Rodzaje mechanizmów niszczenia
Korozja,
Zużycie
Pękanie,
Zmęczenie,
Erozja.
Są generalnie 2 mechanizmy pękania materiałów: plastyczne rozrywanie
i kruche pękanie.
Pęknięcie w materiale powoduje, że lokalne naprężenia w pobliżu jego krawędzi jest większe od średniego naprężenia w materiale, czyli pęknięcie prowadzi do koncentracji naprężeń.
Należy zwrócić uwagę na to, że strefa uplastyczniona maleje ze wzrostem Re dlatego miękkim metalom towarzyszy duża strefa uplastycznienia a pęknięcia w twardych ceramikach tworzą b. małą strefę lub nie wytwarzają jej zupełnie. Nawet czyste metale zwykle zawierają małe wtrącenia i zanieczyszczenia, jeśli znajdą się one w strefie uplastycznienia przed czołem pęknięcia to ulegają one odkształceniom co powoduje powstawanie wydłużonych pustek, które łącząc się ze sobą powodują, że pęknięcie narasta. Odkształcenie plastyczne powoduje jednoczesne stępienie ostrza pęknięcia co zmniejsza lokalne naprężenia tak, że w pobliżu ostrza jest ono zaledwie dostateczne do podtrzymania procesu odkształcania umacniającego się materiału.
Kruche pękanie
Jeśli nie występuje zjawisko stępienia ostrza czoła pęknięcia to lokalne naprężenie przed pęknięciem może osiągać b. duże wartości i może osiągnąć teoretyczną wytrzymałość materiału. Jest wtedy dostatecznie duże na to żeby rozrywać wiązania między atomami w tym obszarze: pęknięcie rozrasta się wówczas pomiędzy parą płaszczyzn atomowych.
Korozja
Korozja pochodzi od łac. „corrosio” – gryzienie
Według PN-69/H-04609 korozja metali to niszczenie na skutek wzajemnej reakcji chemicznej lub elektrochemicznej metalu ze środowiskiem korozyjnym.
Szybkość korozji (ubytek masy) przelicza się na jednostkę powierzchni metalu i jednostkę czasu, np. g/(m² •godz.)
Mechanizm korozji elektrochemicznej
Na powierzchni metalu tworzą się mikroogniwa (np. zanieczyszczenie+ osnowa metaliczna).
Elektrolit tworzy [(woda, wilgoć w powietrzu) + zanieczyszczenia powietrza ( siarka, dwutlenek węgla )],
np. kwas siarkowy. Jednocześnie przebiegają dwa procesy anodowy i katodowy.Proces katodowy – Fe oddaje elektrony, które wchodzą w reakcję z wodą (powstaje ujemna grupa wodorotlenowa), proces anodowy – Fe łączy się z grupą wodorotlenową tworząc produkt korozji (wodorotlenki żelaza).
Korozja chemiczna
Najpospolitszym przykładem tego typu korozji jest korozja w gazach w podwyższonej temperaturze, a w szczególności tzw. zendrowanie żelaza. Żelazo czyli stal ogrzewane w powietrzu lub ogólnie w atmosferze utleniającej, powleka się warstewką tlenków żelaza głównie: Fe3O4, ale powstają także pewne ilości Fe2O3 i FeO, wskutek bezpośredniej reakcji między żelazem a tlenem czy też innym czynnikiem utleniającym
Zmęczenie materiału
Jeżeli materiał jest poddawany działaniu zmiennych obciążeń np. wał napędowy silnika spalinowego lub skrzydła samolotu, może on ulec zniszczeniu nawet jeśli naprężania obciążające materiał są niższe od granicy plastyczności materiału.
Złomy zmęczeniowe mają charakterystyczny wygląd
Erozja
Erozja to niszczenie materiału spowodowane uderzaniem o powierzchnię materiału drobnych cząstek materii z dużą prędkością, np. łopatki turbiny gazowej mogą ulegać erozji jeżeli gaz zasilający turbinę jest zanieczyszczony drobinami.
Jedną z odmian erozji jest erozja kawitacyjna materiału
Erozja kawitacyjna
Kawitacja to zjawisko wywołane zmiennym polem ciśnień w cieczy, polegające na powstawaniu, wzroście i zanikaniu pęcherzyków lub innych obszarów zamkniętych zawierających parę, gaz lub mieszaninę parowo-gazową danej cieczy. Pęcherzyki zwiększają swoją objętość w obszarach, w których ciśnienie spada poniżej wartości krytycznej i gwałtownie zmniejszają swoją objętość (implodują) w strefach podwyższonego ciśnienia.