Dx = vx lx.
vn+xln+x
Ex = vn px = ,
n n
vxlx
1 Dx
= .
Ex Dn+x
n
x b
y
Dy
b vy-x px = b .
y-x
Dx
x
b y, y + 1, . . . , z - 1
z-1
b
Du.
Dx u=y
"
Nx = Du
u=x
b
(Ny - Nz) .
Dx
"
1
(m) = Dx+h/m,
x
m
Dx h=0
"
1
(m)
Nx = Dx+h/m
m
h=0
(m)
Nx
(m) = .
x
Dx
(m)
Nx = ą(m) Nx - (m) Dx.
(m) = ą(m) x - (m)
x
ą(m) Nx - (m) Dx
= .
Dx
m - 1
(m)
Nx <" Nx - Dx.
=
2m
(m)
Nx <" Nx m - 1
= -
Dx Dx 2m
m-1
Nx - Dx
2m
= ,
Dx
x b/m y, y +
1 2 1
, y + , . . . , z -
m m m
b
(m) (m)
Ny - Nz .
Dx
" "
Ż
Nx = Dx+tdt = Dydy.
0 x
Ż
Nx = ą(") Nx - (") Dx,
id
ą(") = s1| a1| =
2
i -
(") = .
2
1
Ż
Nx <" Nx - Dx,
=
2
b
Ż Ż
Ny - Nz .
Dx
m
bx, bx+1, . . . , by, . . . , bx+n-1
m x + n
(y, y + 1)
by (m).
y:1|
x+n-1
(apv)x = by (m) Ex.
y-x
y:1|
y=x
x+n-1
(apv)x = by [ą(m) - (m)(1 - Ey)] Ex.
1 y-x
y=x
x+n-1
1
(apv)x = by [ą(m)Dy - (m)(Dy - Dy+1)] .
Dx y=x
(m)
(m) (m)
Dy = Ny - Ny+1.
(m)
Dy = ą(m)Dy - (m)(Dy - Dy+1).
x+n-1
1
(m)
(apv)x = by Dy .
Dx y=x
x+n-1
(apv)x = by a(m) Ex.
y-x
y:1|
y=x
1 1
a(m) = (m) - (1 - Ey) = ą(m) - (m) + [1 - Ey] ,
1 1
y:1| y:1|
m m
x+n-1
1 1
(apv)x = by ą(m)Dy - (m) + [Dy - Dy+1] ,
Dx y=x m
1
(m)
Dy = ą(m)Dy - (m) + [Dy - Dy+1] .
m
x+n-1
1
(m)
(apv)x = by Dy .
Dx y=x
by = b
(m)
(m)
b/Dx[Nx - Nx+n] by by = y
(m)
Sy
(m)
(m) (m)
Ny = Sy - Sy+1,
"
(m) (m)
Sx = Ny .
y=x
1/m
m
a(m)
Ł
x
1/m
1 1
,
m s1/m|
Ż
t
st|
Ż
1
m s1/m|
Ż
0
a(m) = x,
Ł
x
i(m)
a(m) = n|.
n|
i(m)
1/m m
1/m
1 1
,
m 1/m|
t
1/m-t|
1
m 1/m|
0
{m} = x.
x
d(m)
1 = i(m) a(m) + Ax
Ł
x
1 = d(m) {m} + Ax.
x
P
P
" P
0
" P
a
P
P
L
E[L] = 0.
Ż
1 P
L
Ż
l(t) = vt - P t|.
T
Ż
L = l(T ) = vT - P T |.
E[L] = 0
Ż(Ax)
Ax - P x = 0
Ż(Ax) Ax
P = .
x
Var[L] = E[L2],
Ż
P (1 - vT )
Ż
Var[vT - P T |] = Var[vT - ]
Ż Ż
P P
= Var vT 1 + -
Ż
P
= Var vT 1 +
2
Ż
P
= Var[vT ] 1 +
2
Ż
P
2
2
= Ax - Ax 1 + .
