0292)= 262.44 kN
IB = PI / 12 * MIN( dBe , dBs) ^ 3
=3.14/12*MIN(26.72,26.72)^3= 4994.34 mm3
Load Limit of Bolts
PhiB = Sqr(( FBI / AB) ^ 2 + 3 * (CB * MtB / IB) ^ 2) / fB0 ((71))
=Sqr((7.2901E05/11214.83)^2+3*(1*262.44/4994.34)^2)/285.71=0.3915
»Bolt Load Ratio PhiB PhiB=0.3915 <= 1 =1« » (U= 39.1%) OK«
Load Ratio of Gasket
PhiG = FGI / (AGt * Qmax) ((72)) =7.2901E05/(45414.86*50)=0.3210
»Gasket Load Ratio PhiG PhiG=0.321 <= 1 =1« » (U= 32.1%) OK«
hG = (d3e - dGe) / 2 ((14)) =(646.75-567.76)/2= 39.50 mm
hH = (d3e - dE) / 2 ((14)) =(646.75-511.07)/2= 67.84 mm
hL = 0 ((14)) =0= 0.00 mm
6.4 Integral flange, stub or collar
eD = e1*(1+(beta-1)*lH/((beta/3)^4*(d1*e1)^2+lH^4)^0.25) ((75))
=27.7*(1+(0.278-1)*40/((0.278/3)^4*(506.76*27.7)^2+40^4)^0.25)= 7.73 mm
fE = Min( fF0, fS0) ((76)) =Min(338.1,252.38)= 252.38 N/mm2
deltaQ = p * dE / (fE * 2 * eD * CosPhiS) ((77))
=0*511.07/(252.38*2*7.73*1)= 0.00
deltaR = FR / (fE * PI * dE * eD * CosPhiS) ((77))
24 F.3 Integral - Flange Ko3nierz 1591
Umax= 65.9%
Strona: 47
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01T Operator :RR Rev.:A
EN1591 - Design Rules for Gasketed Circular Flanges Connection
F.3 Ko3nierz 1591 17 Nov. 2008 20:02 ConnID:N.3*
=0/(252.38*3.14*511.07*7.73*1)= 0.00
jM = Sgn( FGI * hG + FQ * (hH - hP) + FR * hH) ((80))
=Sgn(7.2901E05*39.5+0*(67.84-7.09)+0*67.84)= 1.00
cM = SQR(1.333*(1-0.75*(0.5*deltaQ+deltaR)^2*(1-(0.75*deltaQ^2+deltaR^2))) ((78))
=SQR(1.333*(1-0.75*(0.5*0+0)^2*(1-(0.75*0^2+0^2)))= 1.15
PsiOpt = jM * (2 * eP / eF - 1) ((83)) =1*(2*34/34-1)= 1.00
PsiMax(jS(1) , kM(1) ,kS(1))= 0.0805
Psi0 (jS(0) , kM(0) ,kS(0))= 0.0000
PsiMin(jS(-1) , kM(-1) ,kS(1))= -.0805
PsiZ = PsiMax =0.0805= 0.0805
WF = PI/4*(fF0*2*bF*eF^2*(1+2*PsiOpt*PsiZ-PsiZ^2)+fE*dE*eD^2*cM*jM*kM)
=3.14/4*(338.1*2*89.21*34^2*(1+2*1*0.0805-0.0805^2)+252.38*511.07*7.73^2*1.
