06 METODY NACIAGU ŚRUB I II Anex G 1591

background image

1 Drawing

Drawing

Widok 3D zbiornika (zmiana przez polecenie: Zapisz widok uzytkownika)

2 Historia rewizji

Historia rewizji

Rev

ID

Rodzaj elementu

Opis elementu

DATA I GODZINA

A

F.1

WN - Kolnierz

Kolnierz metoda I

17 Nov. 2008 20:09

A

F.2

Integral - Flange

kolnierz metoda II

17 Nov. 2008 20:00

A

F.3

Integral - Flange

Ko3nierz 1591

17 Nov. 2008 20:02

A

N.1

Króciec,Blacha korpu

krociec met I

17 Nov. 2008 19:44

A

N.2

Króciec,Blacha korpu

krociec met II

17 Nov. 2008 19:44

A

N.3*

Króciec,Blacha korpu

krociec met 1591

17 Nov. 2008 19:44

A

S1.1

Plaszcz walcowy

plaszcz

17 Nov. 2008 19:44

A First Issue RR 13 Mar. 2007 18:35

3 Parametry projektowe i informacje ruchowe

Parametry projektowe i informacje ruchowe

Opis

Jednostki

DANE PROJEKTOWE

KARTA PROCESOWA

General Design Data

Przepisy projektowe i specyfikacje

EN13445:Issue23

Wewnetrzne cisnienie obliczeniowe (MPa)

MPa

1.2

Zewnetrzne cisnienie obliczeniowe (MPa)

MPa

Cisnienie proby (MPa)

MPa

1.716

Maksymalna temperatura obliczeniowa ('C)

'C

120

Minimalna temperatura obliczeniowa ('C)

'C

Temperatura robocza ('C)

'C

Naddatek korozyjny (mm)

mm

0.3

3 Parametry projektowe i informacje ruchowe

Strona: 1

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9 Operator :RR Rew.:A

background image

Opis

Jednostki

DANE PROJEKTOWE

Zawartosc zbiornika

Ciezar wlasciwy czynnika roboczego

4 Ciezar i pojemnosc zbiornika

Ciezar i pojemnosc zbiornika

Table :

ID

No.

Ciezar-zbior.niedokoncz.

Ciezar-zbior.dokoncz.

Pojem.calkowita

S1.1

1

1569.0 kg

1520.6 kg

7.855 m3

N.1

1

12.0 kg

12.0 kg

0.031 m3

N.2

1

12.0 kg

12.0 kg

0.031 m3

F.2

2

108.0 kg

108.0 kg

0.028 m3

F.1

1

59.0 kg

59.0 kg

0.014 m3

N.3*

1

12.0 kg

12.0 kg

0.031 m3

F.3

2

108.0 kg

108.0 kg

0.028 m3

:$$12:
Total

9

1880.0 kg

1831.6 kg

8.018 m3

Table Continued

ID

Ciazar cieczy przy probie

Ciezar ruchowy cieczy

S1.1

7855.0 kg

0.0 kg

N.1

31.0 kg

0.0 kg

N.2

31.0 kg

0.0 kg

F.2

28.0 kg

0.0 kg

F.1

14.0 kg

0.0 kg

N.3*

31.0 kg

0.0 kg

F.3

28.0 kg

0.0 kg

:$$12:

Total

8018.0 kg

0.0 kg

Weight Summary/Condition

Weights

Ciezar zbiornika pustego z 5% zawartoscia

1923 kg

Calkowity ciezar zbiornika (War.proby z woda)

9941 kg

Calkowity ciezar ruchowy zbiornika

1923 kg

5 Srodek ciezkosci

Srodek ciezkosci

ID

X-pusty

Y-pusty

Z-pusty

X-proba

Y-proba

Z-proba

X-ruch.

Y-ruch.

Z-ruch.

S1.1

-25

0

1999

0

0

2000

0

0

2000

N.1

847

0

1000

847

0

1000

847

0

1000

N.2

847

0

2000

847

0

2000

847

0

2000

F.2

987

0

2000

987

0

2000

987

0

2000

F.1

987

0

1000

987

0

1000

987

0

1000

N.3*

847

0

3000

847

0

3000

847

0

3000

F.3

987

0

3000

987

0

3000

987

0

3000

CENTER OF GRAVITY AT CONDITIONS BELOW

X

Y

Z

Zbiornik pusty

86

0

1879

Warunki proby zbiornika (proba z woda)

28

0

1972

Warunki ruchowe zbiornika

86

0

1879

6 Maksymalne cisnienie dopuszczalne MAWP

Maksymalne cisnienie dopuszczalne MAWP

ID

Rodzaj elem.

Liq.Head

MAWP nowy i zimny

MAWP goracy i skorod.

S1.1

Plaszcz walcowy

0.000 MPa

1.771 MPa

1.566 MPa

N.1

Króciec,Blacha korpu

0.000 MPa

1.423 MPa

1.253 MPa

N.2

Króciec,Blacha korpu

0.000 MPa

1.423 MPa

1.253 MPa

F.2

Integral - Flange

0.000 MPa

2.314 MPa

2.314 MPa

6 Maksymalne cisnienie dopuszczalne MAWP

Strona: 2

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9 Operator :RR Rew.:A

background image

ID

Rodzaj elem.

Liq.Head

MAWP nowy i zimny

MAWP goracy i skorod.

F.1

WN - Kolnierz

0.000 MPa

1.450 MPa

1.450 MPa

N.3*

Króciec,Blacha korpu

0.000 MPa

1.423 MPa

1.253 MPa

MAWP

1.423 MPa

1.253 MPa

Przypis: Inne warunki moga ograniczac MAWP ni? te sprawdzone powyzej.
Note : The value for MAWP is at top of vessel, with static liquid head subtracted.

7 Cisnienie próby

Cisnienie próby

CISNIENIE PROBY ZBIORNIKA - NOWY I ZIMNY W PIONIEPOZIOME

Cisnienie obliczeniowe......................: 1.200 MPa
Specified Test Pressure.................: 1.716 MPa
Temperatura obliczeniowa....................: 120.0 C

ID

Opis

Pdesign

PtMax

PtMin

Wat.Head

PtTop

PtTopMax

S1.1

Plaszcz walcowy-plaszcz

1.200

3.078

1.716

0.020

1.696

3.058

N.1

Króciec,Blacha korpu-krociec
met I

1.200

2.102

NA

0.007

NA

2.095

N.2

Króciec,Blacha korpu-krociec
met II

1.200

2.102

NA

0.007

NA

2.095

F.2

Integral - Flange-kolnierz
metoda II

1.200

2.678

NA

0.006

NA

2.672

F.1

WN - Kolnierz-Kolnierz
metoda I

1.200

2.842

NA

0.006

NA

2.836

N.3*

Króciec,Blacha korpu-krociec
met 1591

1.200

2.102

NA

0.007

NA

2.095

HYDRO-TEST

REQUIRED TEST PRESSURE AT TOP OF VESSEL PtReq(Hydro Test) ......: 1.696 MPa

TEST PRESSURE OF: 1.716 MPa AT TOP OF VESSEL IS OK FOR ABOVE COMPONENTS.
Note : Other components may limit Ptlim than the ones checked above.

NOMENCLATURE:
Pdesign- is the design pressure including liquid head at the part under
consideration.
PtMax - is the maximum allowed test pressure determined at the part under
consideration.
PtMin - is the required test pressure determined at the part under consideration.
Wat.Head - is the water head during hydrotesting at the part under consideration.
PtBot - is the required test pressure at bottom of the vessel, for the part
under consideration.
PtTop - is the required test pressure at top of the vessel, for the part under
consideration.
PtTopMax - is the maximum test pressure allowed at top of the vessel, for the
part under consideration.
PtReq - is the required minimum test pressure (largest value of PtTop) at top of
vessel for the listed components.
PtLim - is the maximum allowed test pressure (minimum value for PtTopMax) at top
of vessel for the listed components.

EN13445-5 10.2.3.3.8 Pressure of vessels under test shall be gradually increased
to a value of approximately 50 % of the specified test pressure, thereafter the
pressure shall be increased in stages of approximately 10 % of the specified test
pressure until this is reached. The required test pressure shall be maintained for
not less than 30 min. At no stage shall the vessel be approached for close
examination until the pressure has been positively reduced by at least 10 % to a
level lower than that previously attained. The pressure shall be maintained at
the specified close examination level for a sufficient length of time to permit a
visual inspection to be made of all surfaces and joints.

8 Wykaz materialow

Wykaz materialow

8 Wykaz materialow

Strona: 3

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9 Operator :RR Rew.:A

background image

ID

No

Opis

Opis elementu

Norma materialowa

F.1

1

WN - Kolnierz-Kolnierz
metoda I

OD= 715, ID= 498.46, thk=
34, h= 40, g1= 27.7

ID 2, EN 10028-6:2003, 1.8867 P355QH
plate and strip, HT:QT

F.1

20

Sruby

M30x3 ;, Pole= 544

ID 5, EN 10269:1999, 1.1181 C35E bar,
bolt, HT:QT

F.2

1

Mating Flange

M30x3 ;, Pole= 30

F.2

2

Integral - Flange-kolnierz
metoda II

OD= 715, ID= 499.06, thk=
34.3, h= 40, g1= 7.7

ID 2, EN 10028-6:2003, 1.8867 P355QH
plate and strip, HT:QT

F.2

20

Sruby

M30x3 ;, Pole= 30

ID 5, EN 10269:1999, 1.1181 C35E bar,
bolt, HT:QT

F.3

2

Integral - Flange-Ko3nierz
1591

OD= 715, ID= 499.06, thk=
34.3, h= 40, g1= 7.7

F.3

20

Sruby

M30x3 ;, Pole= 544

N.1

1

Króciec,Blacha korpu-krociec
met I

ND500
do=508,wt=4.77,L=201.9,ho=
150,PAD OD=758

ID 1, EN 10028-2:2003, 1.0425 P265GH
plate and strip, HT:N

N.1

1

Nakladka wzmacniajaca

PAD OD=758, wt= 10,
width= 125

ID 1, EN 10028-2:2003, 1.0425 P265GH
plate and strip, HT:N

N.2

1

Króciec,Blacha korpu-krociec
met II

ND500
do=508,wt=4.77,L=201.9,ho=
150,PAD OD=758

ID 1, EN 10028-2:2003, 1.0425 P265GH
plate and strip, HT:N

N.2

1

Nakladka wzmacniajaca

PAD OD=758, wt= 10,
width= 125

ID 1, EN 10028-2:2003, 1.0425 P265GH
plate and strip, HT:N

N.3*

1

Króciec,Blacha korpu-krociec
met 1591

ND500
do=508,wt=4.77,L=201.9,ho=
150,PAD OD=758

ID 1, EN 10028-2:2003, 1.0425 P265GH
plate and strip, HT:N

N.3*

1

Nakladka wzmacniajaca

PAD OD=758, wt= 10,
width= 125

ID 1, EN 10028-2:2003, 1.0425 P265GH
plate and strip, HT:N

S1.1

1

Plaszcz walcowy-plaszcz

De= 1600, en= 10, L= 4000

ID 1, EN 10028-2:2003, 1.0425 P265GH
plate and strip, HT:N

9 Uwagi, ostrzezenia i bledy

Uwagi, ostrzezenia i bledy

ID & Comp. Description

Przypisy/Uwagi/Informacje o bledach

N.1 Króciec,Blacha korpu krociec
met I

-

NOTE/UWAGA: Szerokosc nakladki uzyta w obliczeniach jest ograniczona do ls = 122.3 mm

N.2 Króciec,Blacha korpu krociec
met II

-

NOTE/UWAGA: Szerokosc nakladki uzyta w obliczeniach jest ograniczona do ls = 122.3 mm

F.2 Integral - Flange kolnierz
metoda II

-

NOTE/NOTE: It is recommended to observe a minimum load ratio FB,min = 0,3 in assembly
condition. A smaller load ratio is in general not good practice, because then the bolts are too thick.

F.1 WN - Kolnierz Kolnierz metoda I

-

NOTE/NOTE : The design may benefit by reducing the bolting area, or reducing the allowable
stress for the bolts.

N.3* Króciec,Blacha korpu krociec
met 1591

-

NOTE/UWAGA: Szerokosc nakladki uzyta w obliczeniach jest ograniczona do ls = 122.3 mm

CALKOWITA ILOSC BLEDOW/OSTRZEZEN: 0

10 Specyfikacja kroccow

Specyfikacja kroccow

ID

Serwis

ROZMIAR

NORMA--KLASA--RODZAJ--PRZYLGA--WYKAZ

N.1

krociec met I

ND500

DIN 2633: Class PN 16

N.2

krociec met II

ND500

Non-standard flange:OD= 715, ID= 499.06, thk= 34.3, h= 40,
g1= 7.7

N.3*

krociec met 1591

ND500

Non-standard flange:OD= 715, ID= 499.06, thk= 34.3, h= 40,
g1= 7.7

11 Maksymalne wykorzystanie elementu -

Maksymalne wykorzystanie elementu - Umax

ID

Rodzaj elemen.

Umax(%)

Ograniczone przez

S1.1

Plaszcz walcowy

78.1%

Internal Pressure

N.1

Króciec,Blacha korpu

95.7%

Nozzle Reinforcement

11 Maksymalne wykorzystanie elementu -

Umax

Strona: 4

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9 Operator :RR Rew.:A

background image

ID

Rodzaj elemen.

Umax(%)

Ograniczone przez

N.2

Króciec,Blacha korpu

95.7%

Nozzle Reinforcement

F.2

Integral - Flange

65.9%

Flange Load Ratio PhiF

F.1

WN - Kolnierz

93.4%

Radial+Hub Stress

N.3*

Króciec,Blacha korpu

95.7%

Nozzle Reinforcement

F.3

Integral - Flange

65.9%

Flange Load Ratio PhiF

Element z najwyzszym stopniem wykorzystania Umax = 95.7% N.1 krociec met I

Sredni stopien wykorzystania wszystkich elem. Usr= 84.3%

12 Dane materialowe/Wlasnosci mechaniczne

Dane materialowe/Wlasnosci mechaniczne

Table :

ID

Material Name

Temp

Rm

Rp

Rpt

f_d

f20

ftest

E-mod

Przypis

1

EN 10028-2:2003, 1.0425 P265GH plate
and strip, HT:N TG3, CS, Mat.Group:1.1, ,
Max.T= 16mm, SG=7.85

120

410

265

233.8

155.9

170.8

252.4

204605

a)

2

EN 10028-6:2003, 1.8867 P355QH plate
and strip, HT:QT TG3, CS, Mat.Group:1.1, ,
Max.T= 50mm, SG=7.85

120

490

355

300

200

204.2

338.1

204605

a)

3

EN 10028-2:2003, 1.0425 P265GH plate
and strip, HT:N TG3, CS, , Max.T= 16mm,
SG=7.85

120

410

265

233.8

155.9

170.8

252.4

204605

a)

4

EN 10269:1999, 1.1181 C35E bar, bolt,
HT:N TG3, CS, Mat.Group:1.1, , Max.T=
60mm, SG=7.93

120

500

300

262.4

155.9

176.7

150

191484

a)

5

EN 10269:1999, 1.1181 C35E bar, bolt,
HT:QT TG3 , Mat.Group:9.2, , Max.T=
60mm, SG=7.93

120

500

300

262.4

87.5

100

150

191484

a)

6

EN 10269:1999, 1.4938 X12CrNiMoV12-3
bar, bolt, HT:QT TG3, CS, Mat.Group:1.1, ,
Max.T= 160mm, SG=7.93

120

930

760

675.2

225.1

232.5

348.8

191484

a)

7

EN 10273:2000, 1.8867 P355QH bar,
HT:QT TG3, CS, Mat.Group:1.2, , Max.T=
50mm, SG=7.85

120

490

355

300

200

204.2

338.1

204605

a)

8

EN 10222-4:1998, 1.0565 P355NH forging,
HT:N TG3, CS, Mat.Group:1.2, , Max.T=
50mm, SG=7.85

120

490

355

296

197.3

204.2

338.1

204605

a)

9

EN 10222-4:1998, 1.0571 P355QH1
forging, HT:QT TG3, CS, Mat.Group:1.2, ,
Max.T= 100mm, SG=7.85

120

470

315

286.4

190.9

195.8

300

204605

a) f)

10

EN 10028-2:2003, 1.0425 P265GH plate
and strip, HT:N TG3, CS, , Max.T= 16mm,
SG=7.85

120

410

265

233.8

155.9

170.8

252.4

204605

a)

Table Continued

ID

1
2
3
4
5
6
7
8
9
10

Przypisy:
Thickness in mm, stress in N/mm2, temperature in deg.C
TG : Grupa Badan 1 do 4
t maks: Maks.grubosci dla podanego zakresu napr., 0 lub 999= Bez ograniczenia
S/C : CS = Stal weglowa, SS = Stal kwasoodp.
SG : SG = Ciezar wlasciwy (Woda = 1.0)
Rm : MIN. WYTRZYMALOSC NA ROZCIAGANIE w temp. otoczenia
Rp : MIN. GRANICA PLASTYCZNOSCI w temp. otoczenia
Rpt : MIN. GRANICA PLASTYCZNOSCI w temp. obliczeniowej
f_d : NAPREZENIE OBLICZENIOWE w temp. obliczeniowej
f20 : NAPREZENIE OBLICZENIOWE w temp. otoczenia
GRP : 1.1 = stale o okreslonej granicy plastycznosci ReH <=275 N/mm2
GRP : 1.0 = Steels with a specified minimum yield strength ReH <= 460 N/mm2 a and
with analysis in %:C <= 0,25, Si <= 0,60, Mn <= 1,70, Mo <= 0,70b, S <= 0,045, P

12 Dane materialowe/Wlasnosci mechaniczne

Strona: 5

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9 Operator :RR Rew.:A

background image

<= 0,045, Cu <= 0,40b, Ni <= 0,5b, Cr <= 0,3 (0,4 for castings)b, Nb <= 0,05, V <=
0,12b, Ti <= 0,05
GRP : 9.2 = Nickel alloyed steels with 3,0 % < Ni <= 8 %
GRP : 9.0 = Nickel alloyed steels with Ni <= 10 %
GRP : 1.2 = Steels with a specified minimum yield strength 275 N/mm2 < ReH <= 360
N/mm2
GRP : 1.0 = Steels with a specified minimum yield strength ReH <= 460 N/mm2 a and
with analysis in %:C <= 0,25, Si <= 0,60, Mn <= 1,70, Mo <= 0,70b, S <= 0,045, P
<= 0,045, Cu <= 0,40b, Ni <= 0,5b, Cr <= 0,3 (0,4 for castings)b, Nb <= 0,05, V <=
0,12b, Ti <= 0,05
Przypis: a = Materialy powinny spelniac odpowiednie zasadnicze wymagania
bezpieczenstwa Dyrektywy 97/23/WE
Note : f = Additional requirements for forming and welding shall be considered on
a case by case basis.
HT : N = normalizowane
HT : QT = quenched and tempered
HT : N = normalizowane
HT : QT = quenched and tempered
HT : QT = quenched and tempered
HT : QT = quenched and tempered
HT : N = normalizowane
HT : QT = quenched and tempered

Section 6.3 Alternative route for steels

The Alternative Route has been used in obtaining the allowable stress for the
following materials:
4 EN 10269:1999, 1.1181 C35E bar, bolt, HT:N
8 EN 10222-4:1998, 1.0565 P355NH forging, HT:N
9 EN 10222-4:1998, 1.0571 P355QH1 forging, HT:QT

Alternative route allows the use of higher nominal design stress by reducing the
safety factor on tensile strength from 2.4 to 1.875 if all of the following
conditions are met:
a) Material requirements as specified in EN 13445-2:2002 for Design by Analysis -
Direct Route.
b) Restriction in construction and welded joints as specified in Clause 5 and in
Annex A of EN 13445-3:2002 for Design by Analysis - Direct Route.
c) All welds which must be tested by non-destructive testing (NDT) according to
the requirements of EN
13445-5:2002 shall be accessible to NDT during manufacture and also for in-service
inspection.
d) Fatigue analysis according to Clause 17 or 18 in all cases.
e) Fabrication requirements as specified in EN 13445-4:2002 for Design by Analysis
- Direct Route.
f) NDT as specified in EN 13445-5:2002 for Design by Analysis - Direct Route.
g) Appropriate detailed instructions for in-service inspections are provided in
the operating instructions by the manufacturer.
NOTE/NOTE Until sufficient in-house experience can be demonstrated, the
involvement of an independent body, appropriately qualified, is recommended for
the assessment of the design (calculations) and for assurance that all
requirements are met in materials, fabrication and NDT.

13 Polozenie elementu wzgledem osi wspolrzednych

Polozenie elementu wzgledem osi wspolrzednych

ID

Rodzaj elem.

X

Y

Z

Teta

Phi

ConnID

F.1

WN - Kolnierz

0

0

155

0.0

0.0

N.1

F.2

Integral - Flange

0

0

155

0.0

0.0

N.2

F.3

Integral - Flange

0

0

155

0.0

0.0

N.3*

N.1

Króciec,Blacha korpu

795

0

1000

90.0

0.0

S1.1

N.2

Króciec,Blacha korpu

795

0

2000

90.0

0.0

S1.1

N.3*

Króciec,Blacha korpu

795

0

3000

90.0

0.0

S1.1

S1.1

Plaszcz walcowy

0

0

0

0.0

0.0

Powyzszy raport pokazuje polozenie punktow polaczen (x, y oraz z)
kazdego elementu w systemie wspolrzednych elementu glownego
(Conn ID). Punkt polaczenia (x, y oraz z) jest zawsze w osi
symetrii obrotu rozpatrywanego elementu, np. punkt

13 Polozenie elementu wzgledem osi wspolrzednych

Strona: 6

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9 Operator :RR Rew.:A

background image

polaczenia krocca z cylindrem powinien byc na przecieciu
osi krocca z srodkiem grubosci scianki plaszcza
referenced to the shell s coordinate system. In addition the orientation s
coordinate system. In addition the orientation
osi elementu okreslone jest przez dwa katy Teta oraz
Phi, gdzie Teta jest katem pomiedzy osiami dwoch elementow, a
Phi jest orientacja plaszczyzny x-y.
Podstawa systemu koordynacji stosowanego w programie jest strona prawa
systemu koordynacyjnego z osia "z" jako geometryczna osia obrotu
elementow, a Teta jako kat polnocy i Phi jako azymut.

14 Impact Test Requirements

Impact Test Requirements

Table :

ID-Description

Material Name

en(mm)

eB(mm)

Re(N/mm2)

F.1 Kolnierz metoda I - Bolts

EN 10269:1999, 1.1181 C35E bar, bolt, HT:QT

30.0

30.0

300.0

F.1 Kolnierz metoda I - Flange

EN 10028-6:2003, 1.8867 P355QH plate and strip, HT:QT

34.0

8.5

355.0

F.1 Kolnierz metoda I - Hub

EN 10028-6:2003, 1.8867 P355QH plate and strip, HT:QT

7.7

7.7

355.0

N.1 krociec met I - Nozzle

EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N

4.8

4.8

265.0

N.1 krociec met I - Pad

EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N

10.0

10.0

265.0

N.2 krociec met II - Nozzle

EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N

4.8

4.8

265.0

N.2 krociec met II - Pad

EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N

10.0

10.0

265.0

N.3* krociec met 1591 - Nozzle

EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N

4.8

4.8

265.0

N.3* krociec met 1591 - Pad

EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N

10.0

10.0

265.0

S1.1 plaszcz - Shell

EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N

10.0

10.0

265.0

Table Continued

ID-Description

TR(C)

TKVPWHT(C)

TKVAW(C)

Comments

F.1 Kolnierz metoda I - Bolts

0.0

20

-1.1

NOTE: Steel designation unknown, this
method is only applicable for ferritic steels(C,
CMn and fine grain) and 1.5% to 5% Ni-alloy
steels.

F.1 Kolnierz metoda I - Flange

0.0

20

20

F.1 Kolnierz metoda I - Hub

0.0

20

20

N.1 krociec met I - Nozzle

0.0

20

20

N.1 krociec met I - Pad

0.0

20

20

N.2 krociec met II - Nozzle

0.0

20

20

N.2 krociec met II - Pad

0.0

20

20

N.3* krociec met 1591 - Nozzle

0.0

20

20

N.3* krociec met 1591 - Pad

0.0

20

20

S1.1 plaszcz - Shell

0.0

20

20


EN13445-2 Annex B, Requirements for Prevention of Brittle Fracture
B.2.3 Method 2 - Code of practice developed from fracture mechanics

NOMENCLATURE:
en - Nominal thickness of component under consideration(including corr.
allow.).
eB - Reference thickness of component under consideration from Table B.4-1.
Re - Minimum specified yield strength at room temperature.
AW - As Welded condition.
PWHT - Post Weld Heat Treatment.
TR - Design Reference Temperature.
TKVPWHT- Material impact test temperature for PWHT condition from Figure B.4-1
or 3, and required impact energy 27J.
TKVAW - Material impact test temperature for AW condition from Figure B.4-2, 4
or 5, and required impact energy 27J.

