Metodologia opracowanie


  1. Osiem etapów procesu badawczego w psychologii :

    1. Sformułowanie problemu [ Od jakiej zmiennej niezależnej Xj ( zmiennych X1, …,Xn), i jak zależy dana zmienna zależna Y?] i hipotezy badawczej [hipoteza oznajmia jakie zmienne wpływają na zmienną Y oraz jaka jest pomiędzy nimi zależność]

    2. Określenie obrazu zmiennych istotnych dla zmiennej zależnej Y - O(PY) oraz struktury przestrzeni zmiennej Y - O(SY)

    3. Operacjonalizacja zmiennych (przekłada z języka teoretycznego na język obserwacyjny)

    4. Wybór modelu badawczego - eksperymentalny( zakłada manipulację zmiennymi) vs korelacyjny (nie zakłada manipulacji zmiennymi)

    5. Dobór próby z populacji (aby próba była w pełni reprezentatywna musi być pobrana z populacji w sposób losowy, w innym przypadku RB będzie obciążony większym lub mniejszym błędem))

    6. Wybór modelu statystycznego

      • test t lub ANOVA lub MANOVA - dla m. eksperymentalnego

      • Wielokrotna regresja (MR) - dla m. korelacyjnego

  1. Akceptacja lub odrzucenie hipotezy

  2. Ocena, interpretacja i generalizacja rezultatu badawczego

14. Kontrola zmiennych niezależnych-ubocznych w planach „zero-jedynkowych”.

Z klasycznym wariantem eksperymentu związane są dwie metody kontrolowania zmiennych niezależnych, które badacz zaliczył jako zmienne niezależne-uboczne i niezależne-zakłócające:

  1. Ustalenie stałej wartości (lub stałego jej podzakresu) kontrolowanej w ten sposób zmiennej w obu grupach porównawczych - eksperymentalnej i kontrolnej (innym wariantem jest zapewnienie aby w obu grupach była ta sama średnia i odchylenia standardowe - inaczej mówiąc badacz powinien zadbać aby wariancje były homogeniczne).

Ocena:

Ma poważną wadę, taki sposób kontrolowania ma wpływ na zakres wniosków, które badacz jest uprawniony uogólniać z poziomu próby na poziom populacji. Jeżeli blokujemy osoby badane pod względem zmiennych niezależnych-ubocznych, to generalizować możemy jedynie na osoby z populacji mieszczących się w danym podzakresie. Np.: Blokujemy zmienną inteligencja na podzakresie <90-120>, łatwo zauważyć, że ten podzakres nie odnosi się do całej populacji.

  1. Metoda doboru parami. Do drugiej grupy dobieramy osobę, która ma podobne parametry zmiennych istotnych dla Y. Idealnymi badanymi w tym przypadku byłyby bliźnięta monozygotyczne. Zaleca się aby minimalizować wariancję wewnątrz par, a maksymalizować wariancję między parami. Po utworzeniu danej liczby par badacz przystępuje do losowego rozdzielania osób z poszczególnych par na dwie grupy - eksperymentalną i kontrolną. Badacz może również tworzyć pary poprzez badanie tej samej osoby raz w warunkach kontrolnych, a raz w warunkach eksperymentalnych. Wtedy każda osoba tworzy parę z samym sobą. Ograniczeniem jest wpływ pierwszego pomiaru na zachowanie się osoby badanej.

Ocena:

Nie jest łatwe skonstruować pary dla zmiennych psychologicznych. Bardzo trudno skompletować osoby z takim samym IQ, odpornością na stres i takiej samej stabilności samooceny. Ominięciem tej trudności jest wyżej wspomniane podwójne badanie tej samej osoby. Nie nadaje się w przypadkach gdy wpływ na wyniki może mieć efekt wyuczenia czy efekt transferu.

15. Analiza wariancji zmiennej zależnej - wariancja międzygrupowa i wariancja wewnątrzgrupowa.

Model analizy wariancji (ANOVA) został zaprojektowany przez Fishera. W modelu możemy uwzględnić więcej niż dwie zmienne. Możemy więc badać wpływ dwóch (lub więcej) X na jednego (lub więcej) Y. Co więcej możemy zbadać wpływ interakcji dwóch zmiennych na zmienność zmiennej zależnej Y. Model Anova umożliwia nam również badanie zależności krzywoliniowych.