15*1*1)= = 70215.66 Nm
PhiF0 = Abs( FGI * hG + FQ * (hH - hP) + FR * hH) / WF ((73))
=Abs(7.2901E05*39.5+0*(67.84-7.09)+0*67.84)/70215.66= 0.4101
»Flange Load Ratio PhiF PhiF=0.4101 <= PhiMax =1« » (U= 41%) OK«
Annex A Requirements for limitation of non-uniformity of gasket stress
»Limitation of non-uniformity of gasket stress(bolting pitch) eFmin
=13.11 <= = eF =34«» OK«
Annex E Flange Rotation
FGImin = (FG0min*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI
=(6.8759E05*6.534E-07-(0*9.6432E-07+0*9.014E-07-0*9.014E-07+0))/6.534E-07
= 687.59 kN
FGImax = (FG0max*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI
=(7.2901E05*6.534E-07-(0*9.6432E-07+0*9.014E-07-0*9.014E-07+0))/6.534E-07
= 729.01 kN
FBImin = FGImin + FQ + FR =687.59+0+0= 687.59 kN
FBImax = FGImax + FQ + FR =729.01+0+0= 729.01 kN
ThetaFmax = ZF/EF0*(FGImax*hG+FQ*(hH-hP+hQ)+FR*(hH+hR)) (E.1))
=3.6148E-05/2.1177E05*(729.01*39.5+0*(67.84-7.09+10.13)+0*(67.84+-1.62))
=0.2820 Degr.
ThetaFmaxm = ZFm/EF0m*(FGImax*hGm+FQ*(hHm-hPm+hQm)+FR*(hHm+hRm)) (E.1))
=3.6148E-05/2.1177E05*(729.01*39.5+0*(67.84-7.09+10.13)+0*(67.84+-1.62))
=0.2820 Degr.
»Flange Rotation ThetaFmax=0.282 <= ThetaMax =1« » OK«
»Loose Flange Rotation ThetaLmax=0 <= ThetaMax =1« » OK«
»Mating Flange Rotation ThetaFmaxm=0.282 <= ThetaMax =1« » OK«
»Mating Loose Flange Rotation ThetaLmaxm=0 <= ThetaMax =1« » OK«
PRZYPADEK OBCIAZENIA Nr: 2 - TEST COND.
4.3.3 Axial flexibility modulus of gasket
XG = eG / AGt * (bGt + eG / 2) / (bGe + eG / 2) ((42))
=3/45414.86*(26+3/2)/(14.24+3/2)= 1,1538E-04 mm-1
4.1.3 Lever arms
hP = ((dGe-dE)^2*(2*dGe+dE)/6+2*eP^2*dF)/dGe^2 ((13))
=((567.76-511.07)^2*(2*567.76+511.07)/6+2*34^2*607.03)/567.76^2= 7.04 mm
hPm = ((dGe-dEm)^2*(2*dGe+dEm)/6+2*ePm^2*dFm)/dGe^2 ((13))
=((567.76-511.07)^2*(2*567.76+511.07)/6+2*34^2*607.03)/567.76^2= 7.04 mm
24 F.3 Integral - Flange Ko3nierz 1591
Umax= 65.9%
Strona: 48
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01T Operator :RR Rev.:A
EN1591 - Design Rules for Gasketed Circular Flanges Connection
F.3 Ko3nierz 1591 17 Nov. 2008 20:02 ConnID:N.3*
5.1 Applied Loads
Fluid Pressure
FQ = PI / 4 * dGe ^ 2 * p ((43)) =3.14/4*567.76^2*1.8= 4,5471E05 MPa
Additional External Loads
FR = FA0 + 4 * MA0 / d3e ((44)) =0+4*0/646.75= 0.00 N
5.2 Compliance of the joint
Tmp1 = (ZL * hL ^ 2 / EL0 + ZLm * hLm ^ 2 / EL0m + XB / EB0)
=(0*0^2/212000+0*0^2/212000+0.0017/199964)= 8,4898E-09 mm/N
YGI = ZF*hG^2/EF0+ZFm*hGm^2/EF0m+Tmp1+XG/(EGI*gC) ((46))
=3.6148E-05*39.5^2/2.1177E05+3.6148E-05*39.5^2/2.1177E05+8.4898E-09+1.1538E
-04/(1141.24*0.9)= =6,534E-07 mm/N
YQI = ZF*hG*(hH-hP+hQ)/EF0+ZFm*hGm*(hHm-hPm+hQm)/EF0m+Tmp1+XG/(EG0*gC) ((47))
=3.6148E-05*39.5*(67.84-7.04+10.13)/2.1177E05+3.6148E-05*39.5*(67.84-7.04+1
0.13)/2.1177E05+8.4898E-09+1.1538E-04/(600*0.9)= =9,6494E-07 mm/N
YRI = ZF*hG*(hH+hR)/EF0+ZFm*hGm*(hHm+hRm)/EF0m+Tmp1+XG/(EG0*gC) ((48))
=3.6148E-05*39.5*(67.84+-1.62)/2.1177E05+3.6148E-05*39.5*(67.84+-1.62)/2.11
77E05+8.4898E-09+1.1538E-04/(600*0.9)= =9,014E-07 mm/N
QImin = mi * p =1.3*1.8= 2.34 MPa
FGImin = Max( AGe * QImin, - ( FQ + FR)) ((50))
=Max(25407.74*2.34,-(4.5471E05+0))= 59.45 kN
FGDelta = (FGImin*YGI+FQ*YQI+(FR*YRI-FR0*YR0)+DeltaU)/YG0) ((51))
=(59.45*6.534E-07+4.5471E05*9.6494E-07+(0*9.014E-07-0*9.014E-07)+0)/6.534E-
07)= = 730.97 kN
Minimum force
FB0min = FB0nom * (1 - epsn) ((60)) =752.98*(1-0.0292)= 730.97 kN
Maximum forces to be used for the load limit calculation.
