Parcie na 6

Data wykonania: 26.10.2012

Anna Kempa

Mateusz Baranowicz

Konrad Ostrowski

Urszula Kowalska

Adam Młynarczyk

Grupa 2

Zespół 3

SPRAWOZDANIE

PARCIE HYDROSTATYCZNE

  1. Cel i zakres ćwiczenia:

Celem ćwiczenia jest określenie wartości parcia hydrostatycznego oraz ramię siły parcia hydrostatycznego metodą doświadczalną, dla następujących wariantów napełnień:

  1. Wariant I – zbiornik napełniony cieczą, pływak pusty

  2. Wariant II – zbiornik pusty, pływak napełniony cieczą

  3. Wariant III – zbiornik i pływak napełnione wodą

  1. Wprowadzenie teoretyczne

Parcie hydrostatyczne (P) - to siła powierzchniowa, z jaką ciecz znajdująca się w stanie spoczynku oddziałuje na ścianę zbiornika lub powierzchnię w nim umieszczoną. Parcie hydrostatyczne, jako wypadkowa parć elementarnych prostopadłych do elementów powierzchni A, skierowane jest normalnie do tej płaszczyzny. Wartość parcia hydrostatycznego można określić dwoma następującymi metodami:


P = γ * hS * A

gdzie: P - parcie hydrostatyczne

γ - ciężar objętościowy cieczy

hS - zagłębienie środka ciężkości powierzchni, na którą działa ciecz, pod jej swobodną powierzchnią

A - pole powierzchni, na którą działa ciecz


P = γ * V

gdzie: V - objętość bryły parcia hydrostatycznego

Dla ścian pionowych lub nachylonych środek parcia znajduje się zawsze poniżej środka ciężkości ściany. W przypadku ścian symetrycznych względem osi pionowej, odległość między zagłębieniem środka ciężkości ściany hS a zagłębieniem środka parcia hP wyraża zależność:


$$\mathrm{h}_{\mathrm{P}}\mathrm{=}\mathrm{h}_{\mathrm{S}}\mathrm{+}\frac{\mathrm{I}_{\mathrm{0}}}{\mathrm{h}_{\mathrm{S}}\mathrm{*A}}$$

I0 - moment bezwładności ściany

  1. Opis stanowiska pomiarowego

Schemat modelu do określania parcia hydrostatycznego:

Dane:


Tw = 23C


$$\rho = 997,54\ \frac{\text{kg}}{m^{3}}$$

  1. Pomiary

Ćwiczenie wykonano według następujących wariantów:

  1. Wariant I – zbiornik napełniony cieczą, pływak pusty

  2. Wariant II – zbiornik pusty, pływak napełniony cieczą

  3. Wariant III – zbiornik i pływak napełnione wodą

Numer wariantu Poziom wody [m] Masa [kg]
Wariant I 0,130 0,075
0,145 0,125
0,195 0,370
Wariant II 0,130 0,090
0,145 0,140
0,195 0,420
Wariant III 0,130 0,015
0,145 0,020
0,195 0,060
  1. Obliczenia

Wartość parcia hydrostatycznego wyznaczono ze wzoru:


P = γ * hS * A

  1. Do policzenia zagłębienia środka ciężkości powierzchni, na którą działa ciecz wykorzystaliśmy następującą zależność:


$$h_{S} = H - \ \frac{{H - (R}_{0} - R_{2})}{2} - (R_{0} - R_{2})$$

Obliczenia wykonujemy dla H=0,13 m


$$h_{S} = 0,13m - \frac{0,13m - \left( 0,375m - 0,30m \right)}{2} - \left( 0,375m - 0,30m \right) = 0,0275m$$

Wzór na środek ciężkości dla H=0,195 m będzie wyglądał następująco:


$$h_{S} = H - \ \frac{z}{2} - \left( R_{0} - R_{2} \right) = 0,195m - \ \frac{0,1m}{2} - \ \left( 0,375m - 0,30m \right) = 0,070m$$

Analogicznie wyliczamy dla pozostałych wariantów:

Poziom wody [m] Wartość hS[m]
0,130 0,0275
0,145 0,0350
0,195 0,0700
  1. Do obliczenia parcia hydrostatycznego potrzebujemy również wyznaczyć pole powierzchni A, na którą działa ciecz dla poszczególnych wariantów.