15 NDT - Requirements for Test Group:3a

NDT - Requirements for Test Group:3a

Table EN13445-5, 6.6.2-1:

Weld ID

Kategoria spoiny

Rodzaj spoiny

RT or UT

MT or PT

1

Full Penetration butt weld

Longitudinal joints

25%

10%

2a

Full Penetration butt weld

Circumferential joints on a shell

10%

10%

2b

Full Penetration butt weld

Circumferential joints on a shell with
backing strip (k)

NA

NA

15 NDT - Requirements for Test Group:3a

Strona: 7

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9 Operator :RR Rew.:A

background image

Weld ID

Kategoria spoiny

Rodzaj spoiny

RT or UT

MT or PT

2c

Full Penetration butt weld

Circumferential joggle joint (k)

NA

NA

3a

Full Penetration butt weld

Circumferential joints on a nozzle di > 150
mm or e > 16 med mer

10%

10%

3b

Full Penetration butt weld

Circumferential joints on a nozzle di > 150
mm or e > 16 mm with backing strip (k)

NA

NA

4

Full Penetration butt weld

Circumferential joints on a nozzle with di <=
150 mm and e <= 16mm

0

10%

5

Full Penetration butt weld

All welds in spheres, heads and
hemispherical heads to shells

25%

10%

6

Full Penetration butt weld

Assembly of a conical shell with a cylindrical
shell angle <= 30o

10%

10%

7

Full Penetration butt weld

Assembly of a conical shell with a cylindrical
shell angle > 30o

25%

10%

8a

Circumferential lapped joints (k)

General application shell to head

NA

NA

8b

Circumferential lapped joints (k)

Bellows to shell e <= 8 med mer

0

25%

9

Assembly of a flat head or a tubesheet, with a
cylindrical shell Assembly of a flange or a collar
with a shell

With full penetration

25%

10%

10

Assembly of a flat head or a tubesheet, with a
cylindrical shell Assembly of a flange or a collar
with a shell

With partial penetration if a>16 mm (a as
defined in figure 6.6.2-1)(j)

25%

10%

11

Assembly of a flat head or a tubesheet, with a
cylindrical shell Assembly of a flange or a collar
with a shell

With partial penetration if a<=16 mm (a as
defined in figure 6.6.2-1) (j)

0

10%

12

Assembly of a flange or a collar with a nozzle

With full penetration

25%

10%

13

Assembly of a flange or a collar with a nozzle

With partial penetration (j)

0

10%

14

Assembly of a flange or a collar with a nozzle

With full or partial penetration di <= 150 mm
and e <= 16 mm j

0

10%

15

Nozzle or branch (e)

With full penetration di > 150 mm or e > 16
mm

25%

10%

16

Nozzle or branch (e)

With full penetration di <= 150 mm or e <=
16 mm

0

10%

17

Nozzle or branch (e)

With partial penetration for any di a > 16
mm (see figure 6.6.2-2)

25%

10%

18

Nozzle or branch (e)

With partial penetration di > 150 mm a <=
16 mm (see figure 6.6.2-2)

0

10%

19

Nozzle or branch (e)

With partial penetration di <= 150 mm a <=
16 mm (see figure 6.6.2-2)

0

10%

20

Tube ends into tubesheet

-

-

25%

21

Permanent attachments (f)

With full penetration or partial penetration

10%

100%

22

Pressure retaining areas after removal of
temporary attachments

-

-

100%

23

Cladding by welding

-

-

100%

24

Repairs

-

100%

100%

The above requirements are for test group TG:3a
Notes:
(a): See figure 6.6.2-3 for an explanation on Weld ID.
(b): RT=Radiographic Testing, UT=Ultrasonic Testing, MT=Magnetic Particle Testing,
PT=Penetrant Testing.
(c): 2 % if e L 30mm and same WPS as longitudinal, for steel groups 1.1 and 8.1
(d): 10 % if e > 30 mm, 0 % if e <= 30 mm
(e): Percentage in the table refers to the aggregate weld length of all the
nozzles see 6.6.1.2 b).
(f): No RT or UT for weld throat thickness <= 16 mm
(g): 10 % for steel groups 8.2, 9.1, 9.2, 9.3 and 10
(h): Volumetric testing if risks of cracks due to parent material or heat treatment
(i): For explanation of the reduction in NDT in testing group 2, see 6.6.1.2
(j): In exceptional cases or where the design or load bearing on the joint is
critical, it may be necessary to employ both techniques (i.e. RT & UT, MT & PT).
See table 6.6.3-1 for other circumstances for use of both techniques.
(k): For limitations of application see EN 134445-3:2002, 5.7.3.2.l
(l): The percentage of surface examination refers to the percentage of length of
the welds both on the inside and the outsidem.
(m): RT and UT are volumetric while MT and PT are surface testing. When referenced
in this table both volumetric and surface are necessary to the extent shown.
(n): NA means 'Not Applicable'.
(o): In case of cyclic loading refer to Annex G.2.
(p): Annex A of EN 13445-3 gives design limitations on welds.

15 NDT - Requirements for Test Group:3a

Strona: 8

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9 Operator :RR Rew.:A

background image

EN13445-5, Table 6.6.2-3, Map of Weld Types/Weld ID.

16 DIAGRAM WYKORZYSTANIA

16 DIAGRAM WYKORZYSTANIA

Strona: 9

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9 Operator :RR Rew.:A

background image

DIAGRAM WYKORZYSTANIA

DIAGRAM WYKORZYSTANIA

17 Uklad rurek

Uklad rurek

Uklad rurek

17 Uklad rurek

Strona: 10

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9 Operator :RR Rew.:A

background image

18 Surface Area

Surface Area

Table Surface Area:

ID

No.

Opis

Area Outside(m2)

Area Inside(m2)

S1.1

1

Plaszcz walcowy, plaszcz

20.106

19.870

N.1

1

Króciec,Blacha korpu,
krociec met I

0.239

0.235

N.2

1

Króciec,Blacha korpu,
krociec met II

0.239

0.235

F.2

2

Integral - Flange, kolnierz
metoda II

0.678

0.232

F.1

1

WN - Kolnierz, Kolnierz
metoda I

0.339

0.116

N.3*

1

Króciec,Blacha korpu,
krociec met 1591

0.239

0.235

F.3

2

Integral - Flange, Ko3nierz
1591

0.678

0.232

Total

9

22.518

21.155

Strona: 11

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9 Operator :RR Rew.:A

background image

19 S1.1 Plaszcz walcowy plaszcz

DANE WEJSCIOWE

ELEMENT PRZYLACZONY/POLOZENIE

DANE PROJEKTOWE

OBCIAZENIE CISNIENIEM: Obliczanie elementu tylko na cisnienie wewnetrzne
KARTA PROCESOWA: DANE PROJEKTOWE : Temp= 120°C, P= 1.2MPa, c= .3mm, Pext= 0MPa
GESTOSC WLASCIWA PLYNU ROBOCZEGO....................:SG 0.00
SLUP CIECZY.........................................:LH 2190.60 mm

DANE PLASZCZA

RODZAJ MATERIALU: Blacha
WSPÓLCZYNNIK ZLACZA SPAWANEGO: Grupa badan 3 (z=0.85)
DOBÓR SREDNICY: Obliczenie oparte o srednice zewnetrzna plaszcza
EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N THK<=16mm 120'C
Rm=410 Rp=265 Rpt=233.8 f=155.87 f20=170.83 ftest=252.38 E=204605(N/mm2) ro=7.85
SREDNICA ZEWNETRZNA PLASZCZA........................:De 1600.00 mm
DLUGOSC CZESCI WALCOWEJ PLASZCZA....................:Lcyl 4000.00 mm
RZECZYWISTA GRUBOSC SCIANKI (w stanie nie skorodowanym) :en 10.00 mm
UJEMNA TOLERANCJA WYKONANIA.........................:th 0.3000 mm

WYNIKI OBLICZEN

7.4.2 - PLASZCZE WALCOWE POD CISNIENIEM WEWNETRZNYM

Minimalna wymagana grubosc plaszcza bez naddatku na korozje: emin
emin = De * P / (2 * f * z + P) (7.4-2)
=1600*1.2/(2*155.87*0.85+1.2)= 7.21 mm

Minimalna wymagana grubosc plaszcza z naddatkiem na korozje: emin
emina = emin + c + th =7.21+0.3+0.3= 7.81 mm

Obliczenie grubosci
ea = en - c - th =10-0.3-0.3= 9.40 mm

»7.4.1. Warunki stosowania emin/De=0.0045 <= 0.16« » OK«

»Cisnienie wewnetrzne emina=7.81 <= en=10[mm] « » (U= 78.1%) OK«

MAKSYMALNE DOPUSZCZALNE CISNIENIE ROBOCZE MAWP:

Srednica wewnetrzna plaszcza
Di = De - 2 * ea =1600-2*9.4= 1581.20 mm
Srednia srednica plaszcza
Dm = (De + Di) / 2 =(1600+1581.2)/2= 1590.60 mm
MAWP STAN GORACY I SKOROD. (skorodowany w temp. obliczeniowej)
MAWPHC = 2 * f * z * ea / Dm
=2*155.87*0.85*9.4/1590.6= 1.57 MPa

MAWP STAN NOWY I ZIMNY (nowy przy temp. otoczenia)
MAWPNC = 2 * f20 * z * (ea + c) / Dm
=2*170.83*0.85*(9.4+0.3)/1590.6= 1.77 MPa

MAKSYMALNE CISNIENIE PRÓBY (Stan nieskorodowany w temp. otoczenia)

Ptmax = 2 * ftest * ztest * (ea + c) / Dm
=2*252.38*1*(9.4+0.3)/1590.6= 3.08 MPa

EN13445-5; 10.2.3.3 WYMAGANE MINIMALNE CISNIENIE PRÓBY HYDRAULICZNEJ: Ptmin

NOWY W TEMP. OTOCZENIA DLA GRUPY BADAN 1,2 i 3
Ptmin = MAX( 1.43 * Pd , 1.25 * Pd * f20 / f )
=MAX(1.43*1.2,1.25*1.2*170.83/155.87)= 1.72 MPa

19 S1.1 Plaszcz walcowy plaszcz

Umax= 78.1%

Strona: 12

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-04 Operator :RR Rev.:A
EN13445:Issue26 - 7.4.2 PLASZCZ WALCOWY
S1.1 plaszcz 17 Nov. 2008 19:44

background image

»Cisnienie próby Ptmin=1.716 <= Ptmax=3.08[MPa] « » (U= 55.7%) OK«

MAKSYMALNA SREDNICA OTWORU NIEWZMOCNIONEGO W PLASZCZU

Promien wewnetrzny plaszcza
ris = Di / 2 (9.5-3) =1581.2/2= 790.60 mm
Dlugosc plaszcza uwzgledniana przy obliczaniu wzmocnienia
Is = Sqr(( 2 * ris + ea) * ea) (9.5-2)
=Sqr((2*790.6+9.4)*9.4)= 122.28 mm
Maks. srednica otworu w plaszczu nie wymagajacego wzmocnienia sprawdzona wg zasad
w rozdz. 9
dmax1 = (ea*Is*(f-0.5*P)/P-ris*Is)/(0.5*ris+0.5*ea) (9.5-7,22,23)
=(9.4*122.28*(155.87-0.5*1.2)/1.2-790.6*122.28)/(0.5*790.6+0.5*9.4)
= 130.13 mm

Sprawdzenie maksymalnej srednicy otworu nie wymagajacego wzmocnienia
dmax2 = 0.15 * Sqr(( 2 * ris + ea) * ea) (9.5-18)
=0.15*Sqr((2*790.6+9.4)*9.4)= 18.34 mm

Maks. srednica otworu nie wymagajacego wzmocniena
dmax = MAX( dmax1, dmax2) =MAX(130.13,18.34)= 130.13 mm

STRESZCZENIE OBLICZEN

7.4.2 - PLASZCZE WALCOWE POD CISNIENIEM WEWNETRZNYM

Minimalna wymagana grubosc plaszcza bez naddatku na korozje: emin
emin = De * P / (2 * f * z + P) (7.4-2)
=1600*1.2/(2*155.87*0.85+1.2)= 7.21 mm

Minimalna wymagana grubosc plaszcza z naddatkiem na korozje: emin
emina = emin + c + th =7.21+0.3+0.3= 7.81 mm

»Cisnienie wewnetrzne emina=7.81 <= en=10[mm] « » (U= 78.1%) OK«

MAKSYMALNE CISNIENIE PRÓBY (Stan nieskorodowany w temp. otoczenia)

Ptmax = 2 * ftest * ztest * (ea + c) / Dm
=2*252.38*1*(9.4+0.3)/1590.6= 3.08 MPa

EN13445-5; 10.2.3.3 WYMAGANE MINIMALNE CISNIENIE PRÓBY HYDRAULICZNEJ: Ptmin

NOWY W TEMP. OTOCZENIA DLA GRUPY BADAN 1,2 i 3
Ptmin = MAX( 1.43 * Pd , 1.25 * Pd * f20 / f )
=MAX(1.43*1.2,1.25*1.2*170.83/155.87)= 1.72 MPa

»Cisnienie próby Ptmin=1.716 <= Ptmax=3.08[MPa] « » (U= 55.7%) OK«

MAKSYMALNA SREDNICA OTWORU NIEWZMOCNIONEGO W PLASZCZU

Maks. srednica otworu nie wymagajacego wzmocniena
dmax = MAX( dmax1, dmax2) =MAX(130.13,18.34)= 130.13 mm

Objetosc:7.85 m3 Ciezar:1568.5 kg (SG= 7.85 )

19 S1.1 Plaszcz walcowy plaszcz

Umax= 78.1%

Strona: 13

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-04 Operator :RR Rev.:A
EN13445:Issue26 - 7.4.2 PLASZCZ WALCOWY
S1.1 plaszcz 17 Nov. 2008 19:44

background image

20 N.1 Króciec,Blacha korpu krociec met I

DANE WEJSCIOWE

ELEMENT PRZYLACZONY/POLOZENIE

Mocowanie: S1.1 Plaszcz walcowy plaszcz

Orientacja i polozenie krócca: Promieniowo do plaszcza
Polozenie "z" krócca wzdluz osi przylaczenia........:z 1000.00 mm
Kat obrotu osi krócca w plaszczyznie x-y............:Phi 0.00 Degr.

DANE PROJEKTOWE

Rodzaj otworu: Krócce bez znormalizowanych kolnierzy ANSI lub DIN
OBCIAZENIE CISNIENIEM: Obliczanie elementu tylko na cisnienie wewnetrzne
KARTA PROCESOWA: DANE PROJEKTOWE : Temp= 120°C, P= 1.2MPa, c= .3mm, Pext= 0MPa
GESTOSC WLASCIWA PLYNU ROBOCZEGO....................:SG 0.00
SLUP CIECZY.........................................:LH 605.00 mm

DANE PLASZCZA (S1.1)

Rodzaj plaszcza: Plaszcz walcowy
SREDNICA ZEWNETRZNA PLASZCZA........................:De 1600.00 mm
RZECZYWISTA GRUBOSC SCIANKI (w stanie nie skorodowanym) :en 10.00 mm
UJEMNA TOLERANCJA WYKONANIA.........................:th 0.3000 mm
EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N THK<=16mm 120'C
Rm=410 Rp=265 Rpt=233.8 fs=155.87 f20=170.83 ftest=252.38 E=204605(N/mm2) ro=7.85

DANE MATERIALU KRÓCCA

Delivery Form: Blacha korpusu
WSPÓLCZYNNIK ZLACZA SPAWANEGO: Grupa badan 3 (z=0.85)
EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N THK<=16mm 120'C
Rm=410 Rp=265 Rpt=233.8 fb=155.87 f20=170.83 ftest=252.38 E=204605(N/mm2) ro=7.85

DANE WYMIAROWE KRÓCCA

Mocowanie: Króciec wpuszczany
Srednica krócca: Obliczanie w oparciu o Dz krócca
Ksztalt krócca/otworu: Okragly
Application:
9.4.6.3 NOT a critical fatigue area, and calc.temp.is outside creep range.
SREDNICA ZEWNETRZNA KRÓCCA..........................:deb 508.00 mm
RZECZYWISTA GRUBOSC KRÓCCA (w stanie nie skorodowanym):enb 4.77 mm
Wielkosc krócca i kolnierza: ND500
Komentarz (opcjonalnie): .SCH 5S
TOLERANCJA UJEMNA/NADDATEK NA PRZECIENIENIE.........: 0.00 mm
WYSOKOSC KRÓCCA MIERZONA OD SREDNICY ZEWNETRZNEJ ZBIORNIKA:ho 150.00 mm

20 N.1 Króciec,Blacha korpu krociec met I

Umax= 95.7%

Strona: 14

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01 Operator :RR Rev.:A
EN13445:Issue26 - 9.5 OTWORY POJEDYNCZE W PLASZCZACH
N.1 krociec met I 17 Nov. 2008 19:44 ConnID:S1.1

background image

POLOZENIE KRÓCCÓW / ORIENTACJA

Króciec przechodzacy przez spoine: Króciec nie przechodzi przez spoine plaszcza
KAT PhiC (UKOSNA W PRZEKROJU POPRZECZNYM SEKCJI) Rys. 9.5-2:PhiC 0.00 Degr.
KAT PhiL ( UKOSNA W PRZEKROJU PODLUZNYM SEKCJI) Rys. 9.5-1 :PhiL 0.00 Degr.

DANE DOTYCZACE SPAWANIA

Nozzle/Pad to Shell Welding Area:
Wylaczyc powierzchnie spoiny laczacej króciec z plaszczem

DANE NAKLADKI WZMACNIAJACEJ

Rodzaj nakladki: Nakladka pojedyncza
GRUBOSC NAKLADKI WZMACNIAJACEJ......................:eap 10.00 mm
SZEROKOSC NAKLADKI WZMACNIAJACEJ ...................:Ip 125.00 mm
EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N THK<=16mm 120'C
Rm=410 Rp=265 Rpt=233.8 fp=155.87 f20=170.83 ftest=252.38 E=204605(N/mm2) ro=7.85

GRANICE WZMOCNIENIA

Zmniejszenie granicy wzmocnienia: Zmniejszenie granicy nie jest wymagane

WYNIKI OBLICZEN

OBLICZENIA PODSTAWOWE

Obliczeniowa grubosc plaszcza eas
eas = en - c - th =10-0.3-0.3= 9.40 mm
Obliczeniowa grubosc krócca eab
eab = enb - c - NegDev =4.77-0.3-0= 4.47 mm
Obliczeniowa grubosc nakladki wzmacniajacej ep
ep = MIN( eap, eas) (9.5-20) =MIN(10,9.4)= 9.40 mm
Zmniejszenie wytrzymalosci materialu krócca z uwagi na spoine wzdluzna krócca
fb = fb * z =155.87*0.85= 132.49 N/mm2
Wewnetrzny promien krzywizny
ris = De / 2 - eas (9.5-3) =1600/2-9.4= 790.60 mm
dib = deb - 2 * eab =508-2*4.47= 499.06 mm
Min. grubosc krócca wynikajaca z cisnienia wewnetrznego ebp
ebp = P * deb / (2 * fb * z + P)
=1.2*508/(2*155.87*0.85+1.2)= 2.29 mm
Naprezenia dopuszczalne
fob = Min( fs, fb) (9.5-8) =Min(155.87,132.49)= 132.49 N/mm2
fop = Min( fs, fp) (9.5-9) =Min(155.87,155.87)= 155.87 N/mm2

OGRANICZENIA GEOMETRYCZNE

»Sprawdz maksymalna grubosc nakladki eap=10 <= 1.5*eas=14.1[mm] «» OK«
»Sprawdenie maksymalnej srednicy krócca dib/(2*ris)=0.3156 <= .5[mm] «» OK«

»Minimalna grubosc krócca ebp=2.29 <= eab=4.47[mm] « » (U= 51.2%) OK«

9.5.2.4.4 Nozzles normal to the shell, with or without reiforcement pads.

Obliczenie efektywnej powierzchni obciazonej naprezeniem jako wzmocnienie

Area of Shell Afs

Granica wzmocnienia wzdluz plaszcza
Iso = Sqr(( 2 * ris + eas) * eas)
=Sqr((2*790.6+9.4)*9.4)= 122.28 mm
Króciec wpuszczany
Afs = eas * Is (9.5-78) =9.4*122.28= 1149.40 mm2

20 N.1 Króciec,Blacha korpu krociec met I

Umax= 95.7%

Strona: 15

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01 Operator :RR Rev.:A
EN13445:Issue26 - 9.5 OTWORY POJEDYNCZE W PLASZCZACH
N.1 krociec met I 17 Nov. 2008 19:44 ConnID:S1.1

background image

Area of Reinforcement Pad Afp

Granica wzmocnienia wzdluz nakladki
Ip = Min( Ip, Is ) (9.5-86) =Min(125,122.28)= 122.28 mm
ep = Min( ep, eas) (9.5-87) =Min(9.4,9.4)= 9.40 mm
Afp = ep * Ip (9.5-85) =9.4*122.28= 1149.40 mm2

Area of Nozzle Afb

Granice wzmocnienia wzdluz krócca (na zewnatrz plaszcza)
Ibo = MIN( Sqr(( deb - eb) * eb), ho) (9.5-75)
=MIN(Sqr((508-4.47)*4.47,)150)= 47.44 mm
Króciec wpuszczany
Afb = eb * (Ibo + Ibi + eas) (9.5-77) =4.47*(47.44+0+9.4)= 254.09 mm2

Obliczenie powierzchni obciazonej cisnieniem

In the Nozzle Apb
Apb = 0.5 * dib * (Ibo + eas) (9.5-83) =0.5*499.06*(47.44+9.4)= 14183.88 mm2

Element walcowy w przekroju podluznym Aps
ApsL = ris * (Is + a) (9.5-93) =790.6*(122.28+254)= 2,9748E05 mm2

Element walcowy w przekroju poprzecznym Aps
ApsT = 0.5 * ris ^ 2 * (Is + a ) / (0.5 * eas + ris) (9.5-104)
=0.5*790.6^2*(122.28+258.53)/(0.5*9.4+790.6)= 1,4964E05 mm2

Aps = MAX( ApsL ApsT) =MAX(2.9748E05,1.4964E05)= 2,9748E05 mm2

9.5.2 Zasady wzmocnienia

Wymagane pole powierzchni z uwagi na cisnienie pA(req).

pAReqL = P * (ApsL + Apb) (9.5-7) =1.2*(2.9748E05+14183.88)= 374.00 kN

pAReqT = P * (ApsT + Apb + 0.5 * Apphi) (9.5-7)
=1.2*(1.4964E05+14183.88+0.5*0)= 196.59 kN

pAReq = MAX( pAReqL, pAReqT) =MAX(374.,196.59)= 374.00 kN

Dopuszczalne pole powierzchni z uwagi na cisnienie pA(aval).

pAAval = (Afs+Afw)*(fs-0.5*P)+Afp*(fop-0.5*P)+Afb*(fob-0.5*P) (9.5-7)
=(1149.4+0)*(155.87-0.5*1.2)+1149.4*(155.87-0.5*1.2)+254.09*(132.49-0.5*1.2
)= = 390.45 kN

»Wzmocnienie krócca pAAval=390.45 >= pAReq=374.[kN] « » (U= 95.7%) OK«

Maksymalne dopuszczalne cisnienie Pmax

Pmax =(Afs+Afw)*fs+Afp*fop+Afb*fob/((Aps+Apb+0.5*Apphi)+0.5*(Afs+Afw+Afb+Afp))(10)
=+0)*155.87+1149.4*155.87+254.09*132.49/((2.9748E05+14183.88+0.5*0)+0.5*(11
49.4+0+254.09+1149.4))= = 1.25 MPa

Maksymalne dopuszczalne cisnienie próby Ptmax

Ptmax = == 2.10 MPa

STRESZCZENIE OBLICZEN
9.5.2.4.4 Nozzles normal to the shell, with or without reiforcement pads.

Granica wzmocnienia wzdluz plaszcza
Iso = Sqr(( 2 * ris + eas) * eas)
=Sqr((2*790.6+9.4)*9.4)= 122.28 mm
Granica wzmocnienia wzdluz nakladki
Ip = Min( Ip, Is ) (9.5-86) =Min(125,122.28)= 122.28 mm
Granice wzmocnienia wzdluz krócca (na zewnatrz plaszcza)
Ibo = MIN( Sqr(( deb - eb) * eb), ho) (9.5-75)
=MIN(Sqr((508-4.47)*4.47,)150)= 47.44 mm

20 N.1 Króciec,Blacha korpu krociec met I

Umax= 95.7%

Strona: 16

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01 Operator :RR Rev.:A
EN13445:Issue26 - 9.5 OTWORY POJEDYNCZE W PLASZCZACH
N.1 krociec met I 17 Nov. 2008 19:44 ConnID:S1.1

background image

Wymagane pole powierzchni z uwagi na cisnienie pA(req).

pAReqL = P * (ApsL + Apb) (9.5-7) =1.2*(2.9748E05+14183.88)= 374.00 kN

pAReqT = P * (ApsT + Apb + 0.5 * Apphi) (9.5-7)
=1.2*(1.4964E05+14183.88+0.5*0)= 196.59 kN

pAReq = MAX( pAReqL, pAReqT) =MAX(374.,196.59)= 374.00 kN

Dopuszczalne pole powierzchni z uwagi na cisnienie pA(aval).

pAAval = (Afs+Afw)*(fs-0.5*P)+Afp*(fop-0.5*P)+Afb*(fob-0.5*P) (9.5-7)
=(1149.4+0)*(155.87-0.5*1.2)+1149.4*(155.87-0.5*1.2)+254.09*(132.49-0.5*1.2
)= = 390.45 kN

»Wzmocnienie krócca pAAval=390.45 >= pAReq=374.[kN] « » (U= 95.7%) OK«

Maksymalne dopuszczalne cisnienie Pmax

Pmax =(Afs+Afw)*fs+Afp*fop+Afb*fob/((Aps+Apb+0.5*Apphi)+0.5*(Afs+Afw+Afb+Afp))(10)
=+0)*155.87+1149.4*155.87+254.09*132.49/((2.9748E05+14183.88+0.5*0)+0.5*(11
49.4+0+254.09+1149.4))= = 1.25 MPa

Objetosc:0.03 m3 Ciezar:12 kg (SG= 7.85 )

20 N.1 Króciec,Blacha korpu krociec met I

Umax= 95.7%

Strona: 17

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01 Operator :RR Rev.:A
EN13445:Issue26 - 9.5 OTWORY POJEDYNCZE W PLASZCZACH
N.1 krociec met I 17 Nov. 2008 19:44 ConnID:S1.1

background image

21 N.2 Króciec,Blacha korpu krociec met II
N.3* krociec met 1591(Copy of N.2)

DANE WEJSCIOWE

ELEMENT PRZYLACZONY/POLOZENIE

Mocowanie: S1.1 Plaszcz walcowy plaszcz

Orientacja i polozenie krócca: Promieniowo do plaszcza
Polozenie "z" krócca wzdluz osi przylaczenia........:z 2000.00 mm
Kat obrotu osi krócca w plaszczyznie x-y............:Phi 0.00 Degr.