FB0max = FB0nom * (1 + epsp) ((61)) =752.98*(1+0.0292)= 775.00 kN
FG0max = FB0max - FR0 ((66)) =775.-0= 775.00 kN
The calculation forces in subsequent conditions shall be based on a design
assembly gasket force FG0,d
FG0d = Max( FGDelta, 2 / 3 * (1 - 10 / NR) * FB0max - FR0) ((67))
=Max(730.97,2/3*(1-10/10)*775.-0)= 730.97 kN
Gasket force for load limit calculations
FGI = (FG0d*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI ((68))
=(730.97*6.534E-07-(4.5471E05*9.6494E-07+0*9.014E-07-0*9.014E-07+0))/6.534E
-07= = 59.45 kN
Bolt force for load limit calculations
FBI = FGI + FQ + FR ((69)) =59.45+4.5471E05+0= 514.16 kN
6 Load limits
Load Ratio of Bolts
MtB = Mtnom * (1 + epsp) =254.99*(1+0.0292)= 262.44 kN
IB = PI / 12 * MIN( dBe , dBs) ^ 3
=3.14/12*MIN(26.72,26.72)^3= 4994.34 mm3
Load Limit of Bolts
PhiB = Sqr(( FBI / AB) ^ 2 + 3 * (CB * MtB / IB) ^ 2) / fB0 ((71))
=Sqr((514.16/11214.83)^2+3*(0*262.44/4994.34)^2)/285.71=0.1605
»Bolt Load Ratio PhiB PhiB=0.1605 <= 1 =1« » (U= 16%) OK«
Load Ratio of Gasket
PhiG = FGI / (AGt * Qmax) ((72)) =59.45/(45414.86*50)= 0.0262
»Gasket Load Ratio PhiG PhiG=0.0262 <= 1 =1« » (U= 2.6%) OK«
hG = (d3e - dGe) / 2 ((14)) =(646.75-567.76)/2= 39.81 mm
hH = (d3e - dE) / 2 ((14)) =(646.75-511.07)/2= 67.84 mm
hL = 0 ((14)) =0= 0.00 mm
24 F.3 Integral - Flange Ko3nierz 1591
Umax= 65.9%
Strona: 49
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01T Operator :RR Rev.:A
EN1591 - Design Rules for Gasketed Circular Flanges Connection
F.3 Ko3nierz 1591 17 Nov. 2008 20:02 ConnID:N.3*
6.4 Integral flange, stub or collar
eD = e1*(1+(beta-1)*lH/((beta/3)^4*(d1*e1)^2+lH^4)^0.25) ((75))
=27.7*(1+(0.278-1)*40/((0.278/3)^4*(506.76*27.7)^2+40^4)^0.25)= 7.73 mm
fE = Min( fF0, fS0) ((76)) =Min(338.1,252.38)= 252.38 N/mm2
