(xr) | rxr-1 |
---|---|
(c) c=const | 0 |
(x) | 1 |
(x2) | 2x |
$$\left( \frac{1}{x} \right)$$ |
$$- \frac{1}{x^{2}}$$ |
$$\sqrt{x}$$ |
$$\frac{1}{2\sqrt{x}}$$ |
ex |
ex |
ax |
axlna |
lnx |
$$\frac{1}{x}$$ |
(x) |
$$\frac{1}{\text{x\ lna}}$$ |
sinx |
cosx |
cosx |
−sinx |
tgx |
$$\frac{1}{\operatorname{}x}$$ |
ctgx |
$$- \frac{1}{\operatorname{}x}$$ |
[c*f(x)]′ = c * f′(x)
[f(x)+f(x)]′ = f′(x) + g′(x)
[f(x)*g(x)]′ = f′(x) * g(x) + f(x) * g′(x)
$$\left\lbrack \frac{f\left( x \right)}{g\left( x \right)} \right\rbrack^{'} = \frac{f^{'}\left( x \right)*g\left( x \right) - f\left( x \right)*g'(x)}{\left\lbrack g\left( x \right) \right\}^{2}}$$
((3x + 5)6)′=6*(3x + 5)5*(3x + 5)′=18*(3x + 5)5
(sin(2x + 1))′=cos(2x + 1)*(2x + 1)′=2cos(2x + 1)
sin2x=u2′=2uu′=(2sinx)′=2sinxcosx
∫0dx |
C |
---|---|
∫dx |
x + C |
∫xrdx |
$$\frac{1}{r + 1}x^{r + 1}$$ |
$$\int_{}^{}{\frac{1}{x}\text{dx}}$$ |
ln|x| + C |
∫exdx |
ex + C |
∫axdx |
$$\frac{a^{x}}{\text{lna}} + C$$ |
∫sinxdx |
−cosx + C |
∫cosxdx |
sinx + C |
∫lnxdx |
xlnx − x + C |
∫tgxdx |
−ln|cox| + C |
∫ctgxdx |
ln|sinx| + C |
$$\int_{}^{}{\frac{1}{\cos x^{2}x}\text{dx}}$$ |
tgx + C |
$$\int_{}^{}\frac{1}{\operatorname{}x}\text{dx}$$ |
−ctgx + C |
$$\int_{}^{}\begin{matrix}
\mathbf{f}\left( \mathbf{ax\ + \ b} \right)^{\mathbf{n}}\mathbf{dx\ =}\frac{\mathbf{1}}{\mathbf{a*}\left( \mathbf{n + 1} \right)}\mathbf{F}\left( \mathbf{ax\ + \ b} \right)^{\mathbf{n + 1}}\mathbf{+ \ C\ \ \ \ \ \ } \\
\mathbf{a \neq \ 0} \\
\end{matrix}$$
jak nie ma potegi to po prostu dwie caleczki
$$\int_{}^{}\frac{1}{2x + 3}dx = \frac{1}{2}\ln\left| 2x + 3 \right| + C$$
$$\int_{}^{}{\frac{\mathbf{f'(x)}}{\mathbf{f(x)}}\mathbf{\text{dx}}}\mathbf{= ln}\left| \mathbf{f}\left( \mathbf{x} \right) \right|\mathbf{+ C}$$
$$\int_{}^{}{\frac{2x}{x^{2} + 4}dx = \ln\left( x^{2} + 4 \right) + C\ \ \ bo\ \ \left( x^{2} + 4 \right)^{'} = 2x}$$
∫uv′dx=uv−∫u′vdx calkowanie przez czesci
$$\int_{}^{}{xsin2xdx} = \begin{Bmatrix}
u = x & v^{'} = sin2x \\
u^{'} = 1 & v = - \frac{1}{2}cos2x \\
\end{Bmatrix} = x\left( - \frac{1}{2}cos2x) \right) - \int_{}^{}{1*\left( - \frac{1}{2}cos2x \right)\text{dx}}$$
∫f(x)dx=∫f(g(t))g′(t)dt↑ t = y(x) podstawienie
$$\int_{}^{}{\frac{1}{a^{x}} = - \frac{1}{a^{x}\text{lna}}} + C$$
sin3x = sinx(3 − 4x) sin2x = 2sinxcosx
cos3x = cosx(4x − 3) cos2x = x − x