DANE PROJEKTOWE

Rodzaj otworu: Krócce bez znormalizowanych kolnierzy ANSI lub DIN
OBCIAZENIE CISNIENIEM: Obliczanie elementu tylko na cisnienie wewnetrzne
KARTA PROCESOWA: DANE PROJEKTOWE : Temp= 120°C, P= 1.2MPa, c= .3mm, Pext= 0MPa
GESTOSC WLASCIWA PLYNU ROBOCZEGO....................:SG 0.00
SLUP CIECZY.........................................:LH 605.00 mm

DANE PLASZCZA (S1.1)

Rodzaj plaszcza: Plaszcz walcowy
SREDNICA ZEWNETRZNA PLASZCZA........................:De 1600.00 mm
RZECZYWISTA GRUBOSC SCIANKI (w stanie nie skorodowanym) :en 10.00 mm
UJEMNA TOLERANCJA WYKONANIA.........................:th 0.3000 mm
EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N THK<=16mm 120'C
Rm=410 Rp=265 Rpt=233.8 fs=155.87 f20=170.83 ftest=252.38 E=204605(N/mm2) ro=7.85

DANE MATERIALU KRÓCCA

Delivery Form: Blacha korpusu
WSPÓLCZYNNIK ZLACZA SPAWANEGO: Grupa badan 3 (z=0.85)
EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N THK<=16mm 120'C
Rm=410 Rp=265 Rpt=233.8 fb=155.87 f20=170.83 ftest=252.38 E=204605(N/mm2) ro=7.85

DANE WYMIAROWE KRÓCCA

Mocowanie: Króciec wpuszczany
Srednica krócca: Obliczanie w oparciu o Dz krócca
Ksztalt krócca/otworu: Okragly
Application:
9.4.6.3 NOT a critical fatigue area, and calc.temp.is outside creep range.
SREDNICA ZEWNETRZNA KRÓCCA..........................:deb 508.00 mm
RZECZYWISTA GRUBOSC KRÓCCA (w stanie nie skorodowanym):enb 4.77 mm
Wielkosc krócca i kolnierza: ND500
Komentarz (opcjonalnie): .SCH 5S
TOLERANCJA UJEMNA/NADDATEK NA PRZECIENIENIE.........: 0.00 mm
WYSOKOSC KRÓCCA MIERZONA OD SREDNICY ZEWNETRZNEJ ZBIORNIKA:ho 150.00 mm

21 N.2 Króciec,Blacha korpu krociec met II

Umax= 95.7%

Strona: 18

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01 Operator :RR Rev.:A
EN13445:Issue26 - 9.5 OTWORY POJEDYNCZE W PLASZCZACH
N.2 krociec met II 17 Nov. 2008 19:44 ConnID:S1.1

background image

POLOZENIE KRÓCCÓW / ORIENTACJA

Króciec przechodzacy przez spoine: Króciec nie przechodzi przez spoine plaszcza
KAT PhiC (UKOSNA W PRZEKROJU POPRZECZNYM SEKCJI) Rys. 9.5-2:PhiC 0.00 Degr.
KAT PhiL ( UKOSNA W PRZEKROJU PODLUZNYM SEKCJI) Rys. 9.5-1 :PhiL 0.00 Degr.

DANE DOTYCZACE SPAWANIA

Nozzle/Pad to Shell Welding Area:
Wylaczyc powierzchnie spoiny laczacej króciec z plaszczem

DANE NAKLADKI WZMACNIAJACEJ

Rodzaj nakladki: Nakladka pojedyncza
GRUBOSC NAKLADKI WZMACNIAJACEJ......................:eap 10.00 mm
SZEROKOSC NAKLADKI WZMACNIAJACEJ ...................:Ip 125.00 mm
EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N THK<=16mm 120'C
Rm=410 Rp=265 Rpt=233.8 fp=155.87 f20=170.83 ftest=252.38 E=204605(N/mm2) ro=7.85

GRANICE WZMOCNIENIA

Zmniejszenie granicy wzmocnienia: Zmniejszenie granicy nie jest wymagane

WYNIKI OBLICZEN

OBLICZENIA PODSTAWOWE

Obliczeniowa grubosc plaszcza eas
eas = en - c - th =10-0.3-0.3= 9.40 mm
Obliczeniowa grubosc krócca eab
eab = enb - c - NegDev =4.77-0.3-0= 4.47 mm
Obliczeniowa grubosc nakladki wzmacniajacej ep
ep = MIN( eap, eas) (9.5-20) =MIN(10,9.4)= 9.40 mm
Zmniejszenie wytrzymalosci materialu krócca z uwagi na spoine wzdluzna krócca
fb = fb * z =155.87*0.85= 132.49 N/mm2
Wewnetrzny promien krzywizny
ris = De / 2 - eas (9.5-3) =1600/2-9.4= 790.60 mm
dib = deb - 2 * eab =508-2*4.47= 499.06 mm
Min. grubosc krócca wynikajaca z cisnienia wewnetrznego ebp
ebp = P * deb / (2 * fb * z + P)
=1.2*508/(2*155.87*0.85+1.2)= 2.29 mm
Naprezenia dopuszczalne
fob = Min( fs, fb) (9.5-8) =Min(155.87,132.49)= 132.49 N/mm2
fop = Min( fs, fp) (9.5-9) =Min(155.87,155.87)= 155.87 N/mm2

OGRANICZENIA GEOMETRYCZNE

»Sprawdz maksymalna grubosc nakladki eap=10 <= 1.5*eas=14.1[mm] «» OK«
»Sprawdenie maksymalnej srednicy krócca dib/(2*ris)=0.3156 <= .5[mm] «» OK«

»Minimalna grubosc krócca ebp=2.29 <= eab=4.47[mm] « » (U= 51.2%) OK«

9.5.2.4.4 Nozzles normal to the shell, with or without reiforcement pads.

Obliczenie efektywnej powierzchni obciazonej naprezeniem jako wzmocnienie

Area of Shell Afs

Granica wzmocnienia wzdluz plaszcza
Iso = Sqr(( 2 * ris + eas) * eas)
=Sqr((2*790.6+9.4)*9.4)= 122.28 mm
Króciec wpuszczany
Afs = eas * Is (9.5-78) =9.4*122.28= 1149.40 mm2

21 N.2 Króciec,Blacha korpu krociec met II

Umax= 95.7%

Strona: 19

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01 Operator :RR Rev.:A
EN13445:Issue26 - 9.5 OTWORY POJEDYNCZE W PLASZCZACH
N.2 krociec met II 17 Nov. 2008 19:44 ConnID:S1.1

background image

Area of Reinforcement Pad Afp

Granica wzmocnienia wzdluz nakladki
Ip = Min( Ip, Is ) (9.5-86) =Min(125,122.28)= 122.28 mm
ep = Min( ep, eas) (9.5-87) =Min(9.4,9.4)= 9.40 mm
Afp = ep * Ip (9.5-85) =9.4*122.28= 1149.40 mm2

Area of Nozzle Afb

Granice wzmocnienia wzdluz krócca (na zewnatrz plaszcza)
Ibo = MIN( Sqr(( deb - eb) * eb), ho) (9.5-75)
=MIN(Sqr((508-4.47)*4.47,)150)= 47.44 mm
Króciec wpuszczany
Afb = eb * (Ibo + Ibi + eas) (9.5-77) =4.47*(47.44+0+9.4)= 254.09 mm2

Obliczenie powierzchni obciazonej cisnieniem

In the Nozzle Apb
Apb = 0.5 * dib * (Ibo + eas) (9.5-83) =0.5*499.06*(47.44+9.4)= 14183.88 mm2

Element walcowy w przekroju podluznym Aps
ApsL = ris * (Is + a) (9.5-93) =790.6*(122.28+254)= 2,9748E05 mm2

Element walcowy w przekroju poprzecznym Aps
ApsT = 0.5 * ris ^ 2 * (Is + a ) / (0.5 * eas + ris) (9.5-104)
=0.5*790.6^2*(122.28+258.53)/(0.5*9.4+790.6)= 1,4964E05 mm2

Aps = MAX( ApsL ApsT) =MAX(2.9748E05,1.4964E05)= 2,9748E05 mm2

9.5.2 Zasady wzmocnienia

Wymagane pole powierzchni z uwagi na cisnienie pA(req).

pAReqL = P * (ApsL + Apb) (9.5-7) =1.2*(2.9748E05+14183.88)= 374.00 kN

pAReqT = P * (ApsT + Apb + 0.5 * Apphi) (9.5-7)
=1.2*(1.4964E05+14183.88+0.5*0)= 196.59 kN

pAReq = MAX( pAReqL, pAReqT) =MAX(374.,196.59)= 374.00 kN

Dopuszczalne pole powierzchni z uwagi na cisnienie pA(aval).

pAAval = (Afs+Afw)*(fs-0.5*P)+Afp*(fop-0.5*P)+Afb*(fob-0.5*P) (9.5-7)
=(1149.4+0)*(155.87-0.5*1.2)+1149.4*(155.87-0.5*1.2)+254.09*(132.49-0.5*1.2
)= = 390.45 kN

»Wzmocnienie krócca pAAval=390.45 >= pAReq=374.[kN] « » (U= 95.7%) OK«

Maksymalne dopuszczalne cisnienie Pmax

Pmax =(Afs+Afw)*fs+Afp*fop+Afb*fob/((Aps+Apb+0.5*Apphi)+0.5*(Afs+Afw+Afb+Afp))(10)
=+0)*155.87+1149.4*155.87+254.09*132.49/((2.9748E05+14183.88+0.5*0)+0.5*(11
49.4+0+254.09+1149.4))= = 1.25 MPa

Maksymalne dopuszczalne cisnienie próby Ptmax

Ptmax = == 2.10 MPa

STRESZCZENIE OBLICZEN
9.5.2.4.4 Nozzles normal to the shell, with or without reiforcement pads.

Granica wzmocnienia wzdluz plaszcza
Iso = Sqr(( 2 * ris + eas) * eas)
=Sqr((2*790.6+9.4)*9.4)= 122.28 mm
Granica wzmocnienia wzdluz nakladki
Ip = Min( Ip, Is ) (9.5-86) =Min(125,122.28)= 122.28 mm
Granice wzmocnienia wzdluz krócca (na zewnatrz plaszcza)
Ibo = MIN( Sqr(( deb - eb) * eb), ho) (9.5-75)
=MIN(Sqr((508-4.47)*4.47,)150)= 47.44 mm

21 N.2 Króciec,Blacha korpu krociec met II

Umax= 95.7%

Strona: 20

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01 Operator :RR Rev.:A
EN13445:Issue26 - 9.5 OTWORY POJEDYNCZE W PLASZCZACH
N.2 krociec met II 17 Nov. 2008 19:44 ConnID:S1.1

background image

Wymagane pole powierzchni z uwagi na cisnienie pA(req).

pAReqL = P * (ApsL + Apb) (9.5-7) =1.2*(2.9748E05+14183.88)= 374.00 kN

pAReqT = P * (ApsT + Apb + 0.5 * Apphi) (9.5-7)
=1.2*(1.4964E05+14183.88+0.5*0)= 196.59 kN

pAReq = MAX( pAReqL, pAReqT) =MAX(374.,196.59)= 374.00 kN

Dopuszczalne pole powierzchni z uwagi na cisnienie pA(aval).

pAAval = (Afs+Afw)*(fs-0.5*P)+Afp*(fop-0.5*P)+Afb*(fob-0.5*P) (9.5-7)
=(1149.4+0)*(155.87-0.5*1.2)+1149.4*(155.87-0.5*1.2)+254.09*(132.49-0.5*1.2
)= = 390.45 kN

»Wzmocnienie krócca pAAval=390.45 >= pAReq=374.[kN] « » (U= 95.7%) OK«

Maksymalne dopuszczalne cisnienie Pmax

Pmax =(Afs+Afw)*fs+Afp*fop+Afb*fob/((Aps+Apb+0.5*Apphi)+0.5*(Afs+Afw+Afb+Afp))(10)
=+0)*155.87+1149.4*155.87+254.09*132.49/((2.9748E05+14183.88+0.5*0)+0.5*(11
49.4+0+254.09+1149.4))= = 1.25 MPa

Objetosc:0.03 m3 Ciezar:12 kg (SG= 7.85 )

21 N.2 Króciec,Blacha korpu krociec met II

Umax= 95.7%

Strona: 21

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01 Operator :RR Rev.:A
EN13445:Issue26 - 9.5 OTWORY POJEDYNCZE W PLASZCZACH
N.2 krociec met II 17 Nov. 2008 19:44 ConnID:S1.1

background image

22 F.1 WN - Kolnierz Kolnierz metoda I

DANE WEJSCIOWE

ELEMENT PRZYLACZONY/POLOZENIE

Mocowanie: N.1 Króciec,Blacha korpu krociec met I S1.1
Polozenie: Wzdluz osi "z" z1= 155
Flange Design Method: Section 11 - Taylor Forge

DANE PROJEKTOWE

KARTA PROCESOWA: DANE PROJEKTOWE : Temp= 120°C, P= 1.2MPa, c= .3mm
GESTOSC WLASCIWA PLYNU ROBOCZEGO....................:SG 0.00
SLUP CIECZY.........................................:LH 605.00 mm
B: Obciazenie cisnieniem: Kolnierz podlegajacy cisnieniu wewnetrznemu
NACIAG SRUB Z DRUGIEGO KOLNIERZA(Warunki ruchowe)...:Wm1' 0.00 kN
NACIAG SRUB Z DRUGIEGO KOLNIERZA(Warunki montazowe).:Wm2' 0.00 kN
OBCIAZENIA ZEWNETRZNE KOLNIERZA: Nie

PODAJ RODZAJ PRZYLGI KOLNIERZA I USZCZELKI

A: Kolnierz znormalizowany: Kolnierze wg DIN

C: Rodzaj kolnierza: WN Szyjkowy do przyspawania

D: Przylga kolnierza (Szkic/Opis): 1a Powierzchnia uszczelniajaca plaska

DANE PlASZCZA/KRÓCCA

PLASZCZ/WYMIARY KRÓCCA I KOMENTARZ: N.1
EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N THK<=16mm 120'C
Rm=410 Rp=265 Rpt=233.8 fs=155.87 fs20=170.83 ftest=252.38 E=204605(N/mm2) ro=7.85
SREDNICA ZEWNETRZNA CZESCI WALCOWEJ SZYJKI/KRÓCCA ..:Do 508.00 mm
GRUBOSC SCIANKI KRÓCCA/PLASZCZA (w stanie nie skorodowanym):s1 4.77 mm

Kolnierze wg DIN

E: Klasa cisnienia: DIN 2633: Klasa PN 16

DANE KOLNIERZA

KOLNIERZ WEWNETRZNY: Nie (Sruby umieszczone na zewnatrz)
METODA OBLICZANIA: A) METODA OBLICZANIA KOLNIERZA INTEGRALNEGO
SREDNICA ZEWNETRZNA KOLNIERZA.......................:A 715.00 mm
GRUBOSC KRYZY KOLNIERZA (nie skorodowany)...........:e 34.00 mm
NADDATEK NA KOROZJE DLA PRZYLGI KOLNIERZA...........:cf 0.00 mm
EN 10028-6:2003, 1.8867 P355QH plate and strip, HT:QT THK<=50mm 120'C
Rm=490 Rp=355 Rpt=300 SFO=200 SFA=204.17 ftest=338.1 E=204605(N/mm2) ro=7.85

22 F.1 WN - Kolnierz Kolnierz metoda I

Umax= 93.4%

Strona: 22

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - 11.5 KOLNIERZE Z USZCZELKAMI WASKIMI
F.1 Kolnierz metoda I 17 Nov. 2008 20:09 ConnID:N.1

background image

DANE SZYJKI KOLNIERZA

DLUGOSC SZYJKI .....................................:h 40.00 mm
GRUBOSC SZYJKI PRZY KRYZIE w stanie skorodowanym....:g1 27.70 mm
GRUBOSC CZESCI WALCOWEJ SZYJKI W CIENSZYM KONCU w stanie skorodowanym:go 7.70
mm
EN 10028-6:2003, 1.8867 P355QH plate and strip, HT:QT THK<=50mm 120'C
Rm=490 Rp=355 Rpt=300 SHO=200 SHA=204.17 ftest=338.1 E=204605(N/mm2) ro=7.85

DANE SRUB

OBLICZENIE MOMENTU NACIAGU SRUB: Tak
NOMINALNY WYMIAR SRUB I KOMENTARZ: M30x3 ;
EFEKTYWNE POLE PRZEKROJU SRUBY......................:Ae 544.00 mm2
ZALECANY MINIMALNY ODSTEP SRODKOW SRUB OD KRAWEDZI..:Bce 30.00 mm
ZALECANY MINIMALNY PROMIENIOWY ODSTEP SRODKOW SRUB..:Bcr 44.00 mm
SREDNICA OTWORÓW POD SRUBY..........................:d 33.00 mm
LICZBA SRUB ........................................:n 20.00
SREDNICA PODZIALOWA OTWORÓW POD SRUBY ..............:C 650.00 mm
EN 10269:1999, 1.1181 C35E bar, bolt, HT:QT THK<=60mm 120'C
Rm=500 Rp=300 Rpt=262.4 Sb=87.47 Sa=100 ftest=150 E=191484(N/mm2) ro=7.93
METODA NACIAGU SRUB:
Skrecanie, (pomiar momentu i obrotu nakretki, blisko wytrzymalosci srub) eps
=-0.07 do +0.07
WSPÓLCZYNNIK TARCIA: Normalne/przecietne warunki µ=0.20

DANE USZCZELKI

Tablica H-1 Wspólczynniki m & y Przylga:
Wspólczynniki uszczelki podane przez projektanta
WSPÓLCZYNNIK USZCZELKI..............................:m 5.00
NAPREZENIE SCISKAJACE POWIERZCHNI USZCZELNIAJACEJ LUB USZCZELKI :y 15.00 N/mm2
TYP USZCZELKI (uwaga) (Opcjonalnie): PTFE KLINERtop-chem-2000
SREDNICA ZEWNETRZNA USZCZELKI.......................:Go 582.00 mm
WIEKSZA WARTOSC SREDNICY WEWNETRZNEJ USZCZELKI LUB PLASZCZYZNY PRZYLGNI
KOLNIERZA:A1 530.00 mm
TEMA RGP-RCB-11.7 Include Additional Loads from Pass Partition Plate Gasket: Nie

WYNIKI OBLICZEN

Wspólczynnik korekcyjny naprezen dla duzych srednic K
k (D < 1000 mm) = 1 =1= 1.00

SZCZEGÓLY USZCZELKI

b = MIN VALUE(2.52 * Sqr(bo), bo ) = == 9.09 mm

OBCIAZENIE KOLNIERZA

H = 0.785 * G ^ 2 * p (11.5-5) =0.785*563.83^2*1.2= 299.46 kN
HG = (2 * PI * b * G * m) * p (11.5-6)
=(2*3.14*9.09*563.83*5)*1.2= 193.22 kN
HD = 0.785 * B ^ 2 * p =0.785*499.06^2*1.2= 234.62 kN
HT = H - HD (11.5-11) =299.46-234.62= 64.85 kN

RAMIONA MOMENTÓW

hG = (C - G) / 2 (11.5-14) =(650-563.83)/2= 43.09 mm
hD = (C - B - g1) / 2 (11.5-12) =(650-499.06-27.7)/2= 61.62 mm
hT = (2 * C - B - G) / 4 (11.5-15) =(2*650-499.06-563.83)/4= 59.28 mm

OBCIAZENIE SRUB

Warunki ruchowe
Wop = H + HG (11.5-8) =299.46+193.22= 492.68 kN

Warunki montazowe
Wamb = PI * b * G * y (11.5-7) =3.14*9.09*563.83*15= 241.52 kN

22 F.1 WN - Kolnierz Kolnierz metoda I

Umax= 93.4%

Strona: 23

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - 11.5 KOLNIERZE Z USZCZELKAMI WASKIMI
F.1 Kolnierz metoda I 17 Nov. 2008 20:09 ConnID:N.1

background image

PRZEKRÓJ SRUB

Am1 = Wop / Sb =4.9268E05/87.47= 5632.55 mm2

Am2 = Wamb / Sa =2.4152E05/100= 2415.19 mm2

Wymagany przekrój srub Am
Am (Largest value of Am1 and Am2)= Am =5632.55= 5632.55 mm2

Rzeczywisty przekrój srub Ab
Ab (num.bolts*root area) = n * Ae =20*544= 10880.00 mm2

»Sprawdzenie przekroju srub Ab=10880 >= Am=5632.55[mm2] « » (U= 51.7%) OK«

W = 0.5 * (Ab + Am) * Sa (11.5-16) =0.5*(10880+5632.55)*100= 825.63 kN

MOMENTY W KOLNIERZU

Mop = HD * hD + HT * hT + HG * hG (11.5-18)
=234.62*61.62+64.85*59.278+193.22*43.086= 26625.96 Nm

Mamb = W * hG (11.5-17) =825.63*43.086= 35572.98 Nm

ROZSTAW SRUB
Bspc = C * PI / n =650*3.14/20= 102.10 mm
Wspólczynnik korekcyjny podzialu srub
CF = MAX( Sqr( Bspc / (2 * db + 6 * e / (m + 0.5))) , 1) (11.5-20)
=MAX(Sqr(102.1/(2*30+6*34/(5+0.5))),1)= 1.03
Mo = Mop * CF / B (11.5-27) =26625.96*1.03/499.06= 54.95 Nm
Ma = Mamb * CF / B (11.5-26) =35572.98*1.03/499.06= 73.42 Nm

STALE KSZTALTU

K = A / B (11.5-21) =715/499.06= 1.43
lo = SQR( B * go) (11.5-22) =SQR(499.06*7.7)= 61.99
h/lo= 0.645 K=A/B= 1.433 g1/go= 3.597
WARTOSCI Z RYSUNKÓW 11.5 do 8
BetaT = 1.740 BetaZ = 2.900 BetaY = 5.568 BetaU = 6.119
BetaF= 0.769 BetaV = 0.106 phi = 2.963
lamda = (e*BetaF+lo)/(BetaT*lo)+e^3*BetaV/(BetaU*lo*go^2)
=(34*0.769+61.99)/(1.74*61.99)+34^3*0.1062/(6.119*61.99*7.7^2)= 1.00

Warunki ruchowe

M = Mo =54.95= 54.95 Nm

11.5.4.1 naprezenia w kolnierzu przy grubosci e= 34 mm

Naprezenia wzdluzne w kolnierzu
SigH = phi * M / (lamda * g1 ^ 2) (11.5-29)
=2.96*54.95/(1.*27.7^2)= 211.63 N/mm2

Naprezenia promieniowe w kolnierzu
Sigr = (1.333 * e * BetaF + lo) * M / (lamda * e ^ 2 * lo) (11.5-30)
=(1.333*34*0.769+61.99)*54.95/(1.*34^2*61.99)= 74.06 N/mm2

Naprezenia styczne w kolnierzu
SigTeta = BetaY*M/e^2-Sigr*(K^2+1)/(K^2-1) (11.5-31)
=5.568*54.95/34^2-74.06*(1.43^2+1)/(1.43^2-1)= 49.90 N/mm2

11.5.4.2 Naprezenia dopuszczalne
»Naprezenia w szyjce k*SigH=211.63 <= 1.5 * MIN(f;fH)=300[N/mm2] (11.5-39)«» (U= 70.5%) OK«
»Naprezenia promieniowe k*SigR=74.06 <= f=200[N/mm2] (11.5-40)«» (U= 37%) OK«
»Naprezenia styczne k*SigTeta=49.9 <= f=200[N/mm2] (11.5-41)«» (U= 24.9%) OK«
»Naprezenia promieniowe+w szyjce 0.5*k*(SigH+SigR)=142.85 <= f=200[N/mm2] (11.5-42)«» (U=
71.4%) OK«
»Naprezenia styczne+w szyjce 0.5*k*(SigH+SigTeta)=130.76 <= f=200[N/mm2] (11.5-43)«» (U=
65.3%) OK«