deltaQ = p * dE / (fE * 2 * eD * CosPhiS) ((77))
=1.8*511.07/(252.38*2*7.73*1)= 0.2358
deltaR = FR / (fE * PI * dE * eD * CosPhiS) ((77))
=0/(252.38*3.14*511.07*7.73*1)= 0.00
jM = Sgn( FGI * hG + FQ * (hH - hP) + FR * hH) ((80))
=Sgn(59.45*39.81+4.5471E05*(67.84-7.04)+0*67.84)= 1.00
cM = SQR(1.333*(1-0.75*(0.5*deltaQ+deltaR)^2*(1-(0.75*deltaQ^2+deltaR^2))) ((78))
=SQR(1.333*(1-0.75*(0.5*0.2358+0)^2*(1-(0.75*0.2358^2+0^2)))= 1.15
PsiOpt = jM * (2 * eP / eF - 1) ((83)) =1*(2*34/34-1)= 1.00
PsiMax(jS(1) , kM(1) ,kS(1))= 0.0574
Psi0 (jS(0) , kM(0) ,kS(0))= -.0152
PsiMin(jS(-1) , kM(-1) ,kS(1))= -.1022
PsiZ = PsiMax =0.0574= 0.0574
WF = PI/4*(fF0*2*bF*eF^2*(1+2*PsiOpt*PsiZ-PsiZ^2)+fE*dE*eD^2*cM*jM*kM)
=3.14/4*(338.1*2*89.21*34^2*(1+2*1*0.0574-0.0574^2)+252.38*511.07*7.73^2*1.
15*1*1)= = 67821.87 Nm
PhiF0 = Abs( FGI * hG + FQ * (hH - hP) + FR * hH) / WF ((73))
=Abs(59.45*39.81+4.5471E05*(67.84-7.04)+0*67.84)/67821.87=0.4425
»Flange Load Ratio PhiF PhiF=0.4425 <= PhiMax =1« » (U= 44.2%) OK«
Annex E Flange Rotation
FGImin = (FG0min*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI
=(6.8759E05*6.534E-07-(4.5471E05*9.6494E-07+0*9.014E-07-0*9.014E-07+0))/6.5
34E-07= = 16.07 kN
FGImax = (FG0max*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI
=(7.2901E05*6.534E-07-(4.5471E05*9.6494E-07+0*9.014E-07-0*9.014E-07+0))/6.5
34E-07= = 57.49 kN
FBImin = FGImin + FQ + FR =16.07+4.5471E05+0= 470.78 kN
FBImax = FGImax + FQ + FR =57.49+4.5471E05+0= 512.20 kN
ThetaFmax = ZF/EF0*(FGImax*hG+FQ*(hH-hP+hQ)+FR*(hH+hR)) (E.1))
=3.6148E-05/2.1177E05*(57.49*39.5+4.5471E05*(67.84-7.04+10.13)+0*(67.84+-1.
62))= =0.3380 Degr.
ThetaFmaxm = ZFm/EF0m*(FGImax*hGm+FQ*(hHm-hPm+hQm)+FR*(hHm+hRm)) (E.1))
=3.6148E-05/2.1177E05*(57.49*39.5+4.5471E05*(67.84-7.04+10.13)+0*(67.84+-1.
62))= =0.3380 Degr.
