Ad. 3
Δγ =Δδmin = 2*2’ = 2 * 0,00029 = 0,00058 radiana
γ | δmin | n | Δn | n±Δn | kolor |
---|---|---|---|---|---|
stonie | radany | stopnie | radiany | ||
54º 44' | 1,04254 | 47º 51' | 0,83514 | 1,62029 | 0,00059 |
48º 6' | 0,83950 | 1,62287 | 0,00059 | ||
48º 43' | 0,85027 | 1,62921 | 0,00060 | ||
50º 37' | 0,88343 | 1,64845 | 0,00061 | ||
51º 27' | 0,89797 | 1,65675 | 0,00061 |
$$n = \ \frac{\sin\frac{\gamma + \text{δmin}}{2}}{\sin\frac{\gamma}{2}}$$
$$n = \ \sqrt{\left| \frac{\partial n}{\partial\gamma} \right|^{2}*{\gamma}^{2} + \left| \frac{\partial n}{\partial\text{δmin}} \right|^{2}*{\text{δmin}}^{2}}$$
$$\frac{\partial n}{\partial\gamma} = \ \frac{\cos\left( \frac{\gamma + \text{δmin}}{2} \right)*0,5*sin\frac{\gamma}{2} - \sin\left( \frac{\gamma + \text{δmin}}{2} \right)*cos\frac{\gamma}{2}*0,5}{\sin^{2}\frac{\gamma}{2}}$$
$$\frac{\partial n}{\partial\text{δmin}} = \ \frac{\cos\left( \frac{\gamma + \text{δmin}}{2} \right)*0,5}{\sin\frac{\gamma}{2}}$$