22 F.1 WN - Kolnierz Kolnierz metoda I

Umax= 93.4%

Strona: 24

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - 11.5 KOLNIERZE Z USZCZELKAMI WASKIMI
F.1 Kolnierz metoda I 17 Nov. 2008 20:09 ConnID:N.1

background image

Warunki montazowe

M = Ma =73.42= 73.42 Nm

11.5.4.1 naprezenia w kolnierzu przy grubosci e= 34 mm

Naprezenia wzdluzne w kolnierzu
SigH = phi * M / (lamda * g1 ^ 2) (11.5-29)
=2.96*73.42/(1.*27.7^2)= 282.74 N/mm2

Naprezenia promieniowe w kolnierzu
Sigr = (1.333 * e * BetaF + lo) * M / (lamda * e ^ 2 * lo) (11.5-30)
=(1.333*34*0.769+61.99)*73.42/(1.*34^2*61.99)= 98.95 N/mm2

Naprezenia styczne w kolnierzu
SigTeta = BetaY*M/e^2-Sigr*(K^2+1)/(K^2-1) (11.5-31)
=5.568*73.42/34^2-98.95*(1.43^2+1)/(1.43^2-1)= 66.66 N/mm2

11.5.4.2 Naprezenia dopuszczalne
»Naprezenia w szyjce k*SigH=282.74 <= 1.5 * MIN(f;fH)=306.25[N/mm2] (11.5-39)«» (U= 92.3%) OK«
»Naprezenia promieniowe k*SigR=98.95 <= f=204.17[N/mm2] (11.5-40)«» (U= 48.4%) OK«
»Naprezenia styczne k*SigTeta=66.66 <= f=204.17[N/mm2] (11.5-41)«» (U= 32.6%) OK«
»Naprezenia promieniowe+w szyjce 0.5*k*(SigH+SigR)=190.85 <= f=204.17[N/mm2] (11.5-42)«» (U=
93.4%) OK«
»Naprezenia styczne+w szyjce 0.5*k*(SigH+SigTeta)=174.7 <= f=204.17[N/mm2] (11.5-43)«» (U=
85.5%) OK«

MOMENT NACIAGU SRUB - EN13445 ZALACZNIK G.8

kB = 1.2 * µ * dB0 (G.8-5) =1.2*0.2*30= 7.20 mm
epsn = eps * (1 + 3 / SQR( n)) / 4 (G.6-16)
=0.07*(1+3/SQR(20))/4= 0.0292
Wymagany minimalny naciag wstepny (Maksymalny z warunków obliczeniowego i
montazowego)
Fb0nom (Max. of Wop and Wamb) = Fb0req =492.68= 492.68 kN
Calkowity nominalny naciag wstepny
Fb0nom = Fb0req / (1 - epsn) (G.6-21) =492.68/(1-0.0292)= 507.52 kN
Calkowity nominalny naciag wstepny dla sruby
Fbnom = Fb0nom / n =507.52/20= 25.38 kN

Bolt Stress(Assembly Cond.)
SigBoltamb = Wamb / ((1 - epsn) * n * Ae)
=2.4152E05/((1-0.0292)*20*544)= 22.87 N/mm2

Bolt Stress(Operating Cond.)
SigBoltamb = Wop / ((1 - epsn) * n * Ae)
=4.9268E05/((1-0.0292)*20*544)= 46.65 N/mm2

»Naprezenie srub SigBolt=46.65 <= SB=87.47[N/mm2] « » (U= 53.3%) OK«

Nominalny moment naciagu sruby
Mtnom = kB * Fb0nom / n =7.2*507.52/20= 182.71 Nm

EN13445-5; 10.2.3.3 WYMAGANE MINIMALNE CISNIENIE PRÓBY HYDRAULICZNEJ: Ptmin

NOWY W TEMP. OTOCZENIA DLA GRUPY BADAN 1,2 i 3
Ptmin = MAX( 1.43 * Pd , 1.25 * Pd * f20 / f )
=MAX(1.43*1.2,1.25*1.2*204.17/200)= 1.72 MPa

»Cisnienie próby Ptmin=1.716 <= Ptmax=2.842[MPa] « » (U= 60.3%) OK«

PRESSURE AND TORQUE SUMMARY

Table PRESSURE AND TORQUE SUMMARY FOR F.1 :

Description

Temp(C)

P(MPa)

Limited By

Min.Req.Total Bolt Force(kN)

Design Pressure(corroded)

120

1.20

Radial+Hub Stress

492.68

Max.Allow.Pressure(corroded)

120

1.45

Radial+Hub Stress

595.16

22 F.1 WN - Kolnierz Kolnierz metoda I

Umax= 93.4%

Strona: 25

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - 11.5 KOLNIERZE Z USZCZELKAMI WASKIMI
F.1 Kolnierz metoda I 17 Nov. 2008 20:09 ConnID:N.1

background image

Description

Temp(C)

P(MPa)

Limited By

Min.Req.Total Bolt Force(kN)

Max.Allow.Pressure(corroded)

Ambient

1.66

Radial+Hub Stress

681.87

Max.Allow.Test Pressure(corroded)

Ambient

2.84

Radial+Hub Stress

1166.66

Required Test Pressure

Ambient

1.72

Radial+Hub Stress

704.53

Table PRESSURE AND TORQUE SUMMARY FOR F.1 Continued

Description

Nom.Force per Bolt(kN)

Nom.Torqueper Bolt(Nm)

Design Pressure(corroded)

25.38

182.71

Max.Allow.Pressure(corroded)

30.65

220.71

Max.Allow.Pressure(corroded)

35.12

252.87

Max.Allow.Test Pressure(corroded)

60.09

432.65

Required Test Pressure

36.29

261.27

The nominal Force and Torque values are based on the following bolting up method:
Skrecanie, na wyczucie montera eps=0.3+0.5* µ

STRESZCZENIE OBLICZEN
PRZEKRÓJ SRUB

»Sprawdzenie przekroju srub Ab=10880 >= Am=5632.55[mm2] « » (U= 51.7%) OK«

Warunki ruchowe

11.5.4.1 naprezenia w kolnierzu przy grubosci e= 34 mm

Naprezenia wzdluzne w kolnierzu
SigH = phi * M / (lamda * g1 ^ 2) (11.5-29)
=2.96*54.95/(1.*27.7^2)= 211.63 N/mm2

Naprezenia promieniowe w kolnierzu
Sigr = (1.333 * e * BetaF + lo) * M / (lamda * e ^ 2 * lo) (11.5-30)
=(1.333*34*0.769+61.99)*54.95/(1.*34^2*61.99)= 74.06 N/mm2

Naprezenia styczne w kolnierzu
SigTeta = BetaY*M/e^2-Sigr*(K^2+1)/(K^2-1) (11.5-31)
=5.568*54.95/34^2-74.06*(1.43^2+1)/(1.43^2-1)= 49.90 N/mm2

11.5.4.2 Naprezenia dopuszczalne
»Naprezenia w szyjce k*SigH=211.63 <= 1.5 * MIN(f;fH)=300[N/mm2] (11.5-39)«» (U= 70.5%) OK«
»Naprezenia promieniowe k*SigR=74.06 <= f=200[N/mm2] (11.5-40)«» (U= 37%) OK«
»Naprezenia styczne k*SigTeta=49.9 <= f=200[N/mm2] (11.5-41)«» (U= 24.9%) OK«
»Naprezenia promieniowe+w szyjce 0.5*k*(SigH+SigR)=142.85 <= f=200[N/mm2] (11.5-42)«» (U=
71.4%) OK«
»Naprezenia styczne+w szyjce 0.5*k*(SigH+SigTeta)=130.76 <= f=200[N/mm2] (11.5-43)«» (U=
65.3%) OK«

Warunki montazowe

11.5.4.1 naprezenia w kolnierzu przy grubosci e= 34 mm

Naprezenia wzdluzne w kolnierzu
SigH = phi * M / (lamda * g1 ^ 2) (11.5-29)
=2.96*73.42/(1.*27.7^2)= 282.74 N/mm2

Naprezenia promieniowe w kolnierzu
Sigr = (1.333 * e * BetaF + lo) * M / (lamda * e ^ 2 * lo) (11.5-30)
=(1.333*34*0.769+61.99)*73.42/(1.*34^2*61.99)= 98.95 N/mm2

Naprezenia styczne w kolnierzu
SigTeta = BetaY*M/e^2-Sigr*(K^2+1)/(K^2-1) (11.5-31)
=5.568*73.42/34^2-98.95*(1.43^2+1)/(1.43^2-1)= 66.66 N/mm2

22 F.1 WN - Kolnierz Kolnierz metoda I

Umax= 93.4%

Strona: 26

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - 11.5 KOLNIERZE Z USZCZELKAMI WASKIMI
F.1 Kolnierz metoda I 17 Nov. 2008 20:09 ConnID:N.1

background image

11.5.4.2 Naprezenia dopuszczalne
»Naprezenia w szyjce k*SigH=282.74 <= 1.5 * MIN(f;fH)=306.25[N/mm2] (11.5-39)«» (U= 92.3%) OK«
»Naprezenia promieniowe k*SigR=98.95 <= f=204.17[N/mm2] (11.5-40)«» (U= 48.4%) OK«
»Naprezenia styczne k*SigTeta=66.66 <= f=204.17[N/mm2] (11.5-41)«» (U= 32.6%) OK«
»Naprezenia promieniowe+w szyjce 0.5*k*(SigH+SigR)=190.85 <= f=204.17[N/mm2] (11.5-42)«» (U=
93.4%) OK«
»Naprezenia styczne+w szyjce 0.5*k*(SigH+SigTeta)=174.7 <= f=204.17[N/mm2] (11.5-43)«» (U=
85.5%) OK«
»Naprezenie srub SigBolt=46.65 <= SB=87.47[N/mm2] « » (U= 53.3%) OK«

EN13445-5; 10.2.3.3 WYMAGANE MINIMALNE CISNIENIE PRÓBY HYDRAULICZNEJ: Ptmin

NOWY W TEMP. OTOCZENIA DLA GRUPY BADAN 1,2 i 3
Ptmin = MAX( 1.43 * Pd , 1.25 * Pd * f20 / f )
=MAX(1.43*1.2,1.25*1.2*204.17/200)= 1.72 MPa

»Cisnienie próby Ptmin=1.716 <= Ptmax=2.842[MPa] « » (U= 60.3%) OK«

Objetosc:0.01 m3 Ciezar:59 kg (SG= 7.85 )

22 F.1 WN - Kolnierz Kolnierz metoda I

Umax= 93.4%

Strona: 27

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - 11.5 KOLNIERZE Z USZCZELKAMI WASKIMI
F.1 Kolnierz metoda I 17 Nov. 2008 20:09 ConnID:N.1

background image

23 F.2 Integral - Flange kolnierz metoda II

DANE WEJSCIOWE

ELEMENT PRZYLACZONY/POLOZENIE

Mocowanie: N.2 Króciec,Blacha korpu krociec met II S1.1
Polozenie: Wzdluz osi "z" z1= 155
Flange Design Method:
Annex G - Alternative design rules for flanges and gasketed flange connections.

DANE PROJEKTOWE

KARTA PROCESOWA: DANE PROJEKTOWE : Temp= 120°C, P= 1.2MPa, c= .3mm
Mating Flange: Similar
INCLUDE MATING FLANGE AS PART OF DESIGN MODEL: Tak

FLANGE TYPE Side 1

Flange Type: Integral - Flange
Connecting Shell: Cylindrical or Conical Shell

Selected Sketch of Flange: Tapered hub with no thickening in the bore

FLANGE GEOMETRY Side 1

Equivalent axial thickness of flange................:eF 34.00 mm
Axial thickness radially loaded by pressure.........:eP 34.00 mm
Inside diameter of flange(corroded).................:d0 499.06 mm
Average diameter of hub, thin end...................:d1 506.76 mm
Average diameter of hub, thick end..................:d2 526.76 mm
Outside diameter of flange..........................:d4 715.00 mm
Diameter of bolt holes..............................:d5 33.00 mm
Min. wall thickness thin end of hub(corroded).......:e1 27.70 mm
Wall thickness at thick end of hub(corroded)........:e2 7.70 mm
Length of hub.......................................:lH 40.00 mm
Inclination of shell................................:PhiS 0.00 degr.
EN 10028-6:2003, 1.8867 P355QH plate and strip, HT:QT THK<=50mm 120'C
Rm=490 Rp=355 Rpt=300 fF=200 fF20=204.17 ftest=338.1 E=204605(N/mm2) ro=7.85

SHELL DATA Side 1

EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N THK<=16mm 120'C
Rm=410 Rp=265 Rpt=233.8 f=155.87 f20=170.83 ftest=252.38 E=204605(N/mm2) ro=7.85
Shell thickness(corroded)...........................:eS 0.00 mm
Average diameter of shell...........................:dS 0.00 mm

23 F.2 Integral - Flange kolnierz metoda II

Umax= 65.9%

Strona: 28

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES
F.2 kolnierz metoda II 17 Nov. 2008 20:00 ConnID:N.2

background image

DANE SRUB

Waisted Bolt: Nie
Specify Minimum Bolt Load for Assembly Condition, FBmin: Nie
NOMINALNY WYMIAR SRUB I KOMENTARZ: M30x3 ;
Bolt circle diameter................................:d3 650.00 mm
Number of bolts.....................................:nB 20.00
Nominal diameter....................................:dB0 30.00 mm
Effective diameter..................................:dBe 26.72 mm
Number of reassemblies during service...............:NR 10.00
Length of clamp.....................................:lB 0.00 mm
Carbon Steel Bolt Material: Tak
EN 10269:1999, 1.1181 C35E bar, bolt, HT:QT THK<=60mm 120'C
Rm=500 Rp=300 Rpt=262.4 fB=174.93 fB20=200 ftest=285.71 E=191484(N/mm2) ro=7.93

BOLTING TORQUE

METODA NACIAGU SRUB:
Skrecanie, (pomiar momentu i obrotu nakretki, blisko wytrzymalosci srub) eps
=-0.07 do +0.07
WSPÓLCZYNNIK TARCIA: Normalne/przecietne warunki µ=0.20

GASKET FORM AND GEOMETRY

Gasket Form: Flat gaskets, soft or composite materials or pure metallic.
Inside diameter.....................................:dG1 530.00 mm
Outside diameter....................................:dG2 582.00 mm
Axial thickness.....................................:eG 3.00 mm
Maximum rotation and deformation of flange..........:ThetaMax 1.00 degr.

GASKET TYPE AND MATERIAL

Rodzaj uszczelki: Non-metallic flat gasket(soft), also with metal insertion
Gasket Material: PTFE

Table GASKET PROPERTIES:

Opis

ID

Assembly(T=20C)

Operating(T=120C)

Min. required compressive
stress in gasket(MPa)

Qmin

10

0

Max. allowable
compressive stress in
gasket(MPa)

Qmax

50

32

Compressive E-modulus of
gasket at zero compressive
stress(MPa)

E0

600

480

Rate of change of
compressive modulus of
elasticity

K1

20

20

Gasket compression factor

mi

1.3

1.3

Gasket creep factor

gC

.9

.66

PRZYPADKI OBCIAZEN

Table FLANGE LOADS:

Opis

ID

Assembly

Test

Oper.Cond.1

Internal pressure(MPa)

Pi

0

1.8

1.2

External Axial Force(kN)

FA

23 F.2 Integral - Flange kolnierz metoda II

Umax= 65.9%

Strona: 29

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES
F.2 kolnierz metoda II 17 Nov. 2008 20:00 ConnID:N.2

background image

Opis

ID

Assembly

Test

Oper.Cond.1

External
Bend.Moment(kNm)

MA

Not Applicable(for future
use)

0

0

0

Test Condition (Yes/No)

Te

YES

YES

No

Temperature
D=Design/A=Ambient

T

A

A

D

Overall Axial Thermal
Expansion(mm)

DeltaU

NA

WYNIKI OBLICZEN

ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES

G.5.1 Flange parameters

G.5.1.2.1 Bolt holes

Pitch between bolts pB
pB = PI * d3 / nB (G.5-1) =3.14*650/20= 102.10 mm
Effective diameter of the bolt hole d5e
d5e = d5 * Sqr( d5 / pB) (G.5-2) =33*Sqr(33/102.1)= 18.76 mm
Effective bolt circle diameter d3e
d3e = d3 * ( 1 - 2 / nB ^ 2) (G.5-4) =650*(1-2/20^2)= 646.75 mm
CosPhiS = Cos( PhiS) =Cos(0)= 1.00
TanPhiS = Tan( PhiS) =Tan(0)= 0.00
CosPhiSm = Cos( PhiSm) =Cos(0)= 1.00
TanPhiSm = Tan( PhiSm) =Tan(0)= 0.00

G.5.1.2.2Effective dimensions of flange ring

For an integral flange and blind flange (see Figures G.3-4 to G.3-9), calculate:
bF = (d4 - d0) / 2 - d5e (G.5-5) =(715-499.06)/2-18.76= 89.21 mm
dF = (d4 + d0) / 2 (G.5-6) =(715+499.06)/2= 607.03 mm

Mating Flange

For an integral flange and blind flange (see Figures G.3-4 to G.3-9), calculate:
bFm = (d4m - d0m) / 2 - d5e (G.5-5) =(715-499.06)/2-18.76= 89.21 mm
dFm = (d4m + d0m) / 2 (G.5-6) =(715+499.06)/2= 607.03 mm

G.5.1.3 Connected shell

G.5.1.3.1 Tapered hub
beta = e2 / e1 (G.5-16) =7.7/27.7= 0.2780
eE = e1*(1+(beta-1)*lH/((beta/3)*Sqr(d1*e1)+lH)) (G.5-15)
=27.7*(1+(0.278-1)*40/((0.278/3)*Sqr(506.76*27.7)+40))= 12.01 mm
dE = (MIN(d1-e1+eE,d2+e2-eE)+MAX(d1+e1-eE,d2-e2+eE))/2 (G.5-17)
=(MIN(506.76-27.7+12.01,526.76+7.7-12.01)+MAX(506.76+27.7-12.01,526.76-7.7+
12.01))/2= = 511.07 mm

Mating Flange

G.5.1.3.1 Tapered hub
betam = e2m / e1m (G.5-16) =7.7/27.7= 0.2780
eEm = e1m*(1+(betam-1)*lHm/((betam/3)*Sqr(d1m*e1m)+lHm)) (G.5-15)
=27.7*(1+(0.278-1)*40/((0.278/3)*Sqr(506.76*27.7)+40))= 12.01 mm
dEm = (MIN(d1m-e1m+eEm,d2m+e2m-eEm)+MAX(d1m+e1m-eEm,d2m-e2m+eEm))/2 (G.5-17)
=(MIN(506.76-27.7+12.01,526.76+7.7-12.01)+MAX(506.76+27.7-12.01,526.76-7.7+
12.01))/2= = 511.07 mm

G.4.1 Conditions of applicability

»G.4.1.1 Geometry, the method applies when:
»a) Zlacze doczolowe gdzie wewnetrzna i zewnetrzna powierzchnie przechodza
lagodnie w stozek i cylinder bez miejscowego zmniejszenia grubosci
»- there are two similar or dissimilar flanges, or one flange and a blind flange;
»- the whole assembly is axisymmetric;
»- there are four or more identical, uniformly distributed bolts;

23 F.2 Integral - Flange kolnierz metoda II

Umax= 65.9%

Strona: 30

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES
F.2 kolnierz metoda II 17 Nov. 2008 20:00 ConnID:N.2

background image

»- there is a circular gasket, located within the bolt circle on plane surfacesand
compressed axially;
»- the flange dimensions met the following conditions:
»a) 0.2=0.2 <= bF/eF=2.62« » OK«
»a) bF/eF=2.62 <= 5.0=5« » OK«
»c) CosPhiS=1 >= 1/(1+0.01*dS/eS)=0« » OK«
»NOTE/NOTE 1: Condition a) need not to be met for a collar in combination with a
loose flange, see Figure G.3-10 a) and b).
»NOTE/NOTE 2: Condition b) is to limit non-uniformity of gasket pressure due
tospacing of bolts. The values 0,01 and 0,10 are to be applied for soft (non-
metallic) and hard (metallic) gaskets respectively. A more precise criterion is
given in G.8.1.
»The following configurations are excluded from the scope of the method:
»- flanges of essentially non-axisymmetric geometry, e.g. split loose flanges,
oval flanges or gusset reinforced flanges;
»- flange joints having metal to metal contact between the flanges or between the
flanges and a spacer ring fitted either inside or outside the gasket or inside or
outside the bolts. An example is a spiral wound gasket on a high pressure
application.

G.4.1.2 Material characteristics

»Values of nominal design stress for bolts shall be determined as for shells
inclause 6.
»Material properties for gaskets may be taken from G.9.
»NOTE/NOTE: For gaskets which undergo large deformation (e.g. soft rubber) the
results can be conservative (e.g. required bolt load too high, allowable fluid
pressure too low, etc.) because the method presupposes small deformations.

G.4.1.3 Loads

»This method applies to the following loads:
»- fluid pressure : internal or external.
»- external loads : axial forces and bending moment.
»- axial thermal expansion of flanges, bolts and gasket.
»The following are not taken into account:
»- External torsional moments and external shear loads, e.g. due to pipework.

G.4.2 Mechanical model

»The method is based on the following mechanical model:
»- Geometry of both flanges and gasket is axisymmetric. Small deviations suchas
those due to a finite number of bolts, are permitted.
»- Flange ring cross section on a radial cut remains undeformed. Only
circumferential stresses and strains in the ring are considered. Radial and axial
stresses and strains are neglected. This leads to the conditions in G.4.1.1 a).
»- Shell connected to the flange ring is cylindrical. A tapered hub is treated
as an equivalent cylindrical shell. It has a calculated wall thickness which is
different for elastic and plastic behaviour but always lies between the
thicknesses of the thin and thick end of the hub. Conical and spherical shells are
treated as equivalent cylindrical shells with same wall thickness as the actual
shell; the differences in shape are explicitly taken into account in the formulae.
This simplification leads to the condition in G.4.1.1 c). The method assumes equal
radial deformation and rotation of the flange ring and the shell at their junction.
»- Gasket is in contact with the flange faces over an annular area which the
method determines. The effective radial width bGe of the gasket, which may be less
»- Modulus of elasticity of gasket material may increase with the compressiv
e stress Q on the gasket. The method uses a linear model: EG == E0 + K1×Q, in which
»- Creep of gasket material is taken into account approximately by factor gC.
»- Thermal and mechanical axial deformations of flanges, bolts and gaskets are
taken into account.
»- Loading of the whole flange connection is axisymmetric. An external bending
moment is treated as an equivalent axial force transmitted by the bolts; see
equation (G.6-2).
»- Load changes between load conditions cause changes in the bolt and gasket
forces. These are calculated taking account of elastic deformations of all
components. The required initial assembly force is calculated (see G.6.4) to
ensure that the required forces on the gasket to ensure leak tightness are
achieved under all conditions (see G.6.3).

23 F.2 Integral - Flange kolnierz metoda II

Umax= 65.9%

Strona: 31

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES
F.2 kolnierz metoda II 17 Nov. 2008 20:00 ConnID:N.2

background image

»- Load limit checks are based on limit loads for each component. Excessive
plastic deformations are prevented. The load limit for gaskets, which depends on
Qmax , is an approximation.
»The following are not taken into account in the model:
»- Bolt bending stiffness and bending strength. Ignoring bolt bending is a
conservative simplification. Calculated tensile stiffness of bolts includes
deformation of the bolt threads within a nut or tapped hole, see equation (G.5-36).
»- Creep of flanges and bolts. This is due to lack of relevant material data for
deformation.
»- Different radial deformations of the flanges. With two equal flanges this is
not relevant as the radial deformations are the same.

G.5.2 Bolt parameters

NOTE/NOTE: The bolt dimensions are shown in Figure G.3-2. Diameters of
standardised metric series bolts (in accordance to ISO 4014 and ISO 4016) are
given in G.8.2.
G.5.2.1 Effective cross-section area of bolts
AB = nB * PI / 4 * MIN( dBe, dBs) ^ 2 (G.5-53)
=20*3.14/4*MIN(26.72,26.72)^2= 11214.83 mm2
le = lB - lS =0-0= 0.00 mm
G.5.2.2 Flexibility modulus of bolts
XB = 4/(PI*nB)*(lS/dBs^2+le/(dBe)^2+0.8/dB0) (G.5-54)
=4/(3.14*20)*(0/26.72^2+0/(26.72)^2+0.8/30)= 0.0017 mm-1
The thickness of any washers shall be included in lengths ls and le.
kB = 1.2 * µ * dB0 (G.8-5) =1.2*0.2*30= 7.20 mm
Scatter values for bolting up eps+ = .07
epsp = eps1 * (1 + 3 / SQR( nB)) / 4 (G.6-15)
=0.07*(1+3/SQR(20))/4= 0.0292
Scatter values for bolting up eps- = .07
epsn = eps * (1 + 3 / SQR( nB)) / 4 (G.6-16)
=0.07*(1+3/SQR(20))/4= 0.0292

G.5.3 Gasket parameters

bGt = (dG2 - dG1) / 2 (G.5-55) =(582-530)/2= 26.00 mm
dGt = (dG2 + dG1) / 2 (G.5-56) =(582+530)/2= 556.00 mm
AGt = PI * dGt * bGt (G.5-57) =3.14*556*26= 45414.86 mm2

PRZYPADEK OBCIAZENIA Nr: 1 - ASSEMBLY

FR0 = FA0 + 4 * MA0 / d3e (G.6-2) =0+4*0/646.75= 0.00 kN
Effective gasket width and effective gasket area
bGe = MIN( bGi, bGt) (G.5-59) =MIN(14.24,26)= 14.24 mm

dGe = dG2 - bGe =582-14.24= 567.76 mm

AGe = PI * dGe * bGe (G.5-60) =3.14*567.76*14.24= 25407.74 mm2
NOTE/NOTE 3: The effective gasket diameter dGe is the diameter where the
gasketforce acts. It is also determined from Table G.5-1.