»Flange Rotation ThetaFmax=0.338 <= ThetaMax =1« » OK«
»Loose Flange Rotation ThetaLmax=0 <= ThetaMax =1« » OK«
»Mating Flange Rotation ThetaFmaxm=0.338 <= ThetaMax =1« » OK«
»Mating Loose Flange Rotation ThetaLmaxm=0 <= ThetaMax =1« » OK«
PRZYPADEK OBCIAZENIA Nr: 3 - OPER.COND.1
4.3.3 Axial flexibility modulus of gasket
XG = eG / AGt * (bGt + eG / 2) / (bGe + eG / 2) ((42))
=3/45414.86*(26+3/2)/(14.24+3/2)= 1,1538E-04 mm-1
4.1.3 Lever arms
hP = ((dGe-dE)^2*(2*dGe+dE)/6+2*eP^2*dF)/dGe^2 ((13))
=((567.76-511.07)^2*(2*567.76+511.07)/6+2*34^2*607.03)/567.76^2= 7.04 mm
hPm = ((dGe-dEm)^2*(2*dGe+dEm)/6+2*ePm^2*dFm)/dGe^2 ((13))
=((567.76-511.07)^2*(2*567.76+511.07)/6+2*34^2*607.03)/567.76^2= 7.04 mm
24 F.3 Integral - Flange Ko3nierz 1591
Umax= 65.9%
Strona: 50
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01T Operator :RR Rev.:A
EN1591 - Design Rules for Gasketed Circular Flanges Connection
F.3 Ko3nierz 1591 17 Nov. 2008 20:02 ConnID:N.3*
5.1 Applied Loads
Fluid Pressure
FQ = PI / 4 * dGe ^ 2 * p ((43)) =3.14/4*567.76^2*1.2= 3,0314E05 MPa
Additional External Loads
FR = FA0 + 4 * MA0 / d3e ((44)) =0+4*0/646.75= 0.00 N
5.2 Compliance of the joint
Tmp1 = (ZL * hL ^ 2 / EL0 + ZLm * hLm ^ 2 / EL0m + XB / EB0)
=(0*0^2/212000+0*0^2/212000+0.0017/191484)= 8,8658E-09 mm/N
YGI = ZF*hG^2/EF0+ZFm*hGm^2/EF0m+Tmp1+XG/(EGI*gC) ((46))
=3.6148E-05*39.5^2/2.0461E05+3.6148E-05*39.5^2/2.0461E05+8.8658E-09+1.1538E
-04/(1141.24*0.66)= =7,1328E-07 mm/N
YQI = ZF*hG*(hH-hP+hQ)/EF0+ZFm*hGm*(hHm-hPm+hQm)/EF0m+Tmp1+XG/(EG0*gC) ((47))
=3.6148E-05*39.5*(67.84-7.04+10.13)/2.0461E05+3.6148E-05*39.5*(67.84-7.04+1
0.13)/2.0461E05+8.8658E-09+1.1538E-04/(480*0.66)= =9,9881E-07 mm/N
YRI = ZF*hG*(hH+hR)/EF0+ZFm*hGm*(hHm+hRm)/EF0m+Tmp1+XG/(EG0*gC) ((48))
=3.6148E-05*39.5*(67.84+-1.62)/2.0461E05+3.6148E-05*39.5*(67.84+-1.62)/2.04
61E05+8.8658E-09+1.1538E-04/(480*0.66)= =9,3305E-07 mm/N
QImin = mi * p =1.3*1.2= 1.56 MPa
FGImin = Max( AGe * QImin, - ( FQ + FR)) ((50))
=Max(25407.74*1.56,-(3.0314E05+0))= 39.64 kN
FGDelta = (FGImin*YGI+FQ*YQI+(FR*YRI-FR0*YR0)+DeltaU)/YG0) ((51))
=(39.64*7.1328E-07+3.0314E05*9.9881E-07+(0*9.3305E-07-0*9.014E-07)+0)/6.534
E-07)= = 687.59 kN
Minimum force
FB0min = FB0nom * (1 - epsn) ((60)) =708.3*(1-0.0292)= 687.59 kN
Maximum forces to be used for the load limit calculation.