W modelu tym bada mierzy się zmienność chcianą (międzygrupową), która pokazuje nam zróżnicowanie osób w sposób odmiennie traktowany (kawa, nie kawa); oraz zmienność niechcianą (wewnątrzgrupową), która mówi nam o innych zmiennych wpływających na zmienność Y. Daje nam to zróżnicowanie na dwa rodzaje wariancji:

Wariancja międzygrupowa (MG) (wariancja wyjaśniana, kontrolowana) odnosi się do Xg, badacz wie co powoduje tą zmienność. Wariancje międzygrupowa będzie wysoka, wtedy gdy Xg naprawdę jest istotna dla Y. Badacz dodatkowo musi udowodnić, że wariancja MG jest spowodowana przez Xg, a nie przez inne czynniki (s). Dla wysokości MG nie ma znaczenia, czy wpływa na nią Xg czy s. Uniknięcie wpływu s na osoby badane umożliwia randomizacja.

var MG

0x08 graphic
0x08 graphic

max Xg v elim. s

Wariancja wewnątrzgrupowa, (WG) (wariancja resztowa, błędu) mówi nam o zmiennych, których badacz nie uwzględnił w O(PY). Traktujemy ją jako miarę precyzji eksperymentu. Idealną grupą jest grupa w której varWG=0. Wtedy całą obserwowaną zmienność Y można tłumaczyć wpływem na nią X, kontrolowanego przez badacza, będącego źródłem var MG. Jeżeli jest ona wysoka, to oznacza, iż badacz nie może wytłumaczyć zmienności Y, ponieważ powodowała ją zmienność między osobami. Niskie WG uzyskuje się poprzez tworzenie grup homogenicznych = jednorodnych pod różnymi względami.

0x08 graphic
var WG

R! min.

var MG

tα

ξ =

0x08 graphic

ξ

var WG

Fα

ξ jest wysokie, gdy rośnie licznik a mianownik maleje. Co oznacza, że badacz powinien dążyć do maksymalizacji var MG, a minimalizacji var WG.

Warto się więc zastanowić od czego zależą poszczególne wariancje:

Obliczanie:

0x08 graphic
0x08 graphic
0x08 graphic
Wariancja międzygrupowa - jest średnią arytmetyczną odchyleń poszczególnych średnich grupowych (Y1. i Y2.) od średniej całkowitej (Y..).

0x08 graphic
0x08 graphic
0x08 graphic
0x08 graphic
(Y1. - Y..)2 + (Y2. - Y..)2

Obliczamy średnie dla każdej z grup i odejmujemy je od średniej całkowitej. Wyniki podnosimy do kwadratu i dodajemy do siebie, dzieląc przez „n”

0x08 graphic
s2M =

2

Wariancja wewnątrzgrupowa - jest średnią wariancji poszczególnych grup

s21 + s22

0x08 graphic
s2W =

2

0x08 graphic
Wariancja całkowita - jest średnią arytmetyczną odchyleń wszystkich poszczególnych wyników (Y..) od średniej całkowitej (Y..), lub jest sumą wariancji międzygrupowej i wariancji wewnątrzgrupowej.

0x08 graphic
(Yik - Y..)2

s2C =

0x08 graphic

s2C = s2M + s2W

n

Minimalizowanie wariancji WG jest niemożliwe w eksperymentach wszystko albo nic. Taką możliwość daje jednak analiza wariancji (ANOVA). Wariancję międzygrupową można rozbić na dowolną liczbę wariancji składowych, których źródłami są hipotetyczne zmienne niezależne istotne dla Y. Ten sposób postępowania powoduje zmniejszenie WG na rzecz zwiększenia WM. Możemy obliczyć również jaki procent zmienności Y wyjaśnia nasza zmienna X. Przykładowo, jeżeli MG jest równa 75% a WG wynosi 25%, to dokładając

s2M

kolejne zmienne X powodujemy, że wyjaśniamy coraz większą część zmienności Y, minimalizując zarazem WG.

s2M =

0x08 graphic
x100%

s2C

16. Znaczenie randomizacji.

Nierównomierne rozłożenie wpływów w obu grupach może doprowadzić do tego, że postępowanie eksperymentalne trafi na bardziej podatny grunt w grupie eksperymentalnej niż w grupie kontrolnej, a to może zaowocować „nachyleniem” rozkładu zmiennej zależnej Y (przeszacowanie lub niedoszacowanie wartości średniej zmiennej zależnej). Dlatego też należy przydzielać osoby badane do grup w sposób losowy. Powoduje to, iż wszelkie zmienne, na które badacz nie ma wpływu będą rozdzielone losowo pomiędzy różne sytuacje. Zmniejsza to prawdopodobieństwo wpływu tych czynników na wyniki naszego eksperymentu.

Nierównomierne rozłożenie wpływów w modelu eksperymentalnym do grupy eksperymentalnej i kontrolnej może spowodować zafałszowanie wyników. Nietrudno sobie wyobrazić przypadek, w którym osoby o większej podatności na badaną terapię trafiają do grupy kontrolnej i wyniki są "zbyt dobre". Zapobiec temu ma zasada randomizacji, czyli w pełni losowy przydział do grup.

