y1c = −1, 68[cm]
zy1c = 6[cm]
y1z = 0, 5[cm]
z1z = 10[cm]
$$y_{c} = \frac{A^{c}*{y_{1}}^{c} + A^{Z}*{y_{1}}^{z}}{A^{c} + A^{z}} = \frac{15.5* - 1,68 + 38,7*0.5}{15.5 + 38.7} = - 0,123\lbrack cm\rbrack$$
$$z_{c} = \frac{A^{c}*{z_{1}}^{c} + A^{Z}*{z_{1}}^{z}}{A^{c} + A^{z}} = \frac{15.5*6 + 38,7*10}{15.5 + 38.7} = 8.856\lbrack cm\rbrack$$
y0c = y1c − y = −1, 68 − (−0,123) = −1, 557[cm]
z0c = z1c − zc = 68.856 = −2.856[cm]
y0Z = y1Z − yc = 0.5 − ( − 0, 123)=0.623[cm]
z0Z = z1Z − zc = −1, 68 − (−0,123) = 1, 144[cm]
Jyo = Jyz + AZ * (z0Z)2 + JyC + AC * (z0C)2 = 2300 + 38.7 * (1,144)2 + 351 + 15.5 * (−2.856)2 = 2828.078[cm4]
Jzo = Jzz + AZ * (y0Z)2 + JyzC + AC * (y0C)2 = 357 + 38.7 * (0.623)2 + 41.8 + 15.5 * (−1.557)2 = 451.396[cm4]
Jy0Z0 = Jyzz + AZ * z0Z * y0Z + JyzC + AC * y0C*z0C = −674 + 38.7 * 1, 144 * 0, 623 + 0 + 15.5 * −1.557 * −2.856 = −577.493[cm4]
$$tg2\varphi = - \frac{2*J_{y0Z0}}{J_{\text{yo}} - J_{\text{zo}}} = - \frac{2* - 577,493}{2828,077 - 451.396} = 0.486$$
φ = 12.96
$$J_{1,2} = \frac{1}{2}\left( J_{y0} + J_{z0} \right) \pm \frac{1}{2}\sqrt{{(J_{y0} - J_{z0})}^{2} + 4*{J_{y0Z0}}^{2}} = = 1639.737 \pm 1321.231 = \left\{ \begin{matrix}
J_{1} = 2960.968 \\
J_{2} = 318.506 \\
\end{matrix} \right.\ $$
Jyo > Jzo → Jyo = J1
RB = q * 4.5a + 1.5qa = 6qa
MBP = −1.5qa * 2.5a = −3.75qa2
MBL = −1.5qa * 2.5a − 3qa2 = −6.75qa2
$$M_{1} = - 1.5qa*7a - 3\text{qa}^{2} + 6qa*4.5a - q*\frac{{(4.5a)}^{2}}{2} = 3.375\text{qa}^{2}$$
$$z = y\frac{M_{z}}{M_{y}}*\frac{J_{y}}{J_{z}} = - \tan\varphi_{0}*\frac{J_{y}}{J_{z}}*y = - \tan{12.96}*\frac{2960.968}{318.506}*y$$
z = −2.139y
y1 = 1[cm]
z1 = 20[cm]
yo = y1 − yc = 1 − (−0.123) = 1.123[cm]
zo = z1 − zc = 20 − (8.856) = 11.144[cm]
y = y0cosφ0 + z0sinφ0 = 1.123*cos12.96 + 11.144 * sin12.96 = 3.594[cm]
z = −y0sinφ0 + z0cosφ0= − 1.123 * sin12.96 + 11.144*cos12.96 = 10.608[cm]
$${\sigma_{x}^{} = \frac{M_{y}}{J_{y}}*z - \frac{M_{z}}{J_{z}}*y = M}_{y0}*\left\lbrack \frac{\cos\varphi_{0}}{J_{y}}*z + \frac{\sin\varphi_{0}}{J_{z}}*y \right\rbrack = M_{y0}*6.022*10^{3}$$
y1 = 5.5[cm]
z1 = 0[cm]
yo = y1 − yc = −5.5 − (−0.123) = −5.377[cm]
zo = z1 − zc = 0 − (8.856) = −8.856[cm]
y = y0cosφ0 + z0sinφ0 = −5.377*cos12.96 − 8.856 * sin12.96 = −7.226[cm]
z = −y0sinφ0 + z0cosφ0=5.377 * sin12.96 − 8.856*cos12.96 = −7.425[cm]
$${\sigma_{x}^{} = \frac{M_{y}}{J_{y}}*z - \frac{M_{z}}{J_{z}}*y = M}_{y0}*\left\lbrack \frac{\cos\varphi_{0}}{J_{y}}*z + \frac{\sin\varphi_{0}}{J_{z}}*y \right\rbrack = M_{y0}* - 7.532*10^{3}$$
σx = My0 * −7.532 * 10−3 = qa2 * −7.532 * 10−3 ≤ Kg
Największe naprężenie występuje w punkcie
$$q_{\text{dop}} = \frac{215}{1^{2}* - 7.532*10^{- 3}*6.75} = 4.229\frac{\text{kN}}{m}$$
Schemat statyczny belki wtórnej
Obciążenie belki wtórnej
Sposób rozkładu obciążenia o zmienności parabolicznej na składowe figury proste
$$\backslash t\backslash tN_{1}^{*} = 3.375qa^{2}*4.5a*\frac{1}{2} = \frac{243}{32}qa^{3}$$