FB0max = FB0nom * (1 + epsp) ((61)) =708.3*(1+0.0292)= 729.01 kN
FG0max = FB0max - FR0 ((66)) =729.01-0= 729.01 kN
The calculation forces in subsequent conditions shall be based on a design
assembly gasket force FG0,d
FG0d = Max( FGDelta, 2 / 3 * (1 - 10 / NR) * FB0max - FR0) ((67))
=Max(687.59,2/3*(1-10/10)*729.01-0)= 687.59 kN
Gasket force for load limit calculations
FGI = (FG0d*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI ((68))
=(687.59*6.534E-07-(3.0314E05*9.9881E-07+0*9.3305E-07-0*9.014E-07+0))/7.132
8E-07= = 205.38 kN
Bolt force for load limit calculations
FBI = FGI + FQ + FR ((69)) =205.38+3.0314E05+0= 508.52 kN
6 Load limits
Load Ratio of Bolts
MtB = Mtnom * (1 + epsp) =254.99*(1+0.0292)= 262.44 kN
IB = PI / 12 * MIN( dBe , dBs) ^ 3
=3.14/12*MIN(26.72,26.72)^3= 4994.34 mm3
Load Limit of Bolts
PhiB = Sqr(( FBI / AB) ^ 2 + 3 * (CB * MtB / IB) ^ 2) / fB0 ((71))
=Sqr((508.52/11214.83)^2+3*(0*262.44/4994.34)^2)/174.93=0.2592
»Bolt Load Ratio PhiB PhiB=0.2592 <= 1 =1« » (U= 25.9%) OK«
Load Ratio of Gasket
PhiG = FGI / (AGt * Qmax) ((72)) =205.38/(45414.86*32)= 0.1413
»Gasket Load Ratio PhiG PhiG=0.1413 <= 1 =1« » (U= 14.1%) OK«
hG = (d3e - dGe) / 2 ((14)) =(646.75-567.76)/2= 39.81 mm
hH = (d3e - dE) / 2 ((14)) =(646.75-511.07)/2= 67.84 mm
hL = 0 ((14)) =0= 0.00 mm
24 F.3 Integral - Flange Ko3nierz 1591
Umax= 65.9%
Strona: 51
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01T Operator :RR Rev.:A
EN1591 - Design Rules for Gasketed Circular Flanges Connection
F.3 Ko3nierz 1591 17 Nov. 2008 20:02 ConnID:N.3*
6.4 Integral flange, stub or collar
eD = e1*(1+(beta-1)*lH/((beta/3)^4*(d1*e1)^2+lH^4)^0.25) ((75))
=27.7*(1+(0.278-1)*40/((0.278/3)^4*(506.76*27.7)^2+40^4)^0.25)= 7.73 mm
fE = Min( fF0, fS0) ((76)) =Min(200,155.87)= 155.87 N/mm2
deltaQ = p * dE / (fE * 2 * eD * CosPhiS) ((77))
=1.2*511.07/(155.87*2*7.73*1)= 0.2546
deltaR = FR / (fE * PI * dE * eD * CosPhiS) ((77))
=0/(155.87*3.14*511.07*7.73*1)= 0.00
jM = Sgn( FGI * hG + FQ * (hH - hP) + FR * hH) ((80))
=Sgn(205.38*39.81+3.0314E05*(67.84-7.04)+0*67.84)= 1.00
cM = SQR(1.333*(1-0.75*(0.5*deltaQ+deltaR)^2*(1-(0.75*deltaQ^2+deltaR^2))) ((78))
=SQR(1.333*(1-0.75*(0.5*0.2546+0)^2*(1-(0.75*0.2546^2+0^2)))= 1.15
PsiOpt = jM * (2 * eP / eF - 1) ((83)) =1*(2*34/34-1)= 1.00
PsiMax(jS(1) , kM(1) ,kS(1))= 0.0579
Psi0 (jS(0) , kM(0) ,kS(0))= -.0172
PsiMin(jS(-1) , kM(-1) ,kS(1))= -.1084
PsiZ = PsiMax =0.0579= 0.0579
WF = PI/4*(fF0*2*bF*eF^2*(1+2*PsiOpt*PsiZ-PsiZ^2)+fE*dE*eD^2*cM*jM*kM)
=3.14/4*(200*2*89.21*34^2*(1+2*1*0.0579-0.0579^2)+155.87*511.07*7.73^2*1.15
*1*1)= = 40329.97 Nm
PhiF0 = Abs( FGI * hG + FQ * (hH - hP) + FR * hH) / WF ((73))
=Abs(205.38*39.81+3.0314E05*(67.84-7.04)+0*67.84)/40329.97=0.6597
»Flange Load Ratio PhiF PhiF=0.6597 <= PhiMax =1« » (U= 65.9%) OK«
Annex E Flange Rotation
FGImin = (FG0min*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI
=(6.8759E05*6.534E-07-(3.0314E05*9.9881E-07+0*9.3305E-07-0*9.014E-07+0))/7.
