Z NPK dla pierwszego oczka
−UC1 + UR3 + UR2 = 0
Pomijamy napięcie na rezystorze R3
−UC1 + UR2 = 0
UC1 = UR2
UC1 = iR2 • R2
Z PPK
$$\left\{ \begin{matrix}
i_{1} = i_{C1} + i_{2} \\
i_{2} = i_{C2} + i_{3} \\
\end{matrix} \right.\ $$
Jako że pomineliśmy napięcie na R3 pomijamy natężenie prądu i3.
$$\left\{ \begin{matrix}
i_{1} = i_{C1} + i_{2} \\
i_{2} = i_{C2} \\
\end{matrix} \right.\ $$
Wiadomo, że prąd elektryczny to zmiana ładunku w czasie
$$i = \frac{\text{dQ}}{\text{dt}} = C \bullet \frac{dU_{c}}{\text{dt}}$$
Czyli
$$i_{C1} = C_{1} \bullet \frac{dU_{C1}}{\text{dt}}$$
$$i_{C2} = C_{2} \bullet \frac{dU_{C2}}{\text{dt}}$$
Zatem
$$\left\{ \begin{matrix}
i_{1} = C_{1} \bullet \frac{dU_{C1}}{\text{dt}} + i_{2} \\
i_{2} = C_{2} \bullet \frac{dU_{C2}}{\text{dt}} \\
\end{matrix} \right.\ $$
$$\left\{ \begin{matrix}
i_{1} = C_{1} \bullet \frac{dU_{C1}}{\text{dt}} + C_{2} \bullet \frac{dU_{C2}}{\text{dt}} \\
i_{2} = C_{2} \bullet \frac{dU_{C2}}{\text{dt}} \\
\end{matrix} \right.\ $$
Wracając
UC1 = i2 • R2
$$U_{C1} = C_{2} \bullet \frac{dU_{C2}}{\text{dt}} \bullet R_{2}$$
$$\frac{dU_{C2}}{\text{dt}} = \frac{U_{C1}}{C_{2} \bullet R_{2}}$$
Otrzymaliśmy pierwsze równanie stanu
Z NPK dla drugiego oczka.
Uwe − UR1 − UR2 − UC2 = 0
Uwe − i1 • R1 − UR2 − UC2 = 0
UR2 = UC1
$$U_{\text{we}} - \left( C_{1} \bullet \frac{dU_{C1}}{\text{dt}} + C_{2} \bullet \frac{dU_{C2}}{\text{dt}} \right) \bullet R_{1} - U_{C1} - U_{C2} = 0$$
$$U_{\text{we}} - \left( C_{1} \bullet \frac{dU_{C1}}{\text{dt}} + C_{2} \bullet \frac{U_{C1}}{C_{2} \bullet R_{2}} \right) \bullet R_{1} - U_{C1} - U_{C2} = 0$$
$$U_{\text{we}} - \left( C_{1} \bullet \frac{dU_{C1}}{\text{dt}} + \frac{U_{C1}}{R_{2}} \right) \bullet R_{1} - U_{C1} - U_{C2} = 0$$
$$U_{\text{we}} - C_{1}R_{1} \bullet \frac{dU_{C1}}{\text{dt}} - \frac{R_{1}}{R_{2}}{\bullet U}_{C1} - U_{C1} - U_{C2} = 0$$
$$U_{\text{we}} - \frac{R_{1}}{R_{2}}{\bullet U}_{C1} - U_{C1} - U_{C2} = C_{1}R_{1} \bullet \frac{dU_{C1}}{\text{dt}}$$
$$\frac{U_{\text{we}}}{C_{1}R_{1}} - \frac{\frac{R_{1}}{R_{2}}{\bullet U}_{C1}}{C_{1}R_{1}} - \frac{U_{C1}}{C_{1}R_{1}} - \frac{U_{C2}}{C_{1}R_{1}} = \frac{dU_{C1}}{\text{dt}}$$
$$\frac{U_{\text{we}}}{C_{1}R_{1}} - \frac{U_{C1}}{C_{1}R_{2}} - \frac{U_{C1}}{C_{1}R_{1}} - \frac{U_{C2}}{C_{1}R_{1}} = \frac{dU_{C1}}{\text{dt}}$$
Zatem otrzymaliśmy drugie równanie stanu
$$\frac{dU_{C1}}{\text{dt}} = \frac{1}{C_{1}R_{1}} \bullet U_{\text{we}} - \frac{R_{1} + R_{2}}{C_{1}R_{1}R_{2}} \bullet U_{C1} - \frac{1}{C_{1}R_{1}} \bullet U_{C2}$$