Dla poszczególnych wariantów wzór na A będzie wyglądał następująco:


Wariant I A1 = (H−(R0R2)) * z      (dla  0, 195m A1 = z2)


Wariant II A2 = (z−2*y) * (Hx−(R0R2))     (dla 0, 195m A2 = i * j)


Wariant III A3 = A1 − A2

gdzie: z=0,1 m – bok ścianki pływaka

x=0,004 m – grubość pierwszej ścianki

y=0,007 m – grubość drugiej ścianki

i=0,086 m – długość wewnętrzna pierwszej ściany pływaka

j=0,092 m - długość wewnętrzna drugiej ściany pływaka

Przykładowe obliczenie dla Wariantu I, gdzie H=0,13 m


A1 = (0,13−(0,375−0,3)) * 0, 1 = 0, 0055 m2

Obliczone wartości A dla pozostałych wariantów:

Numer wariantu Poziom wody [m] Pole A [m2]
Wariant I 0,130 0,0055
0,145 0,0070
0,195 0,0100
Wariant II 0,130 0,00439
0,145 0,00568
0,195 0,007912
Wariant III 0,130 0,00111
0,145 0,00132
0,195 0,002088

Liczymy wartość parcia metodą analityczną:


$$P = \gamma*h_{S}*A = 9785,87\frac{N}{m^{3}}*0,0275m*0,0055m^{2} = 1,4801N$$

Pozostałe wyniki przedstawiono w tabeli:

Numer wariantu Poziom wody [m] Parcie hydrostatyczne [N]
Wariant I 0,130 1,4801
0,145 2,3975
0,195 6,8501
Wariant II 0,130 1,1814
0,145 1,9454
0,195 5,4198
Wariant III 0,130 0,2987
0,145 0,4521
0,195 1,4303

Wartość ramienia siły parcia policzono z następującego wzoru:


$$c = h_{S} + \frac{I_{0}}{h_{S}*A} + (R_{0} - H)$$

gdzie: d - wzniesienie osi obrotu wagi nad zwierciadło wody w zbiorniku lub pływaku

  1. Obliczenia momentu bezwładności


$$\text{Wariant\ I\ \ \ \ \ \ \ }I_{0} = \ \frac{z*{(H - \left( R_{0} - R_{2} \right))}^{3}}{12}\ \ \ \ \ \ (dla\ 0,195m\ \ I_{0} = \ \frac{z^{4}}{12}\ )$$


$$\text{Wariant\ II\ \ \ \ \ }I_{0} = \ \frac{i*{(H - \left( R_{0} - R_{2} \right) + x)}^{3}}{12}\ \ \ \ \ (dla\ 0,195m\ I_{0} = \ \frac{i*j^{3}}{12})$$


$$\text{Wariant}\text{\ III\ \ \ \ I}_{0} = \ \frac{z*\left( H - \left( R_{0} - R_{2} \right) \right)^{3} - i*{\left( H - {(R}_{0} - R_{2} \right) + x)}^{3}\ }{12}\ \ (dla\ 0,195m\text{\ \ I}_{0} = = \ \frac{z^{4} - \text{ij}^{3}}{12})$$

Przykładowe obliczenie dla Wariantu I, gdzie H=0,13m


$$I_{0} = \ \frac{0,1*{(0,13 - 0,075)}^{3}}{12} = 1,386*10^{- 6}\ {\lbrack m}^{4}\rbrack$$

Tabela momentów bezwładności ściany dla poszczególnych wariantów:

Numer wariantu Poziom wody [m] Moment bezwładności [m4]
Wariant I 0,130
1, 386 * 10−6
0,145
2, 858 * 10−6
0,195
8, 333 * 10−6
Wariant II 0,130
9, 507 * 10−7
0,145
2, 060 * 10−6
0,195
5, 581 * 10−6
Wariant III 0,130
4, 353 * 10−7
0,145
7, 980 * 10−7
0,195
2, 752 * 10−6