G.5.1.5 Flexibility-related flange parameters

G.5.1.5.1 Integral flange, stub or collar
gamma = eE * dF / (bF * dE * CosPhiS) (G.5-33)
=12.01*607.03/(89.21*511.07*1)= 0.1599
teta = 0.55 * CosPhiS * Sqr( dE * eE) / eF (G.5-34)
=0.55*1*Sqr(511.07*12.01)/34= 1.27
lamda = 1 - eP / eF (G.5-35) =1-34/34= 0.00
Cf = (1+gamma*teta)/(1+gamma*teta*(4*(1-3*lamda+3*lamda^2)+6*(1-
2*lamda)*teta+6*teta^2)+3*gamma^2*teta^4) (G.5-36)
=(1+0.1599*1.27)/(1+0.1599*1.27*(4*(1-3*0+3*0^2)+6*(1-2*0)*1.27+6*1.27^2)+3
*0.1599^2*1.27^4)= =0.2186
hS = eF*1.1*Sqr(eE/dE)*(1-2*lamda+teta)/(1+gamma*teta) (G.5-37)
=34*1.1*Sqr(12.01/511.07)*(1-2*0+1.27)/(1+0.1599*1.27)= 10.81 mm
hT = eF*(1-2*lamda-gamma*teta^2)/(1+gamma*teta) (G.5-38)
=34*(1-2*0-0.1599*1.27^2)/(1+0.1599*1.27)= 21.01 mm
kQ = 0.85 / CosPhiS (G.5-41) =0.85/1= 0.8500
kR = -0.15 / CosPhiS (G.5-42) =-0.15/1= -.15
hQ = (hS*kQ+hT*(2*dF*eP/dE^2-0.5*TanPhiS))*(dE/dGe)^2 (G.5-39)
=(10.81*0.85+21.01*(2*607.03*34/511.07^2-0.5*0))*(511.07/567.76)^2= 10.13 mm

23 F.2 Integral - Flange kolnierz metoda II

Umax= 65.9%

Strona: 32

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES
F.2 kolnierz metoda II 17 Nov. 2008 20:00 ConnID:N.2

background image

hR = hS * kR - hT * 0.5 * TanPhiS (G.5-40)
=10.81*-0.15-21.01*0.5*0= -1.62 mm
ZF = 3 * dF * Cf / (PI * bF * eF ^ 3) (G.5-45)
=3*607.03*0.2186/(3.14*89.21*34^3)= 3,6148E-05 mm-3
ZL = 0 (G.5-46) =0= 0.00

Mating Flange (m)

G.5.1.5.1 Integral flange, stub or collar
gammam = eEm * dFm / (bFm * dEm * CosPhiSm) (G.5-33)
=12.01*607.03/(89.21*511.07*1)= 0.1599
tetam = 0.55 * CosPhiSm * Sqr( dEm * eEm) / eFm (G.5-34)
=0.55*1*Sqr(511.07*12.01)/34= 1.27
lamdam = 1 - ePm / eFm (G.5-35) =1-34/34= 0.00
Cfm = (1+gammam*tetam)/(1+gammam*tetam*(4*(1-3*lamdam+3*lamdam^2)+6*(1-
2*lamdam)*tetam+6*tetam^2)+3*gammam^2*tetam^4) (G.5-36)
=(1+0.1599*1.27)/(1+0.1599*1.27*(4*(1-3*0+3*0^2)+6*(1-2*0)*1.27+6*1.27^2)+3
*0.1599^2*1.27^4)= =0.2186
hSm = eFm*1.1*Sqr(eEm/dEm)*(1-2*lamdam+tetam)/(1+gammam*tetam) (G.5-37)
=34*1.1*Sqr(12.01/511.07)*(1-2*0+1.27)/(1+0.1599*1.27)= 10.81 mm
hTm = eFm*(1-2*lamdam-gammam*tetam^2)/(1+gammam*tetam) (G.5-38)
=34*(1-2*0-0.1599*1.27^2)/(1+0.1599*1.27)= 21.01 mm
kQm = 0.85 / CosPhiSm (G.5-41) =0.85/1= 0.8500
kRm = -0.15 / CosPhiSm (G.5-42) =-0.15/1= -.15
hQm = (hSm*kQm+hTm*(2*dFm*ePm/dEm^2-0.5*TanPhiSm))*(dEm/dGe)^2 (G.5-39)
=(10.81*0.85+21.01*(2*607.03*34/511.07^2-0.5*0))*(511.07/567.76)^2= 10.13 mm
hRm = hSm * kRm + hTm * 0.5 * TanPhiSm (G.5-40)
=10.81*-0.15+21.01*0.5*0= -1.62 mm
ZFm = 3 * dFm * Cfm / (PI * bFm * eFm ^ 3) (G.5-45)
=3*607.03*0.2186/(3.14*89.21*34^3)= 3,6148E-05 mm-3
ZLm = 0 (G.5-46) =0= 0.00

G.5.1.4.2 Integral flange and blind flange
hG = (d3e - dGe) / 2 (G.5-24) =(646.75-567.76)/2= 39.50 mm
hH = (d3e - dE) / 2 (G.5-25) =(646.75-511.07)/2= 67.84 mm
hL = 0 (G.5-26) =0= 0.00 mm
Lever arm for integral flange and blind flange:
hG0 = (d3e - dGe) / 2 (G.5-61) =(646.75-567.76)/2= 39.50 mm

Mating Flange (m)

G.5.1.4.2 Integral flange and blind flange
hGm = (d3e - dGe) / 2 (G.5-24) =(646.75-567.76)/2= 39.50 mm
hHm = (d3e - dEm) / 2 (G.5-25) =(646.75-511.07)/2= 67.84 mm
hLm = 0 (G.5-26) =0= 0.00 mm
Lever arm for integral flange and blind flange:
hG0m = (d3e - dGe) / 2 (G.5-61) =(646.75-567.76)/2= 39.50 mm

Table G.5-1 Effective gasket geometry
EGm = EG0 + 0.5 * K1 * FG0 / AGe
=600+0.5*20*6.8759E05/25407.74= 870.62
ASSEMBLY
bGi =
Sqr((eG/(PI*dGe*EGm)/(hG0*ZF/EF0+hG0m*ZFm/EF0m))+(FG0/(PI*dGe*Qmax0))^2)(Table G.5-
1)
=Sqr((3/(3.14*567.76*870.62)/(39.5*3.6148E-05/2.1177E05+39.5*3.6148E-05/2.1
177E05))+(6.8759E05/(3.14*567.76*50))^2)= = 14.24 mm

G.5.3.3 Axial flexibility modulus of gasket

XG = eG / AGt * (bGt + eG / 2) / (bGe + eG / 2) (G.5-65)
=3/45414.86*(26+3/2)/(14.24+3/2)= 1,1538E-04 mm-1

G.5.1.4 Lever arms

hP = ((dGe-dE)^2*(2*dGe+dE)/6+2*eP^2*dF)/dGe^2 (G.5-22)
=((567.76-511.07)^2*(2*567.76+511.07)/6+2*34^2*607.03)/567.76^2= 7.09 mm
hPm = ((dGe-dEm)^2*(2*dGe+dEm)/6+2*ePm^2*dFm)/dGe^2 (G.5-22)
=((567.76-511.07)^2*(2*567.76+511.07)/6+2*34^2*607.03)/567.76^2= 7.09 mm

23 F.2 Integral - Flange kolnierz metoda II

Umax= 65.9%

Strona: 33

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES
F.2 kolnierz metoda II 17 Nov. 2008 20:00 ConnID:N.2

background image

G.6.2 Applied Loads

Fluid Pressure
FQ = PI / 4 * dGe ^ 2 * p (G.6-1) =3.14/4*567.76^2*0= 0.00 MPa
Additional External Loads
FR = FA0 + 4 * MA0 / d3e (G.6-2) =0+4*0/646.75= 0.00 N
Q0 = FG0 / AGe =6.8759E05/25407.74= 27.06 MPa
EGI = EG0 + K1 * Q0 =600+20*27.06= 1141.24 MPa

G.6.3 Compliance of the joint

Tmp1 = (ZL * hL ^ 2 / EL0 + ZLm * hLm ^ 2 / EL0m + XB / EB0)
=(0*0^2/212000+0*0^2/212000+0.0017/199964)= 8,4898E-09 mm/N
YGI = ZF*hG^2/EF0+ZFm*hGm^2/EF0m+Tmp1+XG/(EGI*gC) (G.6-5)
=3.6148E-05*39.5^2/2.1177E05+3.6148E-05*39.5^2/2.1177E05+8.4898E-09+1.1538E
-04/(1141.24*0.9)= =6,534E-07 mm/N
YQI = ZF*hG*(hH-hP+hQ)/EF0+ZFm*hGm*(hHm-hPm+hQm)/EF0m+Tmp1+XG/(EG0*gC) (G.6-6)
=3.6148E-05*39.5*(67.84-7.09+10.13)/2.1177E05+3.6148E-05*39.5*(67.84-7.09+1
0.13)/2.1177E05+8.4898E-09+1.1538E-04/(600*0.9)= =9,6432E-07 mm/N
YRI = ZF*hG*(hH+hR)/EF0+ZFm*hGm*(hHm+hRm)/EF0m+Tmp1+XG/(EG0*gC) (G.6-7)
=3.6148E-05*39.5*(67.84+-1.62)/2.1177E05+3.6148E-05*39.5*(67.84+-1.62)/2.11
77E05+8.4898E-09+1.1538E-04/(600*0.9)= =9,014E-07 mm/N
FG0min = AGe * Qmin (G.6-8) =25407.74*10= 2,5408E05 N
FG0req = Max( FG0min, FGDelta) (G.6-11)
=Max(2.5408E05,6.8759E05)= 687.59 kN

FB0req = FG0req + FR0 (G.6-12) =687.59+0= 687.59 kN

Calkowity nominalny naciag wstepny
Fb0nom = FB0req / (1 - epsn) (G.6-21) =687.59/(1-0.0292)= 708.30 kN
Calkowity nominalny naciag wstepny dla sruby
Fbnom = FB0nom / nB =708.3/20= 35.41 kN

Nominal Required Torque per Bolt
Mtnom = kB * FBnom =7.2*35.41= 254.99 kN

Minimum force
FB0min = FB0nom * (1 - epsn) (G.6-19) =708.3*(1-0.0292)= 687.59 kN
Maximum forces to be used for the load limit calculation.
FB0max = FB0nom * (1 + epsp) (G.6-23) =708.3*(1+0.0292)= 729.01 kN
FG0max = FB0max - FR0 (G.6-24) =729.01-0= 729.01 kN

G.7 Load limits

Load Ratio of Bolts

PhiB = FBI / (AB * fB0) * Sqr( 1 + (CB * 3.2 * µ ) ^ 2) (G.7-3)
=7.2901E05/(11214.83*285.71)*Sqr(1+(1*3.2*0.2)^2)= 0.2701

»Bolt Load Ratio PhiB PhiB=0.2701 <= 1 =1« » (U= 27%) OK«

Load Ratio of Gasket

CG = 1 + bGt / (20 * eG) (G.7-5) =1+26/(20*3)= 1.43
PhiG = FGI / (AGt * CG * Qmax) (G.7-4)
=7.2901E05/(45414.86*1.43*50)= 0.2240

»Gasket Load Ratio PhiG PhiG=0.224 <= 1 =1« » (U= 22.3%) OK«

hG = (d3e - dGe) / 2 (G.5-24) =(646.75-567.76)/2= 39.50 mm
hH = (d3e - dE) / 2 (G.5-25) =(646.75-511.07)/2= 67.84 mm
hL = 0 (G.5-26) =0= 0.00 mm

G.7.4 Integral flange, stub or collar

eD = e1*(1+(beta-1)*lH/((beta/3)^4*(d1*e1)^2+lH^4)^0.25) (G.7-8)
=27.7*(1+(0.278-1)*40/((0.278/3)^4*(506.76*27.7)^2+40^4)^0.25)= 7.73 mm
fE = Min( fF0, fS0) (G.7-9) =Min(338.1,252.38)= 252.38 N/mm2
deltaQ = p * dE / (fE * 2 * eD * CosPhiS) (G.7-10)
=0*511.07/(252.38*2*7.73*1)= 0.00
deltaR = FR / (fE * PI * dE * eD * CosPhiS) (G.7-11)
=0/(252.38*3.14*511.07*7.73*1)= 0.00
jM = Sgn( FGI * hG + FQ * (hH - hP) + FR * hH) (G.7-16)

23 F.2 Integral - Flange kolnierz metoda II

Umax= 65.9%

Strona: 34

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES
F.2 kolnierz metoda II 17 Nov. 2008 20:00 ConnID:N.2

background image

=Sgn(7.2901E05*39.5+0*(67.84-7.09)+0*67.84)= 1.00
cM = SQR(1.333*(1-0.75*(0.5*deltaQ+deltaR)^2*(1-(0.75*deltaQ^2+deltaR^2))) (G.7-
12/14)
=SQR(1.333*(1-0.75*(0.5*0+0)^2*(1-(0.75*0^2+0^2)))= 1.15
PsiOpt = jM * (2 * eP / eF - 1) (G.7-21) =1*(2*34/34-1)= 1.00
PsiMax(jS(1) , kM(1) ,kS(1))= 0.0805
Psi0 (jS(0) , kM(0) ,kS(0))= 0.0000
PsiMin(jS(-1) , kM(-1) ,kS(1))= -.0805
PsiZ = PsiMax =0.0805= 0.0805

WF = PI/4*(fF0*2*bF*eF^2*(1+2*PsiOpt*PsiZ-PsiZ^2)+fE*dE*eD^2*cM*jM*kM)
=3.14/4*(338.1*2*89.21*34^2*(1+2*1*0.0805-0.0805^2)+252.38*511.07*7.73^2*1.
15*1*1)= = 70215.66 Nm

PhiF0 = Abs( FGI * hG + FQ * (hH - hP) + FR * hH) / WF (G.7-6)
=Abs(7.2901E05*39.5+0*(67.84-7.09)+0*67.84)/70215.66= 0.4101

»Flange Load Ratio PhiF PhiF=0.4101 <= PhiMax =1« » (U= 41%) OK«

G.8.1 Requirements for limitation of non-uniformity of gasket stress

»Limitation of non-uniformity of gasket stress(bolting pitch) eFmin
=13.23 <= = eF =34«» OK«

G.8.5 Flange Rotation

FGImin = (FG0min*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI (G.8-22)
=(6.8759E05*6.534E-07-(0*9.6432E-07+0*9.014E-07-0*9.014E-07+0))/6.534E-07
= 687.59 kN
FGImax = (FG0max*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI (G.8-23)
=(7.2901E05*6.534E-07-(0*9.6432E-07+0*9.014E-07-0*9.014E-07+0))/6.534E-07
= 729.01 kN
FBImin = FGImin + FQ + FR (G.8-24) =687.59+0+0= 687.59 kN
FBImax = FGImax + FQ + FR (G.8-25) =729.01+0+0= 729.01 kN
ThetaFmax = ZF/EF0*(FGImax*hG+FQ*(hH-hP+hQ)+FR*(hH+hR)) (G.8-16)
=3.6148E-05/2.1177E05*(729.01*39.5+0*(67.84-7.09+10.13)+0*(67.84+-1.62))
=0.2820 Degr.

ThetaFmaxm = ZFm/EF0m*(FGImax*hGm+FQ*(hHm-hPm+hQm)+FR*(hHm+hRm)) (G.8-16)
=3.6148E-05/2.1177E05*(729.01*39.5+0*(67.84-7.09+10.13)+0*(67.84+-1.62))
=0.2820 Degr.

»Flange Rotation ThetaFmax=0.282 <= ThetaMax =1« » OK«
»Loose Flange Rotation ThetaLmax=0 <= ThetaMax =1« » OK«
»Mating Flange Rotation ThetaFmaxm=0.282 <= ThetaMax =1« » OK«
»Mating Loose Flange Rotation ThetaLmaxm=0 <= ThetaMax =1« » OK«

PRZYPADEK OBCIAZENIA Nr: 2 - TEST----

G.5.3.3 Axial flexibility modulus of gasket

XG = eG / AGt * (bGt + eG / 2) / (bGe + eG / 2) (G.5-65)
=3/45414.86*(26+3/2)/(14.24+3/2)= 1,1538E-04 mm-1

G.5.1.4 Lever arms

hP = ((dGe-dE)^2*(2*dGe+dE)/6+2*eP^2*dF)/dGe^2 (G.5-22)
=((567.76-511.07)^2*(2*567.76+511.07)/6+2*34^2*607.03)/567.76^2= 7.04 mm
hPm = ((dGe-dEm)^2*(2*dGe+dEm)/6+2*ePm^2*dFm)/dGe^2 (G.5-22)
=((567.76-511.07)^2*(2*567.76+511.07)/6+2*34^2*607.03)/567.76^2= 7.04 mm

G.6.2 Applied Loads

Fluid Pressure
FQ = PI / 4 * dGe ^ 2 * p (G.6-1) =3.14/4*567.76^2*1.8= 4,5471E05 MPa
Additional External Loads
FR = FA0 + 4 * MA0 / d3e (G.6-2) =0+4*0/646.75= 0.00 N

23 F.2 Integral - Flange kolnierz metoda II

Umax= 65.9%

Strona: 35

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES
F.2 kolnierz metoda II 17 Nov. 2008 20:00 ConnID:N.2

background image

G.6.3 Compliance of the joint

Tmp1 = (ZL * hL ^ 2 / EL0 + ZLm * hLm ^ 2 / EL0m + XB / EB0)
=(0*0^2/212000+0*0^2/212000+0.0017/199964)= 8,4898E-09 mm/N
YGI = ZF*hG^2/EF0+ZFm*hGm^2/EF0m+Tmp1+XG/(EGI*gC) (G.6-5)
=3.6148E-05*39.5^2/2.1177E05+3.6148E-05*39.5^2/2.1177E05+8.4898E-09+1.1538E
-04/(1141.24*0.9)= =6,534E-07 mm/N
YQI = ZF*hG*(hH-hP+hQ)/EF0+ZFm*hGm*(hHm-hPm+hQm)/EF0m+Tmp1+XG/(EG0*gC) (G.6-6)
=3.6148E-05*39.5*(67.84-7.04+10.13)/2.1177E05+3.6148E-05*39.5*(67.84-7.04+1
0.13)/2.1177E05+8.4898E-09+1.1538E-04/(600*0.9)= =9,6494E-07 mm/N
YRI = ZF*hG*(hH+hR)/EF0+ZFm*hGm*(hHm+hRm)/EF0m+Tmp1+XG/(EG0*gC) (G.6-7)
=3.6148E-05*39.5*(67.84+-1.62)/2.1177E05+3.6148E-05*39.5*(67.84+-1.62)/2.11
77E05+8.4898E-09+1.1538E-04/(600*0.9)= =9,014E-07 mm/N
QImin = mi * p =1.3*1.8= 2.34 MPa
FGImin = Max( AGe * QImin, - ( FQ + FR)) (G.6-9)
=Max(25407.74*2.34,-(4.5471E05+0))= 59.45 kN
FGDelta = (FGImin*YGI+FQ*YQI+(FR*YRI-FR0*YR0)+DeltaU)/YG0) (G.6-10)
=(59.45*6.534E-07+4.5471E05*9.6494E-07+(0*9.014E-07-0*9.014E-07)+0)/6.534E-
07)= = 730.97 kN
Minimum force
FB0min = FB0nom * (1 - epsn) (G.6-19) =752.98*(1-0.0292)= 730.97 kN
Maximum forces to be used for the load limit calculation.
FB0max = FB0nom * (1 + epsp) (G.6-23) =752.98*(1+0.0292)= 775.00 kN
FG0max = FB0max - FR0 (G.6-24) =775.-0= 775.00 kN
The calculation forces in subsequent conditions shall be based on a design
assembly gasket force FG0,d
FG0d = Max( FGDelta, 2 / 3 * (1 - 10 / NR) * FB0max - FR0) (G.6-25)
=Max(730.97,2/3*(1-10/10)*775.-0)= 730.97 kN
Gasket force for load limit calculations
FGI = (FG0d*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI (G.6-26)
=(730.97*6.534E-07-(4.5471E05*9.6494E-07+0*9.014E-07-0*9.014E-07+0))/6.534E
-07= = 59.45 kN

Bolt force for load limit calculations
FBI = FGI + FQ + FR (G.6-27) =59.45+4.5471E05+0= 514.16 kN

G.7 Load limits

Load Ratio of Bolts

PhiB = FBI / (AB * fB0) * Sqr( 1 + (CB * 3.2 * µ ) ^ 2) (G.7-3)
=514.16/(11214.83*285.71)*Sqr(1+(0*3.2*0.2)^2)= 0.1605

»Bolt Load Ratio PhiB PhiB=0.1605 <= 1 =1« » (U= 16%) OK«

Load Ratio of Gasket

CG = 1 + bGt / (20 * eG) (G.7-5) =1+26/(20*3)= 1.43
PhiG = FGI / (AGt * CG * Qmax) (G.7-4)
=59.45/(45414.86*1.43*50)= 0.0183

»Gasket Load Ratio PhiG PhiG=0.0183 <= 1 =1« » (U= 1.8%) OK«

hG = (d3e - dGe) / 2 (G.5-24) =(646.75-567.76)/2= 39.81 mm
hH = (d3e - dE) / 2 (G.5-25) =(646.75-511.07)/2= 67.84 mm
hL = 0 (G.5-26) =0= 0.00 mm

G.7.4 Integral flange, stub or collar

eD = e1*(1+(beta-1)*lH/((beta/3)^4*(d1*e1)^2+lH^4)^0.25) (G.7-8)
=27.7*(1+(0.278-1)*40/((0.278/3)^4*(506.76*27.7)^2+40^4)^0.25)= 7.73 mm
fE = Min( fF0, fS0) (G.7-9) =Min(338.1,252.38)= 252.38 N/mm2
deltaQ = p * dE / (fE * 2 * eD * CosPhiS) (G.7-10)
=1.8*511.07/(252.38*2*7.73*1)= 0.2358
deltaR = FR / (fE * PI * dE * eD * CosPhiS) (G.7-11)
=0/(252.38*3.14*511.07*7.73*1)= 0.00
jM = Sgn( FGI * hG + FQ * (hH - hP) + FR * hH) (G.7-16)
=Sgn(59.45*39.81+4.5471E05*(67.84-7.04)+0*67.84)= 1.00
cM = SQR(1.333*(1-0.75*(0.5*deltaQ+deltaR)^2*(1-(0.75*deltaQ^2+deltaR^2))) (G.7-
12/14)

23 F.2 Integral - Flange kolnierz metoda II

Umax= 65.9%

Strona: 36

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES
F.2 kolnierz metoda II 17 Nov. 2008 20:00 ConnID:N.2

background image

=SQR(1.333*(1-0.75*(0.5*0.2358+0)^2*(1-(0.75*0.2358^2+0^2)))= 1.15
PsiOpt = jM * (2 * eP / eF - 1) (G.7-21) =1*(2*34/34-1)= 1.00
PsiMax(jS(1) , kM(1) ,kS(1))= 0.0574
Psi0 (jS(0) , kM(0) ,kS(0))= -.0152
PsiMin(jS(-1) , kM(-1) ,kS(1))= -.1022
PsiZ = PsiMax =0.0574= 0.0574

WF = PI/4*(fF0*2*bF*eF^2*(1+2*PsiOpt*PsiZ-PsiZ^2)+fE*dE*eD^2*cM*jM*kM)
=3.14/4*(338.1*2*89.21*34^2*(1+2*1*0.0574-0.0574^2)+252.38*511.07*7.73^2*1.
15*1*1)= = 67821.87 Nm

PhiF0 = Abs( FGI * hG + FQ * (hH - hP) + FR * hH) / WF (G.7-6)
=Abs(59.45*39.81+4.5471E05*(67.84-7.04)+0*67.84)/67821.87=0.4425

»Flange Load Ratio PhiF PhiF=0.4425 <= PhiMax =1« » (U= 44.2%) OK«

G.8.5 Flange Rotation

FGImin = (FG0min*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI (G.8-22)
=(6.8759E05*6.534E-07-(4.5471E05*9.6494E-07+0*9.014E-07-0*9.014E-07+0))/6.5
34E-07= = 16.07 kN
FGImax = (FG0max*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI (G.8-23)
=(7.2901E05*6.534E-07-(4.5471E05*9.6494E-07+0*9.014E-07-0*9.014E-07+0))/6.5
34E-07= = 57.49 kN
FBImin = FGImin + FQ + FR (G.8-24) =16.07+4.5471E05+0= 470.78 kN
FBImax = FGImax + FQ + FR (G.8-25) =57.49+4.5471E05+0= 512.20 kN
ThetaFmax = ZF/EF0*(FGImax*hG+FQ*(hH-hP+hQ)+FR*(hH+hR)) (G.8-16)
=3.6148E-05/2.1177E05*(57.49*39.5+4.5471E05*(67.84-7.04+10.13)+0*(67.84+-1.
62))= =0.3380 Degr.

ThetaFmaxm = ZFm/EF0m*(FGImax*hGm+FQ*(hHm-hPm+hQm)+FR*(hHm+hRm)) (G.8-16)
=3.6148E-05/2.1177E05*(57.49*39.5+4.5471E05*(67.84-7.04+10.13)+0*(67.84+-1.
62))= =0.3380 Degr.