$$N_{2}^{*} = \frac{2}{3}4.5a*\frac{q\left( 4.5a \right)^{2}}{8} = \frac{243}{32}qa^{3}$$
$$N_{3}^{*} = 6.75qa^{2}*4.5a*\frac{1}{2} = \frac{243}{16}qa^{3}$$
$$N_{4}^{*} = 3.75qa^{2}*2.5a*\frac{1}{2} = \frac{75}{16}qa^{3}$$
TB* = −N1* − N2* + N3* = 0
$$M_{A}^{*} = T_{B}^{*}*2.5a + N_{4}^{*}*\frac{2}{3}*2.5a = \frac{125}{16}qa^{4}$$
qz = q * cosφ0
qy = q * sinφ0
$$w_{A} = \frac{125}{16}\frac{q_{z}a^{4}}{EJ_{y}} = \frac{125*4.229*\cos{12.96*1^{2}}}{16*205*2960.968} = 0.005304\lbrack m\rbrack$$
$${w'}_{A} = 0\frac{q_{z}a^{3}}{EJ_{y}} = 0$$
$$v_{A} = \frac{125}{16}\frac{q_{y}a^{4}}{EJ_{z}} = \frac{125*4.229*\sin{12.96*1^{2}}}{16*205*318.506} = 0.01135\lbrack m\rbrack$$
$${v'}_{A} = 0\frac{q_{z}a^{3}}{EJ_{z}} = 0$$
w = wA * cosφ0 + vAsinφ0 = 7.714 * 10−3[m]
w′0 = w′A * cosφ0 + v′Asinφ0 = 0
$$\sum_{}^{}M_{A} = 0$$
MA = −RB * 3 + 30 * 5 + 0.5 * 10 * 2.75
RB = 54.58(3)[kN]
$$\sum_{}^{}T_{Z} = 0$$
RA + RB − 30 − 5 = 0
RA = −19.58(3)[kN]
MyB − B = RA * 2.5
MyB − B = 44.0625[kNm]
TzB − B = 19.583[kN]
A = 5 * 8.5 + 5.6 * 19.5 + 8.6 * 2.7 * 2 = 198.14[cm2]
$$S_{y1} = 5*8.5*\frac{8.5}{2} + 19.5*5.6*11.3 + 2.7*8.6*18.4*2 = 2269.081\lbrack\text{cm}^{3}\rbrack$$
$$z_{c} = \frac{2269.081}{198.14} = 11.45\lbrack cm\rbrack$$
$$J_{y} = \frac{5*8.5^{3}}{12} + 5*8.5*{7.15}^{2} + \frac{5.6*{19.5}^{3}}{12} + 19.5*5.6*{0.15}^{2} + 2\left( \frac{8.6*{2.7}^{3}}{12} + 8.6*2.7*{6.95}^{2} \right) = 5267.31\lbrack\text{cm}^{4}\rbrack$$
$$\overline{S_{1}} = 0$$
$$\overline{S_{A}} = 2.7*6.02*8.24 = 267.866\lbrack\text{cm}^{3}\rbrack$$
$$\overline{S_{2}} = 2.7*6.95*8.6 = 322.758\lbrack\text{cm}^{3}\rbrack$$
$$\overline{S_{3}} = \overline{S_{2}} - 19.5*5.6*0.15 = 306.378\lbrack\text{cm}^{3}\rbrack$$
b1 = bA = b2d = 2.7 * 2 = 5.4[cm]
b2g = b3d = 19.5[cm]
$$\sigma_{1} = \frac{- 44.0625*11.25}{5276.31} = - 93.95\lbrack MPa\rbrack$$
$$\sigma_{A} = \frac{- 44.0625*8.24}{5276.31} = - 43.676\left\lbrack \text{MPa} \right\rbrack$$
$$\sigma_{4} = \frac{- 44.0625* - 11.45}{5276.31} = 95.652\lbrack MPa\rbrack$$
$$\tau_{1} = \frac{T_{z}*\overline{S_{1}}}{J_{y}*b_{1}} = 0$$
$$\tau_{\text{xz}}^{(2d)} = \frac{T_{z}*\overline{S_{2}}}{J_{y}*b_{2}^{d}} = \frac{19.583*322.758}{5276.31*5.4} = 2.218\lbrack MPa\rbrack$$
$$\tau_{\text{xz}}^{(A)} = \frac{T_{z}*\overline{S_{A}}}{J_{y}*b_{A}} = \frac{19.583*267.866}{5276.31*5.4} = 1.841\lbrack MPa\rbrack$$
$$\tau_{\text{xz}}^{(2g)} = \frac{T_{z}*\overline{S_{2}}}{J_{y}*b_{2}^{g}} = \frac{19.583*322.758}{5276.31*19.5} = 0.614\lbrack MPa\rbrack$$
$$\tau_{\text{xz}}^{(3d)} = \frac{T_{z}*\overline{S_{3}}}{J_{y}*b_{2}^{g}} = \frac{19.583*306.378}{5276.31*19.5} = 0.583\lbrack MPa\rbrack$$
$\tau_{\text{xz}}^{(3g)} = \frac{T_{z}*\overline{S_{3}}}{J_{y}*b_{3}^{g}} = \frac{19.583*306.378}{5276.31*5} = 2.274\lbrack MPa\rbrack$
$$\sigma = \sqrt{\sigma_{x} + 4\tau_{\text{xz}}^{2}} = 43.831\lbrack MPa\rbrack$$