Obliczenie ramienia siły parcia dla wariantu I, gdzie H = 0, 13 m:


$$c = 0,0275m + \frac{1,386*10^{- 6}m^{4}}{0,0275m*0,0055m^{2}} + (0,375m - 0,13m) = 0,2817m$$

Dla pozostałych wariantów i poziomu wody wyniki przedstawiono w tabeli:

Numer wariantu Poziom wody [m] Ramie siły parcia [m]
Wariant I 0,130 0,2817
0,145 0,2662
0,195 0,2619
Wariant II 0,130 0,2804
0,145 0,2660
0,195 0,2601
Wariant III 0,130 0,2868
0,145 0,2823
0,195 0,2688

Do obliczenia wartości siły parcia na podstawie pomiarów posłużono się następującym wzorem:


$$P = \frac{G*a(lub\ b)}{c}$$

Gdzie: G = m * g- obciążenie szalki

a(lub b) – długość ramienia wagi

Obliczenia dla wariantu I oraz H = 0, 13 m:


$$P = \frac{0,075kg*9,81\frac{N}{\text{kg}}*0,44m}{0,2817m} = 1,1492N$$

Tabela dla pozostałych wyników:

Numer wariantu Poziom wody [m] Parcie [N]
Wariant I 0,130 1,1492
0,145 2,0269
0,195 6,0980
Wariant II 0,130 1,0706
0,145 1,7555
0,195 5,3859
Wariant III 0,130 0,2258
0,145 0,3058
0,195 0,9635

Doświadczalną wartość ramienia siły parcia obliczamy z następującego wzoru:


$$c = \frac{G*a(lub\ b)}{P}$$

Gdzie P = γ * hS * A - wartość siły parcia liczona metodą analityczną

Obliczenia wykonujemy dla wariantu I oraz H = 0, 13 m:


$$c = \frac{0,075kg*9,81\frac{\text{kg}}{m^{3}}*0,44m}{1,4801N} = 0,2187m$$

Reszta wyników została przedstawiona w tabeli:

Numer wariantu Poziom wody [m] Ramie siły parcia [m]
Wariant I 0,130 0,2187
0,145 0,2251
0,195 0,2331
Wariant II 0,130 0,2541
0,145 0,2400
0,195 0,2585
Wariant III 0,130 0,2168
0,145 0,1910
0,195 0,1811

W celu obliczenia siły parcia metodą rachunkowo-wykreślną narysowano wykresy parcia i wyznaczono parcie jako objętość bryły parcia. Do obliczeń posłużono się następującym wzorem:


P = γ * V

gdzie: V - objętość bryły parcia


V = Pp * hB

gdzie: Pp-pole podstawy bryły parcia

 hB- wysokość bryły parcia

hB1 - wysokość bryły parcia dla Wariantu I, hB1 = 0, 10 m

hB2 - wysokość bryły parcia dla Wariantu II, hB2 = 0, 086 m

hB3 - wysokość bryły parcia dla Wariantu III, hB3 = 0, 10 m

Podstawa bryły parcia w Wariantach I i II jest trójkątem równoramiennym więc wzór na objętość bryły parcia przyjmuje następującą postać:


$$V = \frac{f^{2}}{2}*h_{B}$$

gdzie: f - długość podstawy bryły parcia

Podstawą bryły parcia dla Wariantu III jest trapez, a więc objętość w tym przypadku liczymy jako iloczyn pola powierzchni trapezu i wysokości bryły parcia.

Przykładowe obliczenie przedstawiamy dla Wariantu I, gdzie H = 0, 13 m


$$V = \frac{{(0,055m)}^{2}}{2}*0,1m = 0,000151m^{3}$$

Pozostałe wyniki obliczeń objętości bryły parcia przedstawia tabela:

Numer wariantu Poziom wody [m] Objętość bryły parcia[m3]
Wariant I 0,130 0,000151
0,145 0,000245
0,195 0,000720
Wariant II 0,130 0,000112
0,145 0,000187
0,195 0,000579
Wariant III 0,130 0,000039
0,145 0,000058
0,195 0,000141