»Flange Rotation ThetaFmax=0.338 <= ThetaMax =1« » OK«
»Loose Flange Rotation ThetaLmax=0 <= ThetaMax =1« » OK«
»Mating Flange Rotation ThetaFmaxm=0.338 <= ThetaMax =1« » OK«
»Mating Loose Flange Rotation ThetaLmaxm=0 <= ThetaMax =1« » OK«

PRZYPADEK OBCIAZENIA Nr: 3 - OPER.COND.1

G.5.3.3 Axial flexibility modulus of gasket

XG = eG / AGt * (bGt + eG / 2) / (bGe + eG / 2) (G.5-65)
=3/45414.86*(26+3/2)/(14.24+3/2)= 1,1538E-04 mm-1

G.5.1.4 Lever arms

hP = ((dGe-dE)^2*(2*dGe+dE)/6+2*eP^2*dF)/dGe^2 (G.5-22)
=((567.76-511.07)^2*(2*567.76+511.07)/6+2*34^2*607.03)/567.76^2= 7.04 mm
hPm = ((dGe-dEm)^2*(2*dGe+dEm)/6+2*ePm^2*dFm)/dGe^2 (G.5-22)
=((567.76-511.07)^2*(2*567.76+511.07)/6+2*34^2*607.03)/567.76^2= 7.04 mm

G.6.2 Applied Loads

Fluid Pressure
FQ = PI / 4 * dGe ^ 2 * p (G.6-1) =3.14/4*567.76^2*1.2= 3,0314E05 MPa
Additional External Loads
FR = FA0 + 4 * MA0 / d3e (G.6-2) =0+4*0/646.75= 0.00 N

G.6.3 Compliance of the joint

Tmp1 = (ZL * hL ^ 2 / EL0 + ZLm * hLm ^ 2 / EL0m + XB / EB0)
=(0*0^2/212000+0*0^2/212000+0.0017/191484)= 8,8658E-09 mm/N
YGI = ZF*hG^2/EF0+ZFm*hGm^2/EF0m+Tmp1+XG/(EGI*gC) (G.6-5)
=3.6148E-05*39.5^2/2.0461E05+3.6148E-05*39.5^2/2.0461E05+8.8658E-09+1.1538E
-04/(1141.24*0.66)= =7,1328E-07 mm/N

23 F.2 Integral - Flange kolnierz metoda II

Umax= 65.9%

Strona: 37

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES
F.2 kolnierz metoda II 17 Nov. 2008 20:00 ConnID:N.2

background image

YQI = ZF*hG*(hH-hP+hQ)/EF0+ZFm*hGm*(hHm-hPm+hQm)/EF0m+Tmp1+XG/(EG0*gC) (G.6-6)
=3.6148E-05*39.5*(67.84-7.04+10.13)/2.0461E05+3.6148E-05*39.5*(67.84-7.04+1
0.13)/2.0461E05+8.8658E-09+1.1538E-04/(480*0.66)= =9,9881E-07 mm/N
YRI = ZF*hG*(hH+hR)/EF0+ZFm*hGm*(hHm+hRm)/EF0m+Tmp1+XG/(EG0*gC) (G.6-7)
=3.6148E-05*39.5*(67.84+-1.62)/2.0461E05+3.6148E-05*39.5*(67.84+-1.62)/2.04
61E05+8.8658E-09+1.1538E-04/(480*0.66)= =9,3305E-07 mm/N
QImin = mi * p =1.3*1.2= 1.56 MPa
FGImin = Max( AGe * QImin, - ( FQ + FR)) (G.6-9)
=Max(25407.74*1.56,-(3.0314E05+0))= 39.64 kN
FGDelta = (FGImin*YGI+FQ*YQI+(FR*YRI-FR0*YR0)+DeltaU)/YG0) (G.6-10)
=(39.64*7.1328E-07+3.0314E05*9.9881E-07+(0*9.3305E-07-0*9.014E-07)+0)/6.534
E-07)= = 687.59 kN
Minimum force
FB0min = FB0nom * (1 - epsn) (G.6-19) =708.3*(1-0.0292)= 687.59 kN
Maximum forces to be used for the load limit calculation.
FB0max = FB0nom * (1 + epsp) (G.6-23) =708.3*(1+0.0292)= 729.01 kN
FG0max = FB0max - FR0 (G.6-24) =729.01-0= 729.01 kN
The calculation forces in subsequent conditions shall be based on a design
assembly gasket force FG0,d
FG0d = Max( FGDelta, 2 / 3 * (1 - 10 / NR) * FB0max - FR0) (G.6-25)
=Max(687.59,2/3*(1-10/10)*729.01-0)= 687.59 kN
Gasket force for load limit calculations
FGI = (FG0d*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI (G.6-26)
=(687.59*6.534E-07-(3.0314E05*9.9881E-07+0*9.3305E-07-0*9.014E-07+0))/7.132
8E-07= = 205.38 kN

Bolt force for load limit calculations
FBI = FGI + FQ + FR (G.6-27) =205.38+3.0314E05+0= 508.52 kN

G.7 Load limits

Load Ratio of Bolts

PhiB = FBI / (AB * fB0) * Sqr( 1 + (CB * 3.2 * µ ) ^ 2) (G.7-3)
=508.52/(11214.83*174.93)*Sqr(1+(0*3.2*0.2)^2)= 0.2592

»Bolt Load Ratio PhiB PhiB=0.2592 <= 1 =1« » (U= 25.9%) OK«

Load Ratio of Gasket

CG = 1 + bGt / (20 * eG) (G.7-5) =1+26/(20*3)= 1.43
PhiG = FGI / (AGt * CG * Qmax) (G.7-4)
=205.38/(45414.86*1.43*32)= 0.0986

»Gasket Load Ratio PhiG PhiG=0.0986 <= 1 =1« » (U= 9.8%) OK«

hG = (d3e - dGe) / 2 (G.5-24) =(646.75-567.76)/2= 39.81 mm
hH = (d3e - dE) / 2 (G.5-25) =(646.75-511.07)/2= 67.84 mm
hL = 0 (G.5-26) =0= 0.00 mm

G.7.4 Integral flange, stub or collar

eD = e1*(1+(beta-1)*lH/((beta/3)^4*(d1*e1)^2+lH^4)^0.25) (G.7-8)
=27.7*(1+(0.278-1)*40/((0.278/3)^4*(506.76*27.7)^2+40^4)^0.25)= 7.73 mm
fE = Min( fF0, fS0) (G.7-9) =Min(200,155.87)= 155.87 N/mm2
deltaQ = p * dE / (fE * 2 * eD * CosPhiS) (G.7-10)
=1.2*511.07/(155.87*2*7.73*1)= 0.2546
deltaR = FR / (fE * PI * dE * eD * CosPhiS) (G.7-11)
=0/(155.87*3.14*511.07*7.73*1)= 0.00
jM = Sgn( FGI * hG + FQ * (hH - hP) + FR * hH) (G.7-16)
=Sgn(205.38*39.81+3.0314E05*(67.84-7.04)+0*67.84)= 1.00
cM = SQR(1.333*(1-0.75*(0.5*deltaQ+deltaR)^2*(1-(0.75*deltaQ^2+deltaR^2))) (G.7-
12/14)
=SQR(1.333*(1-0.75*(0.5*0.2546+0)^2*(1-(0.75*0.2546^2+0^2)))= 1.15
PsiOpt = jM * (2 * eP / eF - 1) (G.7-21) =1*(2*34/34-1)= 1.00
PsiMax(jS(1) , kM(1) ,kS(1))= 0.0579
Psi0 (jS(0) , kM(0) ,kS(0))= -.0172
PsiMin(jS(-1) , kM(-1) ,kS(1))= -.1084
PsiZ = PsiMax =0.0579= 0.0579

WF = PI/4*(fF0*2*bF*eF^2*(1+2*PsiOpt*PsiZ-PsiZ^2)+fE*dE*eD^2*cM*jM*kM)

23 F.2 Integral - Flange kolnierz metoda II

Umax= 65.9%

Strona: 38

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES
F.2 kolnierz metoda II 17 Nov. 2008 20:00 ConnID:N.2

background image

=3.14/4*(200*2*89.21*34^2*(1+2*1*0.0579-0.0579^2)+155.87*511.07*7.73^2*1.15
*1*1)= = 40329.97 Nm

PhiF0 = Abs( FGI * hG + FQ * (hH - hP) + FR * hH) / WF (G.7-6)
=Abs(205.38*39.81+3.0314E05*(67.84-7.04)+0*67.84)/40329.97=0.6597

»Flange Load Ratio PhiF PhiF=0.6597 <= PhiMax =1« » (U= 65.9%) OK«

G.8.5 Flange Rotation

FGImin = (FG0min*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI (G.8-22)
=(6.8759E05*6.534E-07-(3.0314E05*9.9881E-07+0*9.3305E-07-0*9.014E-07+0))/7.
1328E-07= = 205.38 kN
FGImax = (FG0max*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI (G.8-23)
=(7.2901E05*6.534E-07-(3.0314E05*9.9881E-07+0*9.3305E-07-0*9.014E-07+0))/7.
1328E-07= = 243.32 kN
FBImin = FGImin + FQ + FR (G.8-24) =205.38+3.0314E05+0= 508.52 kN
FBImax = FGImax + FQ + FR (G.8-25) =243.32+3.0314E05+0= 546.46 kN
ThetaFmax = ZF/EF0*(FGImax*hG+FQ*(hH-hP+hQ)+FR*(hH+hR)) (G.8-16)
=3.6148E-05/2.0461E05*(243.32*39.5+3.0314E05*(67.84-7.04+10.13)+0*(67.84+-1
.62))= =0.3150 Degr.

ThetaFmaxm = ZFm/EF0m*(FGImax*hGm+FQ*(hHm-hPm+hQm)+FR*(hHm+hRm)) (G.8-16)
=3.6148E-05/2.0461E05*(243.32*39.5+3.0314E05*(67.84-7.04+10.13)+0*(67.84+-1
.62))= =0.3150 Degr.

»Flange Rotation ThetaFmax=0.315 <= ThetaMax =1« » OK«
»Loose Flange Rotation ThetaLmax=0 <= ThetaMax =1« » OK«
»Mating Flange Rotation ThetaFmaxm=0.315 <= ThetaMax =1« » OK«
»Mating Loose Flange Rotation ThetaLmaxm=0 <= ThetaMax =1« » OK«

Maximum Test Pressure Ptmax = 2.678 MPa, Limited by:Flange Load Ratio PhiF
Maximum Allowable Pressure Pmax = 2.314 MPa, Limited by:Flange Load Ratio PhiF

EN13445-5; 10.2.3.3 WYMAGANE MINIMALNE CISNIENIE PRÓBY HYDRAULICZNEJ: Ptmin

NOWY W TEMP. OTOCZENIA DLA GRUPY BADAN 1,2 i 3
Ptmin = MAX( 1.43 * Pd , 1.25 * Pd * f20 / f )
=MAX(1.43*1.2,1.25*1.2*204.17/155.87)= 1.72 MPa

»Cisnienie próby Ptmin=1.716 <= Ptmax=2.678[MPa] « » (U= 64%) OK«

STRESZCZENIE OBLICZEN

ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES

PRZYPADEK OBCIAZENIA Nr: 1 - ASSEMBLY

bGe = MIN( bGi, bGt) (G.5-59) =MIN(14.24,26)= 14.24 mm

dGe = dG2 - bGe =582-14.24= 567.76 mm

FG0req = Max( FG0min, FGDelta) (G.6-11)
=Max(2.5408E05,6.8759E05)= 687.59 kN

FB0req = FG0req + FR0 (G.6-12) =687.59+0= 687.59 kN

Calkowity nominalny naciag wstepny
Fb0nom = FB0req / (1 - epsn) (G.6-21) =687.59/(1-0.0292)= 708.30 kN
Nominal Required Torque per Bolt
Mtnom = kB * FBnom =7.2*35.41= 254.99 kN

PhiB = FBI / (AB * fB0) * Sqr( 1 + (CB * 3.2 * µ ) ^ 2) (G.7-3)
=7.2901E05/(11214.83*285.71)*Sqr(1+(1*3.2*0.2)^2)= 0.2701

»Bolt Load Ratio PhiB PhiB=0.2701 <= 1 =1« » (U= 27%) OK«

PhiG = FGI / (AGt * CG * Qmax) (G.7-4)
=7.2901E05/(45414.86*1.43*50)= 0.2240

23 F.2 Integral - Flange kolnierz metoda II

Umax= 65.9%

Strona: 39

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES
F.2 kolnierz metoda II 17 Nov. 2008 20:00 ConnID:N.2

background image

»Gasket Load Ratio PhiG PhiG=0.224 <= 1 =1« » (U= 22.3%) OK«

PhiF0 = Abs( FGI * hG + FQ * (hH - hP) + FR * hH) / WF (G.7-6)
=Abs(7.2901E05*39.5+0*(67.84-7.09)+0*67.84)/70215.66= 0.4101

»Flange Load Ratio PhiF PhiF=0.4101 <= PhiMax =1« » (U= 41%) OK«

PRZYPADEK OBCIAZENIA Nr: 2 - TEST----

PhiB = FBI / (AB * fB0) * Sqr( 1 + (CB * 3.2 * µ ) ^ 2) (G.7-3)
=514.16/(11214.83*285.71)*Sqr(1+(0*3.2*0.2)^2)= 0.1605

»Bolt Load Ratio PhiB PhiB=0.1605 <= 1 =1« » (U= 16%) OK«

PhiG = FGI / (AGt * CG * Qmax) (G.7-4)
=59.45/(45414.86*1.43*50)= 0.0183

»Gasket Load Ratio PhiG PhiG=0.0183 <= 1 =1« » (U= 1.8%) OK«

PhiF0 = Abs( FGI * hG + FQ * (hH - hP) + FR * hH) / WF (G.7-6)
=Abs(59.45*39.81+4.5471E05*(67.84-7.04)+0*67.84)/67821.87=0.4425

»Flange Load Ratio PhiF PhiF=0.4425 <= PhiMax =1« » (U= 44.2%) OK«

PRZYPADEK OBCIAZENIA Nr: 3 - OPER.COND.1

PhiB = FBI / (AB * fB0) * Sqr( 1 + (CB * 3.2 * µ ) ^ 2) (G.7-3)
=508.52/(11214.83*174.93)*Sqr(1+(0*3.2*0.2)^2)= 0.2592

»Bolt Load Ratio PhiB PhiB=0.2592 <= 1 =1« » (U= 25.9%) OK«

PhiG = FGI / (AGt * CG * Qmax) (G.7-4)
=205.38/(45414.86*1.43*32)= 0.0986

»Gasket Load Ratio PhiG PhiG=0.0986 <= 1 =1« » (U= 9.8%) OK«

PhiF0 = Abs( FGI * hG + FQ * (hH - hP) + FR * hH) / WF (G.7-6)
=Abs(205.38*39.81+3.0314E05*(67.84-7.04)+0*67.84)/40329.97=0.6597

»Flange Load Ratio PhiF PhiF=0.6597 <= PhiMax =1« » (U= 65.9%) OK«

TABLE OF SUMMARY

Table LOAD CONDITIONS AND LOAD RATIOS FOR F.2 (m=mating flange):

DESCRIPTION

ID

ASSEMBLY

TEST

OPER.COND.1

Design Pressure(MPa)

P

0.000

1.800

1.200

Resulting Force(kN)

FR

0.000

0.000

0.000

Axial Fluid-Pressure Force(kN)

FQ

0.000

454.709

303.139

Gasket Force(kN)

FG

729.005

59.454

205.376

Total Bolt Force(all bolts)(kN)

FB

729.005

514.163

508.515

Minimum Gasket Seating Force(kN)

FGmin

254.077

59.454

39.636

Bolt Load Ratio

PhiB

0.270

0.160

0.259

Gasket Load Ratio

PhiG

0.224

0.018

0.099

Flange Load Ratio

PhiF

0.410

0.443

0.660

Flange Rotation(degr.)

ThetaF

0.282

0.338

0.315

Loose Flange Rotation(degr.)

ThetaL

0.000

0.000

0.000

Nominal Bolt Force(per bolt)(kN)

FBnom

35.415

0.000

0.000

Nominal Bolt Torque(per bolt)(Nm)

Mtnom

254.986

0.000

0.000

Bolt Elongation at Assembly(mm)

DeltaB

0.000

0.000

0.000

EN13445-5; 10.2.3.3 WYMAGANE MINIMALNE CISNIENIE PRÓBY HYDRAULICZNEJ: Ptmin

NOWY W TEMP. OTOCZENIA DLA GRUPY BADAN 1,2 i 3
Ptmin = MAX( 1.43 * Pd , 1.25 * Pd * f20 / f )
=MAX(1.43*1.2,1.25*1.2*204.17/155.87)= 1.72 MPa

23 F.2 Integral - Flange kolnierz metoda II

Umax= 65.9%

Strona: 40

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-02 Operator :RR Rev.:A
EN13445:Issue26 - ANNEX G - ALTERNATIVE DESIGN RULES FOR FLANGES
F.2 kolnierz metoda II 17 Nov. 2008 20:00 ConnID:N.2

background image

24 F.3 Integral - Flange Ko3nierz 1591

DANE WEJSCIOWE

ELEMENT PRZYLACZONY/POLOZENIE

Mocowanie: N.3* Króciec,Blacha korpu krociec met 1591 S1.1
Polozenie: Wzdluz osi "z" z1= 155

DANE PROJEKTOWE

KARTA PROCESOWA: DANE PROJEKTOWE : Temp= 120°C, P= 1.2MPa, c= .3mm
Mating Flange: Similar
INCLUDE MATING FLANGE AS PART OF DESIGN MODEL: Tak

FLANGE TYPE Side 1

Flange Type: Integral - Flange
Connecting Shell: Cylindrical or Conical Shell

Selected Sketch of Flange: Tapered hub with no thickening in the bore

FLANGE GEOMETRY Side 1

Equivalent axial thickness of flange................:eF 34.00 mm
Axial thickness radially loaded by pressure.........:eP 34.00 mm
Inside diameter of flange(corroded).................:d0 499.06 mm
Average diameter of hub, thin end...................:d1 506.76 mm
Average diameter of hub, thick end..................:d2 526.76 mm
Outside diameter of flange..........................:d4 715.00 mm
Diameter of bolt holes..............................:d5 33.00 mm
Min. wall thickness thin end of hub(corroded).......:e1 27.70 mm
Wall thickness at thick end of hub(corroded)........:e2 7.70 mm
Length of hub.......................................:lH 40.00 mm
Inclination of shell................................:PhiS 0.00 degr.
EN 10028-6:2003, 1.8867 P355QH plate and strip, HT:QT THK<=50mm 120'C
Rm=490 Rp=355 Rpt=300 fF=200 fF20=204.17 ftest=338.1 E=204605(N/mm2) ro=7.85

SHELL DATA Side 1

EN 10028-2:2003, 1.0425 P265GH plate and strip, HT:N THK<=16mm 120'C
Rm=410 Rp=265 Rpt=233.8 f=155.87 f20=170.83 ftest=252.38 E=204605(N/mm2) ro=7.85
Shell thickness(corroded)...........................:eS 0.00 mm
Average diameter of shell...........................:dS 0.00 mm

24 F.3 Integral - Flange Ko3nierz 1591

Umax= 65.9%

Strona: 41

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01T Operator :RR Rev.:A
EN1591 - Design Rules for Gasketed Circular Flanges Connection
F.3 Ko3nierz 1591 17 Nov. 2008 20:02 ConnID:N.3*

background image

DANE SRUB

Waisted Bolt: Nie
Specify Minimum Bolt Load for Assembly Condition, FBmin: Nie
NOMINALNY WYMIAR SRUB I KOMENTARZ: M30x3 ;
Bolt circle diameter................................:d3 650.00 mm
Number of bolts.....................................:nB 20.00
Nominal diameter....................................:dB0 30.00 mm
Effective diameter..................................:dBe 26.72 mm
Number of reassemblies during service...............:NR 10.00
Length of clamp.....................................:lB 0.00 mm
Carbon Steel Bolt Material: Tak
EN 10269:1999, 1.1181 C35E bar, bolt, HT:QT THK<=60mm 120'C
Rm=500 Rp=300 Rpt=262.4 fB=87.47 fB20=100 ftest=150 E=191484(N/mm2) ro=7.93

BOLTING TORQUE

METODA NACIAGU SRUB:
Skrecanie, (pomiar momentu i obrotu nakretki, blisko wytrzymalosci srub) eps
=-0.07 do +0.07
WSPÓLCZYNNIK TARCIA: Normalne/przecietne warunki µ=0.20

GASKET FORM AND GEOMETRY

Gasket Form: Flat gaskets, soft or composite materials or pure metallic.
Inside diameter.....................................:dG1 530.00 mm
Outside diameter....................................:dG2 582.00 mm
Axial thickness.....................................:eG 3.00 mm
Maximum rotation and deformation of flange..........:ThetaMax 1.00 degr.

GASKET TYPE AND MATERIAL

Rodzaj uszczelki: Non-metallic flat gasket(soft), also with metal insertion
Gasket Material: PTFE

Table GASKET PROPERTIES:

Opis

ID

Assembly(T=20C)

Operating(T=120C)

Min. required compressive
stress in gasket(MPa)

Qmin

10

0

Max. allowable
compressive stress in
gasket(MPa)

Qmax

50

32

Compressive E-modulus of
gasket at zero compressive
stress(MPa)

E0

600

480

Rate of change of
compressive modulus of
elasticity

K1

20

20

Gasket compression factor

mi

1.3

1.3

Gasket creep factor

gC

.9

.66

Metal-jacketed gaskets

c1

PRZYPADKI OBCIAZEN

Table FLANGE LOADS:

Opis

ID

Assembly

Test Cond.

Oper.Cond.1

Internal pressure(MPa)

Pi

0

1.8

1.2

24 F.3 Integral - Flange Ko3nierz 1591

Umax= 65.9%

Strona: 42

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01T Operator :RR Rev.:A
EN1591 - Design Rules for Gasketed Circular Flanges Connection
F.3 Ko3nierz 1591 17 Nov. 2008 20:02 ConnID:N.3*

background image

Opis

ID

Assembly

Test Cond.

Oper.Cond.1

External Axial Force(kN)

FA

External
Bend.Moment(kNm)

MA

Not Applicable(for future
use)

0.3

0.3

0.3

Test Condition (Yes/No)

Te

YES

YES

No

Temperature
D=Design/A=Ambient

T

A

A

D

Overall Axial Thermal
Expansion(mm)

DeltaU

NA

WYNIKI OBLICZEN

Design Rules for Gasketed Circular Flanges Connection

4.1 Flange parameters

4.1.1.1 Bolt holes

Pitch between bolts pB
pB = PI * d3 / nB ((1)) =3.14*650/20= 102.10 mm
Effective diameter of the bolt hole d5e
d5e = d5 * Sqr( d5 / pB) ((2)) =33*Sqr(33/102.1)= 18.76 mm
Effective bolt circle diameter d3e
d3e = d3 * ( 1 - 2 / nB ^ 2) ((4)) =650*(1-2/20^2)= 646.75 mm
CosPhiS = Cos( PhiS) =Cos(0)= 1.00
TanPhiS = Tan( PhiS) =Tan(0)= 0.00
CosPhiSm = Cos( PhiSm) =Cos(0)= 1.00
TanPhiSm = Tan( PhiSm) =Tan(0)= 0.00

4.1.1.2 Effective dimensions of flange ring

For an integral flange and blind flange , calculate:
bF = (d4 - d0) / 2 - d5e ((5)) =(715-499.06)/2-18.76= 89.21 mm
dF = (d4 + d0) / 2 ((5)) =(715+499.06)/2= 607.03 mm

Mating Flange

For an integral flange and blind flange, calculate:
bFm = (d4m - d0m) / 2 - d5e ((5)) =(715-499.06)/2-18.76= 89.21 mm
dFm = (d4m + d0m) / 2 ((5)) =(715+499.06)/2= 607.03 mm

4,1,2 Connected shell

4.1.2.1 Tapered hub
beta = e2 / e1 ((9)) =7.7/27.7= 0.2780
eE = e1*(1+(beta-1)*lH/((beta/3)*Sqr(d1*e1)+lH)) ((9))
=27.7*(1+(0.278-1)*40/((0.278/3)*Sqr(506.76*27.7)+40))= 12.01 mm
dE = (MIN(d1-e1+eE,d2+e2-eE)+MAX(d1+e1-eE,d2-e2+eE))/2 ((10))
=(MIN(506.76-27.7+12.01,526.76+7.7-12.01)+MAX(506.76+27.7-12.01,526.76-7.7+
12.01))/2= = 511.07 mm

Mating Flange

4.1.2.1 Tapered hub
betam = e2m / e1m ((9)) =7.7/27.7= 0.2780
eEm = e1m*(1+(betam-1)*lHm/((betam/3)*Sqr(d1m*e1m)+lHm)) ((9))
=27.7*(1+(0.278-1)*40/((0.278/3)*Sqr(506.76*27.7)+40))= 12.01 mm
dEm = (MIN(d1m-e1m+eEm,d2m+e2m-eEm)+MAX(d1m+e1m-eEm,d2m-e2m+eEm))/2 ((10))
=(MIN(506.76-27.7+12.01,526.76+7.7-12.01)+MAX(506.76+27.7-12.01,526.76-7.7+
12.01))/2= = 511.07 mm

16.6.4 WARUNKI STOSOWANIA

»Geometry, the method applies when:
»a) Zlacze doczolowe gdzie wewnetrzna i zewnetrzna powierzchnie przechodza
lagodnie w stozek i cylinder bez miejscowego zmniejszenia grubosci
»- there are two similar or dissimilar flanges, or one flange and a blind flange;
»- the whole assembly is axisymmetric;
»- there are four or more identical, uniformly distributed bolts;

24 F.3 Integral - Flange Ko3nierz 1591

Umax= 65.9%

Strona: 43

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01T Operator :RR Rev.:A
EN1591 - Design Rules for Gasketed Circular Flanges Connection
F.3 Ko3nierz 1591 17 Nov. 2008 20:02 ConnID:N.3*

background image

»- there is a circular gasket, located within the bolt circle on plane surfacesand
compressed axially;
»- the flange dimensions met the following conditions:
»a) 0.2=0.2 <= bF/eF=2.62« » OK«
»a) bF/eF=2.62 <= 5.0=5« » OK«
»c) CosPhiS=1 >= 1/(1+0.01*dS/eS)=0« » OK«
»NOTE/NOTE 1: Condition a) need not to be met for a collar in combination with a
loose flange, see Figure G.3-10 a) and b).
»NOTE/NOTE 2: Condition b) is to limit non-uniformity of gasket pressure due
tospacing of bolts. The values 0,01 and 0,10 are to be applied for soft (non-
metallic) and hard (metallic) gaskets respectively. A more precise criterion is
given in G.8.1.
»The following configurations are excluded from the scope of the method:
»- flanges of essentially non-axisymmetric geometry, e.g. split loose flanges,
oval flanges or gusset reinforced flanges;
»- flange joints having metal to metal contact between the flanges or between the
flanges and a spacer ring fitted either inside or outside the gasket or inside or
outside the bolts. An example is a spiral wound gasket on a high pressure
application.