17. Rola instrukcji maskujących cel eksperymentu („decepcja”)

Badacze starają się ukryć przed osobami badanymi prawdziwy cel eksperymentu. Psychologowie posługują się w tym celu tzw. instrukcjami maskującymi (deception - oszukiwanie, podstęp, szachrajstwo). Używają do tego np. historyjek fasadowych, które mają na celu zwiększenie realizmu psychologicznego, poprzez stworzenie sytuacji, w której badany może zachowywać się w sposób naturalny, gdyż nie wie, jaki właściwie aspekt jego zachowania jest przedmiotem badania, nie jest zahamowany w swych reakcjach. Niestety, oprócz ograniczeń etycznych, metoda ta ma ograniczenia metodologiczne. Żaden badacz nie będzie mógł znaleźć badanych „nieskażonych”, którzy na dodatek, powinni być tak naiwni, że uwierzą w to wszystko, co im psycholog-eksperymentator powie. Dodatkowo, zachowanie osób badanych może być modyfikowane przez lęk przed oceną. Tak więc osoby badane, nie ufają eksperymentatorowi i z reguły same chcą odkryć prawdziwy cel eksperymentu. Badany więc kieruje się własną interpretacją celu badania, w którym bierze udział, co wprowadza dodatkowe źródło zmienności zmiennej zależnej (dodatkową wariancję cząstkową Y). Warto się również powołać na artykuł 34, z Kodeksu Etyczno-Zawodowego Psychologa PTP, oraz do zasady 3 i 4 z Zasad Prowadzenia Badań z Udziałem Ludzi (szczegóły patrz pkt. 133
i 140).

Psychologowie od dawna posługują się instrukcjami maskujacymi by ukryć prawdziwy cel eksperymentu przed badanymi. Pozwala to czasem na osiągniecie zaskakujących wyników, które nie byłyby możliwe bez tego. Z pewnymi wyjątkami uznawane jest to za nieetyczne. Co więcej można też wysunąc zarzuty na tle metodologicznym. Nirealistyczne jest przyjęcie założenia, że osoba badana jest łatwowierna i postrzega sytuację badawczą tak jak to założył sobie eksperymentator. Prowadzi to zakłócającej wyniki "gry" w zgadywanie "co badacz miał na mysli".

18. Pojęcie planu eksperymentalnego i quasi-eksperymentalnego.

Zgodnie z planem eksperymentalnym psycholog:

  1. rozdziela osoby badane do co najmniej dwóch grup porównawczych: eksperymentalnej i kontrolnej, stosując się do zasady randomizacji (czyli manipuluje, co najmniej jedną, zmienną niezależną-główną);

  2. dokonuje pomiarów zmiennej zależnej Y (pretesty Y i posttesty Y);

  3. kontroluje zmienne niezależne - uboczne i zakłócające.

Najczęściej badacze wybierają plany, w których zmienna niezależna-główna przyjmuje tylko dwie wartości - jedna w grupie eksperymentalnej i jedną w kontrolnej. O takich planach mówimy „zero-jedynkowe”, albo „wszystko albo nic”. Zastosowanie już trzech grup porównawczych w miejsce dwóch, pozwala na określenie kształtu zależności między zmiennymi; zależną i niezależną-główną. Jeżeli więc nie jesteśmy pewni co do zależności liniowej naszych zmiennych powinniśmy zwiększyć liczbę grup porównawczych.

19. Adekwatność planu eksperymentalnego: „zero-jedynkowego” do treści hipotezy badawczej.

Ryciny 123-125 pokazują jaki błąd może popełnić badacz, jeśli przy związku „U-kształtnym” zastosuje pomiar dwu-grupowy. Widzimy, że rzeczywisty związek „U-kształtny” jest przez badacza spostrzegany jako liniowy, lub jako brak zależności. Ryc 126. pokazuje jak będzie wyglądał obraz wyników, jeżeli dobierzemy większą liczbę grup porównawczych. Ważne jest jednak aby, wartości zmiennej X, wyróżnione przez badacza, były równomiernie rozłożone wzdłuż kontinuum wartości X.

Najczęście stosowana odmiana planu E - zerojedynkowa pozwala testowac tylko hipotezy o zależności liniowej (bo jak przy pomocy dwóch punktów określić coś innego niż prostą?). Badanie zależności o wyższym niż liniowy rzędzie wymaga zwiększenia ilości grup. Jeżeli oczywiście, jeżeli mamy silne teoretyczne podstawy, żeby twierdzić o liniowej zależności nie ma sensu zwiekszanie ilości grup.

