1.Wykresy prawobieżnego obiegu porównawczego helu we współrzędnych pV oraz Zadanie II. 1.4.

TS

Adrian Piątek IZMP-71

ΔQ3-1

p

T

L3-1

Hel o zasobie masy m=2[kg] traktowany tak jak gaz doskonały pracuje w obiegu 3

P3

T1

1

porównawczym prawobieżnym złożonym z następujących odwracalnych przemian 3

termodynamicznych: izobarycznej, izochorycznej i izotermicznej rozgęszczania T(S,p=const)

ΔQ2-3

helu. Prace bezwzględne objętościowe oraz przyrosty ilości ciepła przemian mają ΔQ3-1

T(s,V=const)

L3-1

odpowiednio następujące wartości: izobarycznej L − = −4 mRT

6

= − .

6 65549 ⋅10

,

ΔQ

1 2

2

[ J]

1-2

ΔQ2-3

p(V,T=const)

2

kR

T

Q

7

∆

L

2

− =

− =

4

−

= 1

− 6

. 7396 ⋅10

, izochorycznej

0 ,

1 2

( k − ) mT 2

[ J]

1

2 3

2

1

p

L

1=p2

1-2

R

Q

7

∆ − = −4

= − .

1 00841⋅10

, izotermicznej

V1

S

2 3

( k − ) mT 2

[ J]

1

V

L

2=V3

1-2

3

S2

S3

S1

ΔQ1-2

L

7

∆ − =

=

⋅

− = 5 mRT

6

ln 5 = 1 .

3 3895 ⋅10

, Q

m

5 RT ln 5

.

1 33895 10

. Indywidualna stała

3 1

2

[ J]

3 1

2

[ J]

2.Tabela zestawienia danych oraz wyników obliczeń.

 J 

gazowa helu R = 207 , 9 0 

1

 wykładnik izentropy k=1.66, temperatura T2= 400.16

 kgK 

[K]. Wyznaczyć a następnie obliczyć wartości modułów pracy zgęszczania i Punkt charakterystyczny

rozgęszczania helu w obiegu, modułów przyrostów ilości ciepła doprowadzonego i Parametr

1

3

3

wyprowadzonego z obiegu, pracę obiegu, ciepło obiegu, sprawność teoretyczną stanu

obiegu.

Pi

[p1]

p2=p1

p3=5p1

Ti

[T1=5T2]

[T2]

[T3=T1=5T2]

Dane:

mRT

V

2

V =

i

[V1=5V2]

[ 2

]

[V

p

3=V2]

1

m=2[kg]

L

T

ij

[L1-2=-4mRT2]

[L2-3=0]

[L3-1=5mRT2ln5]

2= 400.16 [K]

kR

R

 J 

∆Q

Q

∆

∆ − =

− = 4

−

mT

[ Q 4

mT

[∆Q

R = 2079.01

ij

[ 1 2

2

2 3

2

3-1=5mRT2ln5]





( k − )

]

1

( k − )

]

1

 kgK 

k = 1.66

3. Praca obiegu porównawczego prawobieżnego.

Różnica między ciepłem doprowadzonym a wyprowadzonym lub praca ekspansji a pracą kompresji obiegu porównawczego jest ciepłem lub pracą obiegu porównawczego.

L

= ∆ Q − ∆ Q

= L

− L

ob

d

w

ex

k

3.1. Wyznaczanie pracy rozgęszczania(ekspansji).

L

= 5 mRT

ln 5 = 133 ,8952

ex

2

[ kJ ]

L

= L − = 5 mRT ln 5 = 5 mRT ln 5

ex

3 1

2

2

7. Obliczanie wartości modułów ciepła doprowadzonego i wyprowadzonego z 3.2. Wyznaczanie pracy zgęszczania (kompresji).

prawobieżnego obiegu porównawczego.

L

= L − = − 4 mRT

= 4 mRT

k

1

2

2

2



4 

Q

∆

= mRT 5ln5 +

 = 234 7

, 35

d

2

[ kJ]

3.3 Wyznaczanie pracy obiegu porównawczego.



k −1

L

kR

∆ Q = 4

mT = 167 ,395

w

2

[ kJ ]

ob = Lex − Lk = 5 mRT ln 5 − 4 mRT = mRT

−

2

2

2 (5 ln 5

4)

k − 1

4. Ciepło obiegu porównawczego.

8. Obliczenie wartości pracy i przyrostu ilości ciepła prawobieżnego obiegu

∆ Q = ∆ Q − ∆ Q

ob

d

w

porównawczego.

4.1. Wyznaczanie modułu przyrostu ilości ciepła wpływającego do obiegu L

= Q

∆

= mRT

6

5 ln 5 − 4 = 2 ⋅ 2079 0

. 1127 + 2731

, 6 ⋅ 5 ln 5 − 4 = 7

,

6 3401⋅10

ob

ob

2 (

)

(

) (

)

[ J]

porównawczego.

9. Obliczenie wartości sprawności termicznej prawobieżnego obiegu R



4



∆

porównawczego.

Q

d

= ∆ Q

Q

mT

mRT

mRT

23 + ∆

3−1

= 4

2 + 5

ln 5

2

=

 5 ln 5

2

+



k − 1



k − 1 

k

1.66

η tob =1− (

= −

=

5 k − )

1

1 ln 5

(5 ,166 − )

,

0 286876

Dla k>1

1 ln 5

+1

+1

4

4



4



∆ Q

d

= mRT  5 ln 5

2

+





k − 1 

4.2. Wyznaczenie modułu przyrostu ilości ciepła wypływającego z obiegu porównawczego.

kR

kR

∆ Q = − 4

mT

= 4

mT

w

2

2

k − 1

k − 1

4.3. Wyznaczenie przyrostu ilości ciepła obiegu porównawczego.

 k

1 

∆ Q

ob = ∆ Qd

− ∆ Qw = mRT 5ln 5 − 4 mRT 

−

 = mRT

−

2

2

2 (5 ln 5

4)

 k −1 k −1

5. Wyznaczanie sprawności termicznej obiegu porównawczego.

kR

4

L

∆ Q

ob

d

− ∆ Q w

∆ Q w

( − mT

k

1 )

2

η tob =

=

= 1 −

= 1 −

=

∆ Q d

∆ Q d

∆ Q



4



d

mRT

 5 ln 5 +



2 

k − 1 

4 k

( k − 1)

=

k

1 −

= 1 −

4

5 ( k − 1 )ln 5

5 ln 5 + (

+

k − 1 )

1

4

6. Obliczenie wartości modułów pracy zgęszczania i rozgęszczania helu w prawobieżnym obiegu porównawczym.

L

= 4 mRT

= 665 ,549

k

2

[ kJ ]