1 = x + Ax
2
2
Ax - Ax
Var[L] = .
( x)2
ŻY ŻY,
bT vT - P = Z - P
" bt vt
Ż
" P
" Y
" Z
E[bT vT ]
Ż
P = .
E[Y ]
bT vT Y
Ż(Ax) Ax
1vT T | P =
x
1
n T |, T n
Ż(A1 Ax:n|
1vT P ) =
x:
n|
x:n|
n|, T >n
n 1vT T |, T n
Ż(Ax:n|) = Ax:n|
P
x:n|
1vn n|, T >n
1vT T |, T h
Ż(Ax) Ax
P =
h
x:h|
h 1vT h|, T >h
n 1vT T |, T h
Ż(Ax:n|) = Ax:n|
P
1vT h|, h < T n
h
x:h|
h 1
n 0 T |, T n
1
Ż(Ax:n|) = Ax:n|
P
x:n|
1vn n|, T >n
1
P
L
L = vK+1 - Px K+1| K = 0, 1, . . . .
E[L] = 0
Ax - Px x = 0
Ax
Px = .
x
Var[L] = E[L2],
2
Ax - A2
x
Var[L] = .
(d x)2
bK+1 vK+1 - P Y = Z - P Y,
" bk+1 vk+1
" P
" Y
" Z
E[bK+1 vK+1]
P = .
E[Y ]
bK+1 vK+1 Y
Ax
1vK+1 K+1|, K = 0, 1, 2, . . . Px =
x
A1 n|
n K+1|, K = 0, 1, . . . , n - 1
x:
1
1vK+1 Px:n| =
x:n|
n|, K = n, n + 1, . . .
n 1vK+1 K+1|, K = 0, 1, . . . , n - 1
Ax:n|
Px:n| =
x:n|
1vn n|, K = n, n + 1, . . .
1vK+1 K+1|, K = 0, 1, . . . , h - 1
Ax
Px =
h
x:h|
h 1vK+1 h|, K = h, h + 1, . . .
n 1vK+1 K+1|, K = 0, 1, . . . , h - 1
Ax:n|
Px:n| =
1vK+1 h|, K = h, . . . , n - 1
h
x:h|
h < n 1vn h|, K = n, n + 1, . . .
1
n 0 K+1|, K = 0, 1, . . . , n - 1 Ax:n|
1
Px:n| =
x:n|
1vn n|, K = n, n + 1, . . .
Ax
P (Ax) = .
x
i
Ax = Ax,
i Ax i
P (Ax) = = Px.
x
i
1
1
P (Ax:n|) = Px:n|
i
1 1
P (Ax:n|) = Px:n| + Px:n|.
m
Ax Ax
(m) (m)
Px = Px (Ax) =
(m) (m)
x x
1
A1 n| Ax:n|
n
x: 1
1(m)
(m)
Px:n| = P (Ax:n|) =
(m) (m)
x:n| x:n|
n
Ax:n| Ax:n|
(m)
(m)
Px:n| = P (Ax:n|) =
(m) (m)
x:n| x:n|
Ax Ax
(m) (m)
Px = P (Ax) =
h h
(m) (m)
h
x:h| x:h|
n
Ax:n| Ax:n|
(m)
(m)
Px:n| = P (Ax:n|) =
h h
(m) (m)
x:h| x:h|
h < n
h
Ax:n|
{m}
P (Ax:n|) = .
h
{m}
x:h|
Wyszukiwarka
Podobne podstrony:
wyk? mu
wyk? mu
wyk? mu
wyk? 4 mu
wyk? 7 mu
wyk? 2 mu
wyk? 1 mu
wyk? mu
wyk? 8 mu
Wyk ad 02
Mat Bud wyk
wyk(Ia) wstęp PBiID
Stan cywilny, wyk struktura ludnosci wg 5 str
si ownie wyk?
Socjologia klasyczna WYK? 7 i 8
HG wyk 9
IAQ wyk 5
więcej podobnych podstron