1328E-07= = 205.38 kN
FGImax = (FG0max*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI
=(7.2901E05*6.534E-07-(3.0314E05*9.9881E-07+0*9.3305E-07-0*9.014E-07+0))/7.
1328E-07= = 243.32 kN
FBImin = FGImin + FQ + FR =205.38+3.0314E05+0= 508.52 kN
FBImax = FGImax + FQ + FR =243.32+3.0314E05+0= 546.46 kN
ThetaFmax = ZF/EF0*(FGImax*hG+FQ*(hH-hP+hQ)+FR*(hH+hR)) (E.1))
=3.6148E-05/2.0461E05*(243.32*39.5+3.0314E05*(67.84-7.04+10.13)+0*(67.84+-1
.62))= =0.3150 Degr.
ThetaFmaxm = ZFm/EF0m*(FGImax*hGm+FQ*(hHm-hPm+hQm)+FR*(hHm+hRm)) (E.1))
=3.6148E-05/2.0461E05*(243.32*39.5+3.0314E05*(67.84-7.04+10.13)+0*(67.84+-1
.62))= =0.3150 Degr.
»Flange Rotation ThetaFmax=0.315 <= ThetaMax =1« » OK«
»Loose Flange Rotation ThetaLmax=0 <= ThetaMax =1« » OK«
»Mating Flange Rotation ThetaFmaxm=0.315 <= ThetaMax =1« » OK«
»Mating Loose Flange Rotation ThetaLmaxm=0 <= ThetaMax =1« » OK«
Maximum Test Pressure Ptmax = 2.678 MPa, Limited by:Flange Load Ratio PhiF
Maximum Allowable Pressure Pmax = 2.314 MPa, Limited by:Flange Load Ratio PhiF
STRESZCZENIE OBLICZEN
Design Rules for Gasketed Circular Flanges Connection
PRZYPADEK OBCIAZENIA Nr: 1 - ASSEMBLY
bGe = MIN( bGi, bGt) =MIN(14.24,26)= 14.24 mm
dGe = dG2 - bGe =582-14.24= 567.76 mm
FG0req = Max( FG0min, FGDelta) ((52))
=Max(2.5408E05,6.8759E05)= 687.59 kN
FB0req = FG0req + FR0 ((53)) =687.59+0= 687.59 kN
Calkowity nominalny naciag wstepny
24 F.3 Integral - Flange Ko3nierz 1591
Umax= 65.9%
Strona: 52
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01T Operator :RR Rev.:A
EN1591 - Design Rules for Gasketed Circular Flanges Connection
F.3 Ko3nierz 1591 17 Nov. 2008 20:02 ConnID:N.3*
Fb0nom = FB0req / (1 - epsn) ((63)) =687.59/(1-0.0292)= 708.30 kN
Nominal Required Torque per Bolt
Mtnom = kB * FBnom =7.2*35.41= 254.99 kN
Load Limit of Bolts
PhiB = Sqr(( FBI / AB) ^ 2 + 3 * (CB * MtB / IB) ^ 2) / fB0 ((71))
=Sqr((7.2901E05/11214.83)^2+3*(1*262.44/4994.34)^2)/285.71=0.3915
»Bolt Load Ratio PhiB PhiB=0.3915 <= 1 =1« » (U= 39.1%) OK«
PhiG = FGI / (AGt * Qmax) ((72)) =7.2901E05/(45414.86*50)=0.3210
»Gasket Load Ratio PhiG PhiG=0.321 <= 1 =1« » (U= 32.1%) OK«
PhiF0 = Abs( FGI * hG + FQ * (hH - hP) + FR * hH) / WF ((73))
=Abs(7.2901E05*39.5+0*(67.84-7.09)+0*67.84)/70215.66= 0.4101
»Flange Load Ratio PhiF PhiF=0.4101 <= PhiMax =1« » (U= 41%) OK«
PRZYPADEK OBCIAZENIA Nr: 2 - TEST COND.