G.4.1.2 Material characteristics

»Values of nominal design stress for bolts shall be determined as for shells
inclause 6.
»Material properties for gaskets may be taken from G.9.
»NOTE/NOTE: For gaskets which undergo large deformation (e.g. soft rubber) the
results can be conservative (e.g. required bolt load too high, allowable fluid
pressure too low, etc.) because the method presupposes small deformations.

G.4.1.3 Loads

»This method applies to the following loads:
»- fluid pressure : internal or external.
»- external loads : axial forces and bending moment.
»- axial thermal expansion of flanges, bolts and gasket.
»The following are not taken into account:
»- External torsional moments and external shear loads, e.g. due to pipework.

G.4.2 Mechanical model

»The method is based on the following mechanical model:
»- Geometry of both flanges and gasket is axisymmetric. Small deviations suchas
those due to a finite number of bolts, are permitted.
»- Flange ring cross section on a radial cut remains undeformed. Only
circumferential stresses and strains in the ring are considered. Radial and axial
stresses and strains are neglected. This leads to the conditions in G.4.1.1 a).
»- Shell connected to the flange ring is cylindrical. A tapered hub is treated
as an equivalent cylindrical shell. It has a calculated wall thickness which is
different for elastic and plastic behaviour but always lies between the
thicknesses of the thin and thick end of the hub. Conical and spherical shells are
treated as equivalent cylindrical shells with same wall thickness as the actual
shell; the differences in shape are explicitly taken into account in the formulae.
This simplification leads to the condition in G.4.1.1 c). The method assumes equal
radial deformation and rotation of the flange ring and the shell at their junction.
»- Gasket is in contact with the flange faces over an annular area which the
method determines. The effective radial width bGe of the gasket, which may be less
»- Modulus of elasticity of gasket material may increase with the compressiv
e stress Q on the gasket. The method uses a linear model: EG == E0 + K1×Q, in which
»- Creep of gasket material is taken into account approximately by factor gC.
»- Thermal and mechanical axial deformations of flanges, bolts and gaskets are
taken into account.
»- Loading of the whole flange connection is axisymmetric. An external bending
moment is treated as an equivalent axial force transmitted by the bolts; see
equation (G.6-2).
»- Load changes between load conditions cause changes in the bolt and gasket
forces. These are calculated taking account of elastic deformations of all
components. The required initial assembly force is calculated (see G.6.4) to
ensure that the required forces on the gasket to ensure leak tightness are
achieved under all conditions (see G.6.3).

24 F.3 Integral - Flange Ko3nierz 1591

Umax= 65.9%

Strona: 44

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01T Operator :RR Rev.:A
EN1591 - Design Rules for Gasketed Circular Flanges Connection
F.3 Ko3nierz 1591 17 Nov. 2008 20:02 ConnID:N.3*

background image

»- Load limit checks are based on limit loads for each component. Excessive
plastic deformations are prevented. The load limit for gaskets, which depends on
Qmax , is an approximation.
»The following are not taken into account in the model:
»- Bolt bending stiffness and bending strength. Ignoring bolt bending is a
conservative simplification. Calculated tensile stiffness of bolts includes
deformation of the bolt threads within a nut or tapped hole, see equation (G.5-36).
»- Creep of flanges and bolts. This is due to lack of relevant material data for
deformation.
»- Different radial deformations of the flanges. With two equal flanges this is
not relevant as the radial deformations are the same.

4.2 Bolt parameters

NOTE/NOTE: The bolt dimensions are shown in Figure 2. Diameters of standardised
metric series bolts (in accordance to ISO 4014 and ISO 4016) are given in Annex B
4.2.1 Effective cross-section area of bolts
AB = nB * PI / 4 * MIN( dBe, dBs) ^ 2 ((33))
=20*3.14/4*MIN(26.72,26.72)^2= 11214.83 mm2
le = lB - lS =0-0= 0.00 mm
4.2.2 Flexibility modulus of bolts
XB = 4/(PI*nB)*(lS/dBs^2+le/(dBe)^2+0.8/dB0) ((34))
=4/(3.14*20)*(0/26.72^2+0/(26.72)^2+0.8/30)= 0.0017 mm-1
The thickness of any washers shall be included in lengths ls and le.
kB = 1.2 * µ * dB0 =1.2*0.2*30= 7.20 mm
Scatter values for bolting up eps+ = .07
epsp = eps1 * (1 + 3 / SQR( nB)) / 4
=0.07*(1+3/SQR(20))/4= 0.0292
Scatter values for bolting up eps- = .07
epsn = eps * (1 + 3 / SQR( nB)) / 4
=0.07*(1+3/SQR(20))/4= 0.0292

4.3 Gasket parameters

bGt = (dG2 - dG1) / 2 ((35)) =(582-530)/2= 26.00 mm
dGt = (dG2 + dG1) / 2 ((35)) =(582+530)/2= 556.00 mm
AGt = PI * dGt * bGt ((36)) =3.14*556*26= 45414.86 mm2

PRZYPADEK OBCIAZENIA Nr: 1 - ASSEMBLY

FR0 = FA0 + 4 * MA0 / d3e =0+4*0/646.75= 0.00 kN
Effective gasket width and effective gasket area
bGe = MIN( bGi, bGt) =MIN(14.24,26)= 14.24 mm

dGe = dG2 - bGe =582-14.24= 567.76 mm

AGe = PI * dGe * bGe ((39)) =3.14*567.76*14.24= 25407.74 mm2
NOTE/NOTE 3: The effective gasket diameter dGe is the diameter where the
gasketforce acts. It is also determined from Table 1

4.1.4 Flexibility-related flange parameters

4.1.4.1 Integral flange, stub or collar
gamma = eE * dF / (bF * dE * CosPhiS) ((17))
=12.01*607.03/(89.21*511.07*1)= 0.1599
teta = 0.55 * CosPhiS * Sqr( dE * eE) / eF ((18))
=0.55*1*Sqr(511.07*12.01)/34= 1.27
lamda = 1 - eP / eF ((19)) =1-34/34= 0.00
Cf = (1+gamma*teta)/(1+gamma*teta*(4*(1-3*lamda+3*lamda^2)+6*(1-
2*lamda)*teta+6*teta^2)+3*gamma^2*teta^4) ((20))
=(1+0.1599*1.27)/(1+0.1599*1.27*(4*(1-3*0+3*0^2)+6*(1-2*0)*1.27+6*1.27^2)+3
*0.1599^2*1.27^4)= =0.2186
hS = eF*1.1*Sqr(eE/dE)*(1-2*lamda+teta)/(1+gamma*teta) ((21))
=34*1.1*Sqr(12.01/511.07)*(1-2*0+1.27)/(1+0.1599*1.27)= 10.81 mm
hT = eF*(1-2*lamda-gamma*teta^2)/(1+gamma*teta) ((22))
=34*(1-2*0-0.1599*1.27^2)/(1+0.1599*1.27)= 21.01 mm
kQ = 0.85 / CosPhiS ((25)) =0.85/1= 0.8500
kR = -0.15 / CosPhiS ((26)) =-0.15/1= -.15
hQ = (hS*kQ+hT*(2*dF*eP/dE^2-0.5*TanPhiS))*(dE/dGe)^2 ((23))
=(10.81*0.85+21.01*(2*607.03*34/511.07^2-0.5*0))*(511.07/567.76)^2= 10.13 mm
hR = hS * kR - hT * 0.5 * TanPhiS ((24))

24 F.3 Integral - Flange Ko3nierz 1591

Umax= 65.9%

Strona: 45

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01T Operator :RR Rev.:A
EN1591 - Design Rules for Gasketed Circular Flanges Connection
F.3 Ko3nierz 1591 17 Nov. 2008 20:02 ConnID:N.3*

background image

=10.81*-0.15-21.01*0.5*0= -1.62 mm
ZF = 3 * dF * Cf / (PI * bF * eF ^ 3) ((27))
=3*607.03*0.2186/(3.14*89.21*34^3)= 3,6148E-05 mm-3
ZL = 0 ((27)) =0= 0.00

Mating Flange (m)

4.1.4.1 Integral flange, stub or collar
gammam = eEm * dFm / (bFm * dEm * CosPhiSm) ((17))
=12.01*607.03/(89.21*511.07*1)= 0.1599
tetam = 0.55 * CosPhiSm * Sqr( dEm * eEm) / eFm ((18))
=0.55*1*Sqr(511.07*12.01)/34= 1.27
lamdam = 1 - ePm / eFm ((19)) =1-34/34= 0.00
Cfm = (1+gammam*tetam)/(1+gammam*tetam*(4*(1-3*lamdam+3*lamdam^2)+6*(1-
2*lamdam)*tetam+6*tetam^2)+3*gammam^2*tetam^4) ((20))
=(1+0.1599*1.27)/(1+0.1599*1.27*(4*(1-3*0+3*0^2)+6*(1-2*0)*1.27+6*1.27^2)+3
*0.1599^2*1.27^4)= =0.2186
hSm = eFm*1.1*Sqr(eEm/dEm)*(1-2*lamdam+tetam)/(1+gammam*tetam) ((21))
=34*1.1*Sqr(12.01/511.07)*(1-2*0+1.27)/(1+0.1599*1.27)= 10.81 mm
hTm = eFm*(1-2*lamdam-gammam*tetam^2)/(1+gammam*tetam) ((22))
=34*(1-2*0-0.1599*1.27^2)/(1+0.1599*1.27)= 21.01 mm
kQm = 0.85 / CosPhiSm ((25)) =0.85/1= 0.8500
kRm = -0.15 / CosPhiSm ((26)) =-0.15/1= -.15
hQm = (hSm*kQm+hTm*(2*dFm*ePm/dEm^2-0.5*TanPhiSm))*(dEm/dGe)^2 ((23))
=(10.81*0.85+21.01*(2*607.03*34/511.07^2-0.5*0))*(511.07/567.76)^2= 10.13 mm
hRm = hSm * kRm + hTm * 0.5 * TanPhiSm ((24))
=10.81*-0.15+21.01*0.5*0= -1.62 mm
ZFm = 3 * dFm * Cfm / (PI * bFm * eFm ^ 3) ((27))
=3*607.03*0.2186/(3.14*89.21*34^3)= 3,6148E-05 mm-3
ZLm = 0 ((27)) =0= 0.00

4.1.3.2 Integral flange and blind flange
hG = (d3e - dGe) / 2 ((14)) =(646.75-567.76)/2= 39.50 mm
hH = (d3e - dE) / 2 ((14)) =(646.75-511.07)/2= 67.84 mm
hL = 0 ((14)) =0= 0.00 mm
Lever arm for integral flange and blind flange:
hG0 = (d3e - dGe) / 2 =(646.75-567.76)/2= 39.50 mm

Mating Flange (m)

4.1.3.2 Integral flange and blind flange
hGm = (d3e - dGe) / 2 ((14)) =(646.75-567.76)/2= 39.50 mm
hHm = (d3e - dEm) / 2 ((14)) =(646.75-511.07)/2= 67.84 mm
hLm = 0 ((14)) =0= 0.00 mm
Lever arm for integral flange and blind flange:
hG0m = (d3e - dGe) / 2 =(646.75-567.76)/2= 39.50 mm

Table 1 Effective gasket geometry
EGm = EG0 + 0.5 * K1 * FG0 / AGe
=600+0.5*20*6.8759E05/25407.74= 870.62
ASSEMBLY
bGi =
Sqr((eG/(PI*dGe*EGm)/(hG0*ZF/EF0+hG0m*ZFm/EF0m))+(FG0/(PI*dGe*Qmax0))^2)(Table 1)
=Sqr((3/(3.14*567.76*870.62)/(39.5*3.6148E-05/2.1177E05+39.5*3.6148E-05/2.1
177E05))+(6.8759E05/(3.14*567.76*50))^2)= = 14.24 mm

4.3.3 Axial flexibility modulus of gasket

XG = eG / AGt * (bGt + eG / 2) / (bGe + eG / 2) ((42))
=3/45414.86*(26+3/2)/(14.24+3/2)= 1,1538E-04 mm-1

4.1.3 Lever arms

hP = ((dGe-dE)^2*(2*dGe+dE)/6+2*eP^2*dF)/dGe^2 ((13))
=((567.76-511.07)^2*(2*567.76+511.07)/6+2*34^2*607.03)/567.76^2= 7.09 mm
hPm = ((dGe-dEm)^2*(2*dGe+dEm)/6+2*ePm^2*dFm)/dGe^2 ((13))
=((567.76-511.07)^2*(2*567.76+511.07)/6+2*34^2*607.03)/567.76^2= 7.09 mm

24 F.3 Integral - Flange Ko3nierz 1591

Umax= 65.9%

Strona: 46

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01T Operator :RR Rev.:A
EN1591 - Design Rules for Gasketed Circular Flanges Connection
F.3 Ko3nierz 1591 17 Nov. 2008 20:02 ConnID:N.3*

background image

5.1 Applied Loads

Fluid Pressure
FQ = PI / 4 * dGe ^ 2 * p ((43)) =3.14/4*567.76^2*0= 0.00 MPa
Additional External Loads
FR = FA0 + 4 * MA0 / d3e ((44)) =0+4*0/646.75= 0.00 N
Q0 = FG0 / AGe =6.8759E05/25407.74= 27.06 MPa
EGI = EG0 + K1 * Q0 =600+20*27.06= 1141.24 MPa

5.2 Compliance of the joint

Tmp1 = (ZL * hL ^ 2 / EL0 + ZLm * hLm ^ 2 / EL0m + XB / EB0)
=(0*0^2/212000+0*0^2/212000+0.0017/199964)= 8,4898E-09 mm/N
YGI = ZF*hG^2/EF0+ZFm*hGm^2/EF0m+Tmp1+XG/(EGI*gC) ((46))
=3.6148E-05*39.5^2/2.1177E05+3.6148E-05*39.5^2/2.1177E05+8.4898E-09+1.1538E
-04/(1141.24*0.9)= =6,534E-07 mm/N
YQI = ZF*hG*(hH-hP+hQ)/EF0+ZFm*hGm*(hHm-hPm+hQm)/EF0m+Tmp1+XG/(EG0*gC) ((47))
=3.6148E-05*39.5*(67.84-7.09+10.13)/2.1177E05+3.6148E-05*39.5*(67.84-7.09+1
0.13)/2.1177E05+8.4898E-09+1.1538E-04/(600*0.9)= =9,6432E-07 mm/N
YRI = ZF*hG*(hH+hR)/EF0+ZFm*hGm*(hHm+hRm)/EF0m+Tmp1+XG/(EG0*gC) ((48))
=3.6148E-05*39.5*(67.84+-1.62)/2.1177E05+3.6148E-05*39.5*(67.84+-1.62)/2.11
77E05+8.4898E-09+1.1538E-04/(600*0.9)= =9,014E-07 mm/N
FG0min = AGe * Qmin ((49)) =25407.74*10= 2,5408E05 N
FG0req = Max( FG0min, FGDelta) ((52))
=Max(2.5408E05,6.8759E05)= 687.59 kN

FB0req = FG0req + FR0 ((53)) =687.59+0= 687.59 kN

Calkowity nominalny naciag wstepny
Fb0nom = FB0req / (1 - epsn) ((63)) =687.59/(1-0.0292)= 708.30 kN
Calkowity nominalny naciag wstepny dla sruby
Fbnom = FB0nom / nB =708.3/20= 35.41 kN

Nominal Required Torque per Bolt
Mtnom = kB * FBnom =7.2*35.41= 254.99 kN

Minimum force
FB0min = FB0nom * (1 - epsn) ((60)) =708.3*(1-0.0292)= 687.59 kN
Maximum forces to be used for the load limit calculation.
FB0max = FB0nom * (1 + epsp) ((61)) =708.3*(1+0.0292)= 729.01 kN
FG0max = FB0max - FR0 ((66)) =729.01-0= 729.01 kN

6 Load limits

Load Ratio of Bolts

MtB = Mtnom * (1 + epsp) =254.99*(1+0.0292)= 262.44 kN
IB = PI / 12 * MIN( dBe , dBs) ^ 3
=3.14/12*MIN(26.72,26.72)^3= 4994.34 mm3
Load Limit of Bolts
PhiB = Sqr(( FBI / AB) ^ 2 + 3 * (CB * MtB / IB) ^ 2) / fB0 ((71))
=Sqr((7.2901E05/11214.83)^2+3*(1*262.44/4994.34)^2)/285.71=0.3915

»Bolt Load Ratio PhiB PhiB=0.3915 <= 1 =1« » (U= 39.1%) OK«

Load Ratio of Gasket

PhiG = FGI / (AGt * Qmax) ((72)) =7.2901E05/(45414.86*50)=0.3210

»Gasket Load Ratio PhiG PhiG=0.321 <= 1 =1« » (U= 32.1%) OK«

hG = (d3e - dGe) / 2 ((14)) =(646.75-567.76)/2= 39.50 mm
hH = (d3e - dE) / 2 ((14)) =(646.75-511.07)/2= 67.84 mm
hL = 0 ((14)) =0= 0.00 mm

6.4 Integral flange, stub or collar

eD = e1*(1+(beta-1)*lH/((beta/3)^4*(d1*e1)^2+lH^4)^0.25) ((75))
=27.7*(1+(0.278-1)*40/((0.278/3)^4*(506.76*27.7)^2+40^4)^0.25)= 7.73 mm
fE = Min( fF0, fS0) ((76)) =Min(338.1,252.38)= 252.38 N/mm2
deltaQ = p * dE / (fE * 2 * eD * CosPhiS) ((77))
=0*511.07/(252.38*2*7.73*1)= 0.00
deltaR = FR / (fE * PI * dE * eD * CosPhiS) ((77))

24 F.3 Integral - Flange Ko3nierz 1591

Umax= 65.9%

Strona: 47

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01T Operator :RR Rev.:A
EN1591 - Design Rules for Gasketed Circular Flanges Connection
F.3 Ko3nierz 1591 17 Nov. 2008 20:02 ConnID:N.3*

background image

=0/(252.38*3.14*511.07*7.73*1)= 0.00
jM = Sgn( FGI * hG + FQ * (hH - hP) + FR * hH) ((80))
=Sgn(7.2901E05*39.5+0*(67.84-7.09)+0*67.84)= 1.00
cM = SQR(1.333*(1-0.75*(0.5*deltaQ+deltaR)^2*(1-(0.75*deltaQ^2+deltaR^2))) ((78))
=SQR(1.333*(1-0.75*(0.5*0+0)^2*(1-(0.75*0^2+0^2)))= 1.15
PsiOpt = jM * (2 * eP / eF - 1) ((83)) =1*(2*34/34-1)= 1.00
PsiMax(jS(1) , kM(1) ,kS(1))= 0.0805
Psi0 (jS(0) , kM(0) ,kS(0))= 0.0000
PsiMin(jS(-1) , kM(-1) ,kS(1))= -.0805
PsiZ = PsiMax =0.0805= 0.0805

WF = PI/4*(fF0*2*bF*eF^2*(1+2*PsiOpt*PsiZ-PsiZ^2)+fE*dE*eD^2*cM*jM*kM)
=3.14/4*(338.1*2*89.21*34^2*(1+2*1*0.0805-0.0805^2)+252.38*511.07*7.73^2*1.
15*1*1)= = 70215.66 Nm

PhiF0 = Abs( FGI * hG + FQ * (hH - hP) + FR * hH) / WF ((73))
=Abs(7.2901E05*39.5+0*(67.84-7.09)+0*67.84)/70215.66= 0.4101

»Flange Load Ratio PhiF PhiF=0.4101 <= PhiMax =1« » (U= 41%) OK«

Annex A Requirements for limitation of non-uniformity of gasket stress

»Limitation of non-uniformity of gasket stress(bolting pitch) eFmin
=13.11 <= = eF =34«» OK«

Annex E Flange Rotation

FGImin = (FG0min*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI
=(6.8759E05*6.534E-07-(0*9.6432E-07+0*9.014E-07-0*9.014E-07+0))/6.534E-07
= 687.59 kN
FGImax = (FG0max*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI
=(7.2901E05*6.534E-07-(0*9.6432E-07+0*9.014E-07-0*9.014E-07+0))/6.534E-07
= 729.01 kN
FBImin = FGImin + FQ + FR =687.59+0+0= 687.59 kN
FBImax = FGImax + FQ + FR =729.01+0+0= 729.01 kN
ThetaFmax = ZF/EF0*(FGImax*hG+FQ*(hH-hP+hQ)+FR*(hH+hR)) (E.1))
=3.6148E-05/2.1177E05*(729.01*39.5+0*(67.84-7.09+10.13)+0*(67.84+-1.62))
=0.2820 Degr.

ThetaFmaxm = ZFm/EF0m*(FGImax*hGm+FQ*(hHm-hPm+hQm)+FR*(hHm+hRm)) (E.1))
=3.6148E-05/2.1177E05*(729.01*39.5+0*(67.84-7.09+10.13)+0*(67.84+-1.62))
=0.2820 Degr.

»Flange Rotation ThetaFmax=0.282 <= ThetaMax =1« » OK«
»Loose Flange Rotation ThetaLmax=0 <= ThetaMax =1« » OK«
»Mating Flange Rotation ThetaFmaxm=0.282 <= ThetaMax =1« » OK«
»Mating Loose Flange Rotation ThetaLmaxm=0 <= ThetaMax =1« » OK«

PRZYPADEK OBCIAZENIA Nr: 2 - TEST COND.

