Ocena efektywności przedsięwzięć inwestycyjnych w warunkach ryzyka
W analizie ekonomicznej przedsięwzięć inwestycyjnych prognozujemy przyszłe przepływy pieniężne w okresie realizacji oraz eksploatacji przedsięwzięcia. Prognozowane przepływy pieniężne jak i całe przedsięwzięcie inwestycyjne zorientowane są ku przyszłości, która ze swej natury jest niepewna, gdyż trudno mieć pewność co do różnych czynników kształtujących przyszłą sytuację finansową inwestora. Niepewnością obciążone są w różnym stopniu prawie wszystkie przedsięwzięcia rzeczowe. Pewnymi inwestycjami (czyli inwestycjami bez ryzyka) mogą być inwestycje krótkoterminowe w niektóre instrumenty finansowe, takie jak: bony skarbowe, obligacje skarbu państwa, lokaty bankowe czy też lokaty w papiery wartościowe dużych, renomowanych (często ponadnarodowych) przedsiębiorstw (np. McDonald), których bankructwo jest mało prawdopodobne.
Warunki niepewności charakterystyczne dla przedsięwzięć rzeczowych obarczają każdego inwestora większym lub mniejszym ryzykiem inwestycyjnym. Ryzyko inwestycyjne jest:
nieduże, w przypadku kontynuacji tej samej działalności przedsiębiorstwa,
duże, w przypadku przedsięwzięć zmieniających profil działalności przedsiębiorstwa (np. zmiana produktu, wejście na nowy rynek, itd.).
Duże ryzyko inwestycyjne wynika z samej nowości produktu lub usług, a tym samym w trudnościach z trafnym prognozowaniu popytu. Oznacza to, że mechaniczne stosowanie metod dyskontowych do oceny efektywności przedsięwzięć inwestycyjnych może okazać się niewystarczające, co może prowadzić do błędnych decyzji. W praktyce, kilku procentowe odchylenie rzeczywistości od wcześniej przyjętych prognoz może prowadzić do nierentowności przedsięwzięcia, które było uznane wcześniej jako efektywne.
Statystyczne metody oceny efektywności przedsięwzięć inwestycyjnych w warunkach ryzyka
Z niepewnością w ocenie efektywności projektów inwestycyjnych mamy do czynienia wówczas, gdy nie jesteśmy w stanie opisać przyszłości finansowej przedsiębiorstwa w skończonej liczbie możliwych przepływów pieniężnych. Natomiast z ryzykiem mamy do czynienia wówczas, gdy liczba przepływów pieniężnych jest znana i każdemu z nich można przypisać prawdopodobieństwo realizacji (wystąpienia). W takim przypadku, można zastosować metody statystyczne, pozwalające ocenie efektywność przedsięwzięcia w warunkach ryzyka. Pozwalają one na dokonanie pełniejszej analizy efektywności przedsięwzięcia, ale nie eliminują całkowicie ryzyka, gdyż ustalone prawdopodobieństwa przepływów pieniężnych nie są pewne.
W metodach statystycznych dla oceny ryzyka efektywności przedsięwzięć inwestycyjnych przyjmuje się:
wariancję (σ2):
lub odchylenie standardowe (σ):
wyrażające wielkość rozproszenia zysków przedsięwzięcia wokół jego wartości oczekiwanej E(w):
współczynnik zmienności CV:
gdzie:
E(w) - wartość oczekiwana zmiennej w,
wi - i-ty możliwy przepływ pieniężny (zysk lub wydatek) z przedsięwzięcia,
pi - prawdopodobieństwo uzyskania i-tego przepływu pieniężnego wi,
m - liczba możliwych przepływów pieniężnych.
W przypadku porównywania kilku przedsięwzięć:
tej samej skali, przy tych samych wartościach E(w), jako najbardziej ryzykowne uważane jest to, którego możliwe dochody są najbardziej rozproszone wokół dochodu oczekiwanego, czyli gdy ma największą wartość odchylenia standardowego σ,
różnej skali, najbardziej uzasadniona miarą ryzyka jest współczynnik zmienności CV (gdyż przedsięwzięcie o wyższym odchyleniu standardowym σ może mieć równocześnie znacznie wyższą wartość oczekiwaną E(w), która mogłaby rekompensować ryzyko)
Obliczenie wartości metody NPV niezbędnej do oceny przedsięwzięcia inwestycyjnego wymaga wyznaczenia średniej wartości E(wt)NPV oraz wariancji σ2NPV i odchylenia standardowego σNPV:
średnią wartość NPV:
wariancję wartości NPV:
odchylenie standardowe:
współczynnik zmienności:
gdzie n jest liczbą lat eksploatacji przedsięwzięcia inwestycyjnego.
Przykład:
Stosując metody statystyczne oceń efektywność (ryzyko) przedsięwzięcia inwestycyjnego, które:
wymaga początkowego nakładu finansowego w wysokości: 3000,
stopa dyskontowa została ustalona na poziomie 12%,
wpływy w poszczególnych latach eksploatacji inwestycji mogą być zrealizowane z określonym prawdopodobieństwem zgodnie z danymi zawartymi w tabeli:
Rok |
Wpływy w zł wi |
Prawdopodobieństwo realizacji wpływów pieniężnych pi |
|
1500 |
0.2 |
1 |
2500 |
0.5 |
|
3500 |
0.3 |
|
1000 |
0.1 |
2 |
2000 |
0.3 |
|
3000 |
0.5 |
|
4000 |
0.1 |
Wyznacz:
średnią wartość NPV:
wariancję wartości NPV:
odchylenie standardowe:
współczynnik zmienności:
POMOC
Z podanych wzorów na wyznaczenie: średniej wartości NPV oraz wariancji wartości NPV wynika, że obliczenie tych miar ryzyka przedsięwziecia wymaga wcześniejszego wyznaczenia dla kolejnych lat eksploatacji inwestycji (czyli dla j=1, 2, … , n):
wartości oczekiwanej Ej(w):
odchylenia standardowego σj dla kolejnych lat eksploatacji inwestycji:
W celu ułatwienia zapisu tych obliczeń wygodnie jest wyznaczyć obliczenia pomocnicze dla wyznaczenia:
iloczynów: wi * pi,
kwadratów różnic: (wi - Ej(w)),
iloczynów: pi*(wi - Ej(w))
Projektujemy arkusz obliczeniowy postaci:
Zadania
Zadanie1:
Dokonaj wyboru inwestycji o najmniejszym stopniu ryzyka na podstawie statystycznych miar oceny efektywności dwóch projektów inwestycyjnych, których podstawowe parametry zostały podane w ponizszej tabeli:
Dla obydwu projektów została ustalona ta sama stopa dyskontowa na poziomie: 14,5%.