Co więcej w przypadku dychotomizacji zmiennej ciągłej na potrzeby plany zerojedynkowego łatwo o wyciagniecie błednych wniosków (zbyt wiele zalezy obranych dwóch wartości zmiennej ciągłej). Tu warto by wstawić wykresy obrazujęce typy takich błędów

33. Założenia ANOVA: I. - VII.

Aby zastosować test F ANOVA, badacz musi spełnić podstawowe założenia:

Założenie I: Zmienna zależna Y mierzona jest na poziomie co najmniej skali interwałowej.

Założenie II: Osoby zostały losowo pobrane z populacji do próby.

Założenie III: Osoby z próby zostały losowo przypisane do p grup porównawczych odpowiadających p poziomom czynnika A (gdy jest to eksperyment jednoczynnikowy) czy do pqr… grup porównawczych odpowiadających pqr… kombinacjom poziomów czynników ABC… (jeżeli jest to eksperyment wieloczynnikowy).

Założenie IV: Ponieważ w i-tej populacji średnia ogólna (μi.) i efekt i-tego poziomu czynnika A (αi) są stałe dla wszystkich osób z tej populacji, więc jedyne, co je różni, to nie kontrolowane przez badacza zmienne uboczne i zakłócające, które określamy łącznie nazwą błędu eksperymentalnego (εik). Rozkład εik jest w i-tej populacji normalny ze średnią zero i wariancją σ2ε. [αi - to efekt eksperymentalny wywołany zmienną X. Zakładamy, że jest on stały dla całej populacji - co oznacza, iż na każdą osobę odpowiednia dawka np. kawy działa w taki sam sposób. εik - to błąd eksperymentalny, spowodowany wariancją wewnątrzgrupową - pokazuje on wpływ czynników indywidualnych na osoby badane. Musi mieć rozkład normalny, ponieważ każda osoba jest zróżnicowana indywidualnie i na jednych czynniki zakłócające wpływają bardziej a na innych mniej]

Założenie V: Dwa błędy εik i ε'ik są od siebie niezależne w p populacjach. Mówiąc inaczej, chodzi o niezależność pomiarów zmiennej zależnej Y.[Jeżeli badacz zagwarantuje, że na wariancję wewnątrzgupową nie miał wpływu podział próby na grupy porównawcze, to może zapewnić, że niezależnie od ilości badań błędy εik będą miały podobną wartość.]

Założenie VI: Występujące w liczniku i w mianowniku stosunku F oszacowania wariancji międzygrupowej i wewnątrzgrupowej są niezależne.

Założenie VII: Wariancje w p populacjach wprowadzone przez błąd eksperymentatora są jednorodne (homogeniczne): σ2εi = … = σ2εp. [ponieważ wariancja wewnątrzgrupowa = ε, to zakładając iż nasze próby były dobierane zgodnie z zasadą randomizacji - wariancja błędu eksperymentalnego powinna być taka sama w każdym niezależnym badaniu]

Spełnienie założenia IV i V jest możliwe gdy badacz respektuje zasady randomizacji:

Zasada randomizacji pierwszej - losowo pobiera próbę z populacji

Zasada randomizacji drugiej - losowo przydziela osoby z próby do p grup porównawczych.

Dodatkowo, jeżeli nie spełnimy założeń IV, V, VII - to nie możemy traktować wariancji wewnątrzgrupowej jako nie obciążonego estymatora.

Spełnienie powyższych założeń uprawniają badacza do założenia modelu liniowego wyniku Yik:

Yik = μ + αi + εik

34. Dwie transformacje wyników surowych w ANOVA: pierwiastkowa i logarytmiczna.

Transformacje wyników polegają ne na zabiegu przekształcenia z pierwotnej skali na wyniki jakiejś nowej skali. Taki zabieg poprawia wariancję (założenie VII) i normalność rozkładu - wygładza go (założenie IV).

  1. 0x08 graphic
    0x08 graphic
    Transformacja pierwiastkowa - polega na wyciągnięciu pierwiastka kwadratowego z każdego wyniku Y'k = Yk. Jeżeli wyniki są mniejsze od 10, to posługujemy się nieco zmodyfikowanym wzorem: Y'k=Yk + 0,5. Stosujemy go gdy:

Rezultaty ANOVA przeprowadzonej na wynikach poddanych transformacji interpretujemy tak, jak gdyby były to wyniki surowe; przekształcenie danych nie ma wpływu na wyniki testu F, gdyż nie wymaga on spełnienia żadnych założeń odnoszących się do natury skali pomiarowej Y.

35. Dwie transformacje wyników surowych w ANOVA: ilorazowa i arcsin.

          1. Transformacja ilorazowa - jest postaci Y'k=1/Yk, a gdy wśród nich znajdują się wyniki zerowe, to stosujemy wzór: Y'k=1/(Yk+1).