Load Limit of Bolts
PhiB = Sqr(( FBI / AB) ^ 2 + 3 * (CB * MtB / IB) ^ 2) / fB0 ((71))
=Sqr((514.16/11214.83)^2+3*(0*262.44/4994.34)^2)/285.71=0.1605
»Bolt Load Ratio PhiB PhiB=0.1605 <= 1 =1« » (U= 16%) OK«
PhiG = FGI / (AGt * Qmax) ((72)) =59.45/(45414.86*50)= 0.0262
»Gasket Load Ratio PhiG PhiG=0.0262 <= 1 =1« » (U= 2.6%) OK«
PhiF0 = Abs( FGI * hG + FQ * (hH - hP) + FR * hH) / WF ((73))
=Abs(59.45*39.81+4.5471E05*(67.84-7.04)+0*67.84)/67821.87=0.4425
»Flange Load Ratio PhiF PhiF=0.4425 <= PhiMax =1« » (U= 44.2%) OK«
PRZYPADEK OBCIAZENIA Nr: 3 - OPER.COND.1
Load Limit of Bolts
PhiB = Sqr(( FBI / AB) ^ 2 + 3 * (CB * MtB / IB) ^ 2) / fB0 ((71))
=Sqr((508.52/11214.83)^2+3*(0*262.44/4994.34)^2)/174.93=0.2592
»Bolt Load Ratio PhiB PhiB=0.2592 <= 1 =1« » (U= 25.9%) OK«
PhiG = FGI / (AGt * Qmax) ((72)) =205.38/(45414.86*32)= 0.1413
»Gasket Load Ratio PhiG PhiG=0.1413 <= 1 =1« » (U= 14.1%) OK«
PhiF0 = Abs( FGI * hG + FQ * (hH - hP) + FR * hH) / WF ((73))
=Abs(205.38*39.81+3.0314E05*(67.84-7.04)+0*67.84)/40329.97=0.6597
»Flange Load Ratio PhiF PhiF=0.6597 <= PhiMax =1« » (U= 65.9%) OK«
TABLE OF SUMMARY
Table LOAD CONDITIONS AND LOAD RATIOS FOR F.3 (m=mating flange):
DESCRIPTION
ID
ASSEMBLY
TEST COND.
OPER.COND.1
Design Pressure(MPa)
P
0.000
1.800
1.200
Resulting Force(kN)
FR
0.000
0.000
0.000
Axial Fluid-Pressure Force(kN)
FQ
0.000
454.709
303.139
Gasket Force(kN)
FG
729.005
59.454
205.376
Total Bolt Force(all bolts)(kN)
FB
729.005
514.163
508.515
Minimum Gasket Seating Force(kN)
FGmin
254.077
59.454
39.636
Bolt Load Ratio
PhiB
0.391
0.160
0.259
Gasket Load Ratio
PhiG
0.321
0.026
0.141
Flange Load Ratio
PhiF
0.410
0.443
0.660
Flange Rotation(degr.)
ThetaF
0.282
0.338
0.315
Loose Flange Rotation(degr.)
ThetaL
0.000
0.000
0.000
Nominal Bolt Force(per bolt)(kN)
FBnom
35.415
0.000
0.000
Nominal Bolt Torque(per bolt)(Nm)
Mtnom
254.986
0.000
0.000
Bolt Elongation at Assembly(mm)
DeltaB
0.000
0.000
0.000
24 F.3 Integral - Flange Ko3nierz 1591
Umax= 65.9%
Strona: 53
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01T Operator :RR Rev.:A
EN1591 - Design Rules for Gasketed Circular Flanges Connection
F.3 Ko3nierz 1591 17 Nov. 2008 20:02 ConnID:N.3*
Objetosc:0.01 m3 Ciezar:54 kg (SG= 7.85 )
24 F.3 Integral - Flange Ko3nierz 1591
Umax= 65.9%
Strona: 54
Urzad Dozoru Technicznego
Company Address
Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01T Operator :RR Rev.:A
EN1591 - Design Rules for Gasketed Circular Flanges Connection
F.3 Ko3nierz 1591 17 Nov. 2008 20:02 ConnID:N.3*