Obliczenia wartości parcia dla Wariantu I, gdzie H = 0, 13 m


$$P = 9785,87\frac{N}{m^{3}}*0,000151m^{3} = 1,478N$$

Tabela pozostałych pomiarów

Numer wariantu Poziom wody [m] Parcie [N]
Wariant I 0,130 1,4777
0,145 2,3975
0,195 7,0458
Wariant II 0,130 1,0960
0,145 1,8300
0,195 5,6660
Wariant III 0,130 0,3816
0,145 0,5676
0,195 1,3798
Poziom wody [m] Wariant I Wariant II Wariant III
Wartości parcia wyznaczone metodą analityczną [N]
0,130 [m] 1,4801 1,1814 0,2987
0,145 [m] 2,3975 1,9454 0,4521
0,195 [m] 6,8501 5,4198 1,4303
Wartości ramienia siły parcia wyznaczone metodą analityczną [m]
0,130 [m] 0,2817 0,2804 0,2868
0,145 [m] 0,2662 0,2660 0,2823
0,195 [m] 0,2619 0,2601 0,2688
Wartości parcia wyznaczone metodą rachunkowo-wykreślną [N]
0,130 [m] 1,4777 1,0960 0,3816
0,145 [m] 2,3975 1,8300 0,5676
0,195 [m] 7,0458 5,6660 1,3798
Wartość parcia wyznaczone na podstawie dokonanych pomiarów [N]
0,130 [m] 1,1492 1,0706 0,2258
0,145 [m] 2,0269 1,7555 0,3058
0,195 [m] 6,0980 5,3859 0,9635
Wartość ramienia siły parcia wyznaczone na podstawie dokonanych pomiarów [m]
0,130 [m] 0,2187 0,2541 0,2168
0,145 [m] 0,2251 0,2400 0,1910
0,195 [m] 0,2331 0,2585 0,1811
  1. Błędy pomiarowe

Niepewność wzorcowa dla linijki, którą się posługiwano wynosi:


H = 0, 001m

Kolejną wielkością, obarczoną błędem pomiaru było hs – zagłębienie środka ciężkości. Niepewność tego pomiaru obliczamy korzystając z metody różniczki zupełnej:


$$\left( h_{s} \right) = \left| \frac{dh_{s}}{\text{dH}}*H \right| = \left| \frac{d\left( H - \frac{H - \left( R_{0} - R_{2} \right)}{2} - \left( R_{0} - R_{2} \right) \right)}{\text{dH}}*H \right| = \left| \frac{1}{2}*H \right|$$


(hs) = |0,5*0,001m| = 0, 0005m

Wielkości pozostałe użyte w naszym doświadczeniu zostały pobrane z opisu załączonego do instrukcji ćwiczenia lub tablic, dlatego uznano je za pewne i nie liczymy dla nich błędów. Błędy wielkości parcia oraz ramienia siły zależą jedynie od pomiarów wysokości słupa cieczy. Niepewność ta jest niewielka, więc uznano że jej wpływ na wynik doświadczenia jest znikomy i nie liczono błędów wyznaczanych wielkości. Stwierdzono, że na niepewności pomiarów większy wpływ miały:

  1. Wnioski

Na podstawie obserwacji dokonanych podczas przeprowadzonych doświadczeń i wykonanych obliczeń, możemy stwierdzić, iż otrzymane wyniki są zgodne z oczekiwanymi.


Wyszukiwarka

Podobne podstrony:
parcie na pow
parcie na pow zakrzywione
parcie na sciany zakrzywione id Nieznany
Parcie na powierzchnie płaskie
,pytania na obronę inż,ciśnienie hydrostatyczne i parcie hydrostatyczne
PARCIE HYDROSTATYCZNE NA ŚCIANĘ PŁASKĄ
Interpretacja treści Księgi jakości na wybranym przykładzie
Wykład 1, WPŁYW ŻYWIENIA NA ZDROWIE W RÓŻNYCH ETAPACH ŻYCIA CZŁOWIEKA
zróżnicowanie religijne na świecie
WPŁYW STRESU NA NADCIŚNIENIE TETNICZE
Prezentacja na seminarium
Bezpieczenstwo na lekcji wf
CZLOWIEK I CHOROBA – PODSTAWOWE REAKCJE NA
Uważajmy na drogach Prezentacja

więcej podobnych podstron