4.3.3 Axial flexibility modulus of gasket

XG = eG / AGt * (bGt + eG / 2) / (bGe + eG / 2) ((42))
=3/45414.86*(26+3/2)/(14.24+3/2)= 1,1538E-04 mm-1

4.1.3 Lever arms

hP = ((dGe-dE)^2*(2*dGe+dE)/6+2*eP^2*dF)/dGe^2 ((13))
=((567.76-511.07)^2*(2*567.76+511.07)/6+2*34^2*607.03)/567.76^2= 7.04 mm
hPm = ((dGe-dEm)^2*(2*dGe+dEm)/6+2*ePm^2*dFm)/dGe^2 ((13))
=((567.76-511.07)^2*(2*567.76+511.07)/6+2*34^2*607.03)/567.76^2= 7.04 mm

24 F.3 Integral - Flange Ko3nierz 1591

Umax= 65.9%

Strona: 48

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01T Operator :RR Rev.:A
EN1591 - Design Rules for Gasketed Circular Flanges Connection
F.3 Ko3nierz 1591 17 Nov. 2008 20:02 ConnID:N.3*

background image

5.1 Applied Loads

Fluid Pressure
FQ = PI / 4 * dGe ^ 2 * p ((43)) =3.14/4*567.76^2*1.8= 4,5471E05 MPa
Additional External Loads
FR = FA0 + 4 * MA0 / d3e ((44)) =0+4*0/646.75= 0.00 N

5.2 Compliance of the joint

Tmp1 = (ZL * hL ^ 2 / EL0 + ZLm * hLm ^ 2 / EL0m + XB / EB0)
=(0*0^2/212000+0*0^2/212000+0.0017/199964)= 8,4898E-09 mm/N
YGI = ZF*hG^2/EF0+ZFm*hGm^2/EF0m+Tmp1+XG/(EGI*gC) ((46))
=3.6148E-05*39.5^2/2.1177E05+3.6148E-05*39.5^2/2.1177E05+8.4898E-09+1.1538E
-04/(1141.24*0.9)= =6,534E-07 mm/N
YQI = ZF*hG*(hH-hP+hQ)/EF0+ZFm*hGm*(hHm-hPm+hQm)/EF0m+Tmp1+XG/(EG0*gC) ((47))
=3.6148E-05*39.5*(67.84-7.04+10.13)/2.1177E05+3.6148E-05*39.5*(67.84-7.04+1
0.13)/2.1177E05+8.4898E-09+1.1538E-04/(600*0.9)= =9,6494E-07 mm/N
YRI = ZF*hG*(hH+hR)/EF0+ZFm*hGm*(hHm+hRm)/EF0m+Tmp1+XG/(EG0*gC) ((48))
=3.6148E-05*39.5*(67.84+-1.62)/2.1177E05+3.6148E-05*39.5*(67.84+-1.62)/2.11
77E05+8.4898E-09+1.1538E-04/(600*0.9)= =9,014E-07 mm/N
QImin = mi * p =1.3*1.8= 2.34 MPa
FGImin = Max( AGe * QImin, - ( FQ + FR)) ((50))
=Max(25407.74*2.34,-(4.5471E05+0))= 59.45 kN
FGDelta = (FGImin*YGI+FQ*YQI+(FR*YRI-FR0*YR0)+DeltaU)/YG0) ((51))
=(59.45*6.534E-07+4.5471E05*9.6494E-07+(0*9.014E-07-0*9.014E-07)+0)/6.534E-
07)= = 730.97 kN
Minimum force
FB0min = FB0nom * (1 - epsn) ((60)) =752.98*(1-0.0292)= 730.97 kN
Maximum forces to be used for the load limit calculation.
FB0max = FB0nom * (1 + epsp) ((61)) =752.98*(1+0.0292)= 775.00 kN
FG0max = FB0max - FR0 ((66)) =775.-0= 775.00 kN
The calculation forces in subsequent conditions shall be based on a design
assembly gasket force FG0,d
FG0d = Max( FGDelta, 2 / 3 * (1 - 10 / NR) * FB0max - FR0) ((67))
=Max(730.97,2/3*(1-10/10)*775.-0)= 730.97 kN
Gasket force for load limit calculations
FGI = (FG0d*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI ((68))
=(730.97*6.534E-07-(4.5471E05*9.6494E-07+0*9.014E-07-0*9.014E-07+0))/6.534E
-07= = 59.45 kN

Bolt force for load limit calculations
FBI = FGI + FQ + FR ((69)) =59.45+4.5471E05+0= 514.16 kN

6 Load limits

Load Ratio of Bolts

MtB = Mtnom * (1 + epsp) =254.99*(1+0.0292)= 262.44 kN
IB = PI / 12 * MIN( dBe , dBs) ^ 3
=3.14/12*MIN(26.72,26.72)^3= 4994.34 mm3
Load Limit of Bolts
PhiB = Sqr(( FBI / AB) ^ 2 + 3 * (CB * MtB / IB) ^ 2) / fB0 ((71))
=Sqr((514.16/11214.83)^2+3*(0*262.44/4994.34)^2)/285.71=0.1605

»Bolt Load Ratio PhiB PhiB=0.1605 <= 1 =1« » (U= 16%) OK«

Load Ratio of Gasket

PhiG = FGI / (AGt * Qmax) ((72)) =59.45/(45414.86*50)= 0.0262

»Gasket Load Ratio PhiG PhiG=0.0262 <= 1 =1« » (U= 2.6%) OK«

hG = (d3e - dGe) / 2 ((14)) =(646.75-567.76)/2= 39.81 mm
hH = (d3e - dE) / 2 ((14)) =(646.75-511.07)/2= 67.84 mm
hL = 0 ((14)) =0= 0.00 mm

24 F.3 Integral - Flange Ko3nierz 1591

Umax= 65.9%

Strona: 49

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01T Operator :RR Rev.:A
EN1591 - Design Rules for Gasketed Circular Flanges Connection
F.3 Ko3nierz 1591 17 Nov. 2008 20:02 ConnID:N.3*

background image

6.4 Integral flange, stub or collar

eD = e1*(1+(beta-1)*lH/((beta/3)^4*(d1*e1)^2+lH^4)^0.25) ((75))
=27.7*(1+(0.278-1)*40/((0.278/3)^4*(506.76*27.7)^2+40^4)^0.25)= 7.73 mm
fE = Min( fF0, fS0) ((76)) =Min(338.1,252.38)= 252.38 N/mm2
deltaQ = p * dE / (fE * 2 * eD * CosPhiS) ((77))
=1.8*511.07/(252.38*2*7.73*1)= 0.2358
deltaR = FR / (fE * PI * dE * eD * CosPhiS) ((77))
=0/(252.38*3.14*511.07*7.73*1)= 0.00
jM = Sgn( FGI * hG + FQ * (hH - hP) + FR * hH) ((80))
=Sgn(59.45*39.81+4.5471E05*(67.84-7.04)+0*67.84)= 1.00
cM = SQR(1.333*(1-0.75*(0.5*deltaQ+deltaR)^2*(1-(0.75*deltaQ^2+deltaR^2))) ((78))
=SQR(1.333*(1-0.75*(0.5*0.2358+0)^2*(1-(0.75*0.2358^2+0^2)))= 1.15
PsiOpt = jM * (2 * eP / eF - 1) ((83)) =1*(2*34/34-1)= 1.00
PsiMax(jS(1) , kM(1) ,kS(1))= 0.0574
Psi0 (jS(0) , kM(0) ,kS(0))= -.0152
PsiMin(jS(-1) , kM(-1) ,kS(1))= -.1022
PsiZ = PsiMax =0.0574= 0.0574

WF = PI/4*(fF0*2*bF*eF^2*(1+2*PsiOpt*PsiZ-PsiZ^2)+fE*dE*eD^2*cM*jM*kM)
=3.14/4*(338.1*2*89.21*34^2*(1+2*1*0.0574-0.0574^2)+252.38*511.07*7.73^2*1.
15*1*1)= = 67821.87 Nm

PhiF0 = Abs( FGI * hG + FQ * (hH - hP) + FR * hH) / WF ((73))
=Abs(59.45*39.81+4.5471E05*(67.84-7.04)+0*67.84)/67821.87=0.4425

»Flange Load Ratio PhiF PhiF=0.4425 <= PhiMax =1« » (U= 44.2%) OK«

Annex E Flange Rotation

FGImin = (FG0min*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI
=(6.8759E05*6.534E-07-(4.5471E05*9.6494E-07+0*9.014E-07-0*9.014E-07+0))/6.5
34E-07= = 16.07 kN
FGImax = (FG0max*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI
=(7.2901E05*6.534E-07-(4.5471E05*9.6494E-07+0*9.014E-07-0*9.014E-07+0))/6.5
34E-07= = 57.49 kN
FBImin = FGImin + FQ + FR =16.07+4.5471E05+0= 470.78 kN
FBImax = FGImax + FQ + FR =57.49+4.5471E05+0= 512.20 kN
ThetaFmax = ZF/EF0*(FGImax*hG+FQ*(hH-hP+hQ)+FR*(hH+hR)) (E.1))
=3.6148E-05/2.1177E05*(57.49*39.5+4.5471E05*(67.84-7.04+10.13)+0*(67.84+-1.
62))= =0.3380 Degr.

ThetaFmaxm = ZFm/EF0m*(FGImax*hGm+FQ*(hHm-hPm+hQm)+FR*(hHm+hRm)) (E.1))
=3.6148E-05/2.1177E05*(57.49*39.5+4.5471E05*(67.84-7.04+10.13)+0*(67.84+-1.
62))= =0.3380 Degr.

»Flange Rotation ThetaFmax=0.338 <= ThetaMax =1« » OK«
»Loose Flange Rotation ThetaLmax=0 <= ThetaMax =1« » OK«
»Mating Flange Rotation ThetaFmaxm=0.338 <= ThetaMax =1« » OK«
»Mating Loose Flange Rotation ThetaLmaxm=0 <= ThetaMax =1« » OK«

PRZYPADEK OBCIAZENIA Nr: 3 - OPER.COND.1

4.3.3 Axial flexibility modulus of gasket

XG = eG / AGt * (bGt + eG / 2) / (bGe + eG / 2) ((42))
=3/45414.86*(26+3/2)/(14.24+3/2)= 1,1538E-04 mm-1

4.1.3 Lever arms

hP = ((dGe-dE)^2*(2*dGe+dE)/6+2*eP^2*dF)/dGe^2 ((13))
=((567.76-511.07)^2*(2*567.76+511.07)/6+2*34^2*607.03)/567.76^2= 7.04 mm
hPm = ((dGe-dEm)^2*(2*dGe+dEm)/6+2*ePm^2*dFm)/dGe^2 ((13))
=((567.76-511.07)^2*(2*567.76+511.07)/6+2*34^2*607.03)/567.76^2= 7.04 mm

24 F.3 Integral - Flange Ko3nierz 1591

Umax= 65.9%

Strona: 50

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01T Operator :RR Rev.:A
EN1591 - Design Rules for Gasketed Circular Flanges Connection
F.3 Ko3nierz 1591 17 Nov. 2008 20:02 ConnID:N.3*

background image

5.1 Applied Loads

Fluid Pressure
FQ = PI / 4 * dGe ^ 2 * p ((43)) =3.14/4*567.76^2*1.2= 3,0314E05 MPa
Additional External Loads
FR = FA0 + 4 * MA0 / d3e ((44)) =0+4*0/646.75= 0.00 N

5.2 Compliance of the joint

Tmp1 = (ZL * hL ^ 2 / EL0 + ZLm * hLm ^ 2 / EL0m + XB / EB0)
=(0*0^2/212000+0*0^2/212000+0.0017/191484)= 8,8658E-09 mm/N
YGI = ZF*hG^2/EF0+ZFm*hGm^2/EF0m+Tmp1+XG/(EGI*gC) ((46))
=3.6148E-05*39.5^2/2.0461E05+3.6148E-05*39.5^2/2.0461E05+8.8658E-09+1.1538E
-04/(1141.24*0.66)= =7,1328E-07 mm/N
YQI = ZF*hG*(hH-hP+hQ)/EF0+ZFm*hGm*(hHm-hPm+hQm)/EF0m+Tmp1+XG/(EG0*gC) ((47))
=3.6148E-05*39.5*(67.84-7.04+10.13)/2.0461E05+3.6148E-05*39.5*(67.84-7.04+1
0.13)/2.0461E05+8.8658E-09+1.1538E-04/(480*0.66)= =9,9881E-07 mm/N
YRI = ZF*hG*(hH+hR)/EF0+ZFm*hGm*(hHm+hRm)/EF0m+Tmp1+XG/(EG0*gC) ((48))
=3.6148E-05*39.5*(67.84+-1.62)/2.0461E05+3.6148E-05*39.5*(67.84+-1.62)/2.04
61E05+8.8658E-09+1.1538E-04/(480*0.66)= =9,3305E-07 mm/N
QImin = mi * p =1.3*1.2= 1.56 MPa
FGImin = Max( AGe * QImin, - ( FQ + FR)) ((50))
=Max(25407.74*1.56,-(3.0314E05+0))= 39.64 kN
FGDelta = (FGImin*YGI+FQ*YQI+(FR*YRI-FR0*YR0)+DeltaU)/YG0) ((51))
=(39.64*7.1328E-07+3.0314E05*9.9881E-07+(0*9.3305E-07-0*9.014E-07)+0)/6.534
E-07)= = 687.59 kN
Minimum force
FB0min = FB0nom * (1 - epsn) ((60)) =708.3*(1-0.0292)= 687.59 kN
Maximum forces to be used for the load limit calculation.
FB0max = FB0nom * (1 + epsp) ((61)) =708.3*(1+0.0292)= 729.01 kN
FG0max = FB0max - FR0 ((66)) =729.01-0= 729.01 kN
The calculation forces in subsequent conditions shall be based on a design
assembly gasket force FG0,d
FG0d = Max( FGDelta, 2 / 3 * (1 - 10 / NR) * FB0max - FR0) ((67))
=Max(687.59,2/3*(1-10/10)*729.01-0)= 687.59 kN
Gasket force for load limit calculations
FGI = (FG0d*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI ((68))
=(687.59*6.534E-07-(3.0314E05*9.9881E-07+0*9.3305E-07-0*9.014E-07+0))/7.132
8E-07= = 205.38 kN

Bolt force for load limit calculations
FBI = FGI + FQ + FR ((69)) =205.38+3.0314E05+0= 508.52 kN

6 Load limits

Load Ratio of Bolts

MtB = Mtnom * (1 + epsp) =254.99*(1+0.0292)= 262.44 kN
IB = PI / 12 * MIN( dBe , dBs) ^ 3
=3.14/12*MIN(26.72,26.72)^3= 4994.34 mm3
Load Limit of Bolts
PhiB = Sqr(( FBI / AB) ^ 2 + 3 * (CB * MtB / IB) ^ 2) / fB0 ((71))
=Sqr((508.52/11214.83)^2+3*(0*262.44/4994.34)^2)/174.93=0.2592

»Bolt Load Ratio PhiB PhiB=0.2592 <= 1 =1« » (U= 25.9%) OK«

Load Ratio of Gasket

PhiG = FGI / (AGt * Qmax) ((72)) =205.38/(45414.86*32)= 0.1413

»Gasket Load Ratio PhiG PhiG=0.1413 <= 1 =1« » (U= 14.1%) OK«

hG = (d3e - dGe) / 2 ((14)) =(646.75-567.76)/2= 39.81 mm
hH = (d3e - dE) / 2 ((14)) =(646.75-511.07)/2= 67.84 mm
hL = 0 ((14)) =0= 0.00 mm

24 F.3 Integral - Flange Ko3nierz 1591

Umax= 65.9%

Strona: 51

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01T Operator :RR Rev.:A
EN1591 - Design Rules for Gasketed Circular Flanges Connection
F.3 Ko3nierz 1591 17 Nov. 2008 20:02 ConnID:N.3*

background image

6.4 Integral flange, stub or collar

eD = e1*(1+(beta-1)*lH/((beta/3)^4*(d1*e1)^2+lH^4)^0.25) ((75))
=27.7*(1+(0.278-1)*40/((0.278/3)^4*(506.76*27.7)^2+40^4)^0.25)= 7.73 mm
fE = Min( fF0, fS0) ((76)) =Min(200,155.87)= 155.87 N/mm2
deltaQ = p * dE / (fE * 2 * eD * CosPhiS) ((77))
=1.2*511.07/(155.87*2*7.73*1)= 0.2546
deltaR = FR / (fE * PI * dE * eD * CosPhiS) ((77))
=0/(155.87*3.14*511.07*7.73*1)= 0.00
jM = Sgn( FGI * hG + FQ * (hH - hP) + FR * hH) ((80))
=Sgn(205.38*39.81+3.0314E05*(67.84-7.04)+0*67.84)= 1.00
cM = SQR(1.333*(1-0.75*(0.5*deltaQ+deltaR)^2*(1-(0.75*deltaQ^2+deltaR^2))) ((78))
=SQR(1.333*(1-0.75*(0.5*0.2546+0)^2*(1-(0.75*0.2546^2+0^2)))= 1.15
PsiOpt = jM * (2 * eP / eF - 1) ((83)) =1*(2*34/34-1)= 1.00
PsiMax(jS(1) , kM(1) ,kS(1))= 0.0579
Psi0 (jS(0) , kM(0) ,kS(0))= -.0172
PsiMin(jS(-1) , kM(-1) ,kS(1))= -.1084
PsiZ = PsiMax =0.0579= 0.0579

WF = PI/4*(fF0*2*bF*eF^2*(1+2*PsiOpt*PsiZ-PsiZ^2)+fE*dE*eD^2*cM*jM*kM)
=3.14/4*(200*2*89.21*34^2*(1+2*1*0.0579-0.0579^2)+155.87*511.07*7.73^2*1.15
*1*1)= = 40329.97 Nm

PhiF0 = Abs( FGI * hG + FQ * (hH - hP) + FR * hH) / WF ((73))
=Abs(205.38*39.81+3.0314E05*(67.84-7.04)+0*67.84)/40329.97=0.6597

»Flange Load Ratio PhiF PhiF=0.6597 <= PhiMax =1« » (U= 65.9%) OK«

Annex E Flange Rotation

FGImin = (FG0min*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI
=(6.8759E05*6.534E-07-(3.0314E05*9.9881E-07+0*9.3305E-07-0*9.014E-07+0))/7.
1328E-07= = 205.38 kN
FGImax = (FG0max*YG0-(FQ*YQI+FR*YRI-FR0*YR0+DeltaU))/YGI
=(7.2901E05*6.534E-07-(3.0314E05*9.9881E-07+0*9.3305E-07-0*9.014E-07+0))/7.
1328E-07= = 243.32 kN
FBImin = FGImin + FQ + FR =205.38+3.0314E05+0= 508.52 kN
FBImax = FGImax + FQ + FR =243.32+3.0314E05+0= 546.46 kN
ThetaFmax = ZF/EF0*(FGImax*hG+FQ*(hH-hP+hQ)+FR*(hH+hR)) (E.1))
=3.6148E-05/2.0461E05*(243.32*39.5+3.0314E05*(67.84-7.04+10.13)+0*(67.84+-1
.62))= =0.3150 Degr.

ThetaFmaxm = ZFm/EF0m*(FGImax*hGm+FQ*(hHm-hPm+hQm)+FR*(hHm+hRm)) (E.1))
=3.6148E-05/2.0461E05*(243.32*39.5+3.0314E05*(67.84-7.04+10.13)+0*(67.84+-1
.62))= =0.3150 Degr.

»Flange Rotation ThetaFmax=0.315 <= ThetaMax =1« » OK«
»Loose Flange Rotation ThetaLmax=0 <= ThetaMax =1« » OK«
»Mating Flange Rotation ThetaFmaxm=0.315 <= ThetaMax =1« » OK«
»Mating Loose Flange Rotation ThetaLmaxm=0 <= ThetaMax =1« » OK«

Maximum Test Pressure Ptmax = 2.678 MPa, Limited by:Flange Load Ratio PhiF
Maximum Allowable Pressure Pmax = 2.314 MPa, Limited by:Flange Load Ratio PhiF

STRESZCZENIE OBLICZEN

Design Rules for Gasketed Circular Flanges Connection

PRZYPADEK OBCIAZENIA Nr: 1 - ASSEMBLY

bGe = MIN( bGi, bGt) =MIN(14.24,26)= 14.24 mm

dGe = dG2 - bGe =582-14.24= 567.76 mm

FG0req = Max( FG0min, FGDelta) ((52))
=Max(2.5408E05,6.8759E05)= 687.59 kN

FB0req = FG0req + FR0 ((53)) =687.59+0= 687.59 kN

Calkowity nominalny naciag wstepny

24 F.3 Integral - Flange Ko3nierz 1591

Umax= 65.9%

Strona: 52

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01T Operator :RR Rev.:A
EN1591 - Design Rules for Gasketed Circular Flanges Connection
F.3 Ko3nierz 1591 17 Nov. 2008 20:02 ConnID:N.3*

background image

Fb0nom = FB0req / (1 - epsn) ((63)) =687.59/(1-0.0292)= 708.30 kN
Nominal Required Torque per Bolt
Mtnom = kB * FBnom =7.2*35.41= 254.99 kN

Load Limit of Bolts
PhiB = Sqr(( FBI / AB) ^ 2 + 3 * (CB * MtB / IB) ^ 2) / fB0 ((71))
=Sqr((7.2901E05/11214.83)^2+3*(1*262.44/4994.34)^2)/285.71=0.3915

»Bolt Load Ratio PhiB PhiB=0.3915 <= 1 =1« » (U= 39.1%) OK«

PhiG = FGI / (AGt * Qmax) ((72)) =7.2901E05/(45414.86*50)=0.3210

»Gasket Load Ratio PhiG PhiG=0.321 <= 1 =1« » (U= 32.1%) OK«

PhiF0 = Abs( FGI * hG + FQ * (hH - hP) + FR * hH) / WF ((73))
=Abs(7.2901E05*39.5+0*(67.84-7.09)+0*67.84)/70215.66= 0.4101

»Flange Load Ratio PhiF PhiF=0.4101 <= PhiMax =1« » (U= 41%) OK«

PRZYPADEK OBCIAZENIA Nr: 2 - TEST COND.

Load Limit of Bolts
PhiB = Sqr(( FBI / AB) ^ 2 + 3 * (CB * MtB / IB) ^ 2) / fB0 ((71))
=Sqr((514.16/11214.83)^2+3*(0*262.44/4994.34)^2)/285.71=0.1605

»Bolt Load Ratio PhiB PhiB=0.1605 <= 1 =1« » (U= 16%) OK«

PhiG = FGI / (AGt * Qmax) ((72)) =59.45/(45414.86*50)= 0.0262

»Gasket Load Ratio PhiG PhiG=0.0262 <= 1 =1« » (U= 2.6%) OK«

PhiF0 = Abs( FGI * hG + FQ * (hH - hP) + FR * hH) / WF ((73))
=Abs(59.45*39.81+4.5471E05*(67.84-7.04)+0*67.84)/67821.87=0.4425

»Flange Load Ratio PhiF PhiF=0.4425 <= PhiMax =1« » (U= 44.2%) OK«

PRZYPADEK OBCIAZENIA Nr: 3 - OPER.COND.1

Load Limit of Bolts
PhiB = Sqr(( FBI / AB) ^ 2 + 3 * (CB * MtB / IB) ^ 2) / fB0 ((71))
=Sqr((508.52/11214.83)^2+3*(0*262.44/4994.34)^2)/174.93=0.2592

»Bolt Load Ratio PhiB PhiB=0.2592 <= 1 =1« » (U= 25.9%) OK«

PhiG = FGI / (AGt * Qmax) ((72)) =205.38/(45414.86*32)= 0.1413

»Gasket Load Ratio PhiG PhiG=0.1413 <= 1 =1« » (U= 14.1%) OK«

PhiF0 = Abs( FGI * hG + FQ * (hH - hP) + FR * hH) / WF ((73))
=Abs(205.38*39.81+3.0314E05*(67.84-7.04)+0*67.84)/40329.97=0.6597

»Flange Load Ratio PhiF PhiF=0.6597 <= PhiMax =1« » (U= 65.9%) OK«

TABLE OF SUMMARY

Table LOAD CONDITIONS AND LOAD RATIOS FOR F.3 (m=mating flange):

DESCRIPTION

ID

ASSEMBLY

TEST COND.

OPER.COND.1

Design Pressure(MPa)

P

0.000

1.800

1.200

Resulting Force(kN)

FR

0.000

0.000

0.000

Axial Fluid-Pressure Force(kN)

FQ

0.000

454.709

303.139

Gasket Force(kN)

FG

729.005

59.454

205.376

Total Bolt Force(all bolts)(kN)

FB

729.005

514.163

508.515

Minimum Gasket Seating Force(kN)

FGmin

254.077

59.454

39.636

Bolt Load Ratio

PhiB

0.391

0.160

0.259

Gasket Load Ratio

PhiG

0.321

0.026

0.141

Flange Load Ratio

PhiF

0.410

0.443

0.660

Flange Rotation(degr.)

ThetaF

0.282

0.338

0.315

Loose Flange Rotation(degr.)

ThetaL

0.000

0.000

0.000

Nominal Bolt Force(per bolt)(kN)

FBnom

35.415

0.000

0.000

Nominal Bolt Torque(per bolt)(Nm)

Mtnom

254.986

0.000

0.000

Bolt Elongation at Assembly(mm)

DeltaB

0.000

0.000

0.000

24 F.3 Integral - Flange Ko3nierz 1591

Umax= 65.9%

Strona: 53

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01T Operator :RR Rev.:A
EN1591 - Design Rules for Gasketed Circular Flanges Connection
F.3 Ko3nierz 1591 17 Nov. 2008 20:02 ConnID:N.3*

background image

Objetosc:0.01 m3 Ciezar:54 kg (SG= 7.85 )

24 F.3 Integral - Flange Ko3nierz 1591

Umax= 65.9%

Strona: 54

Urzad Dozoru Technicznego

Company Address

Klient :UDT T: kolnierze wg metody I i II-G i 1591
met I sec. 11-Taylor Forge lub met II Annex G - alternatywna
Visual Vessel Design by OhmTech Ver:9.9-01T Operator :RR Rev.:A
EN1591 - Design Rules for Gasketed Circular Flanges Connection
F.3 Ko3nierz 1591 17 Nov. 2008 20:02 ConnID:N.3*


Document Outline


Wyszukiwarka

Podobne podstrony:
Elektroinstalator 2009 06 koordynacja ochronników klasy I [B] i II [C]
06 metody diagnostyczne(1)
Frolowicz Przysiezna Moja sprawnosc i zdrowie Przewodnik metodyczny dla nauczycieli II etpu edukacji
06 Metody wyznaczania pol powierzchni
07.06.2008 - ekonomia, semestr II
06 Metody wiarygodnoÂciowe
06 Metody separacji enancjomerów
metody rolnictwa ekologicznego ii wersja
Metody Numeryczne Algorytmy II
2001 06 Szkoła konstruktorów klasa II
2009 06 Szkoła konstruktorów klasa II
podtsawy edycji w word, do uczenia, materialy do nauczania, rok2009 2010, semII, 06.02.2010, word II
06 metody dodatkowe
Z Wykład 06.04.2008, Zajęcia, II semestr 2008, Rachunek prawdopodobieństwa
Materiały 06.11.2010 - Wykłady II rok - kinezyterapia, UJK.Fizjoterapia, - Notatki - Rok I -, Kinezy
Administracja z dnia 04.06.04 r, WSAP Ostrołęka, II Rok
Z Ćwiczenia 06.04.2008, Zajęcia, II semestr 2008, Matematyka dyskretna i logika
2006 06 Szkoła konstruktorów klasa II
Podstawy marketingu 02.06.07r. wykład, Semestr II, Podstawy marketingu

więcej podobnych podstron