INSTYTUT POLITECHNICZNY
KIERUNEK : BUDOWNICTWO
WYTRZYMAŁOŚĆ MATERIAŁÓW
PROJEKT NR 4
Nazwisko Imię | Krzysztof Stachowiak |
---|---|
Rok/Grupa | II Gr. I sem. IV |
Rok akademicki | 2012/2013 r. |
Ocena |
$M_{A} = 1 \times 5 \times 2,5 + \frac{1,5 \times 5}{2} \times \frac{5}{3} = - \mathbf{18,75}\text{\ kNm}$
Położenie środka ciężkości przekroju:
xc = 7, 7 cm
yc = 8, 7 cm
Centralne momenty bezwładności przekroju:
Ix = Ix1 + A1 × (7−8,7)2 + Ix2 + A2 × (15,12−8,7)2 = 550 + 43 × 2, 89 + 19, 7 + 11, 4 × 41, 2164 = 1163, 83696 cm4
Iy = Iy1 + A1 × (7−7,7)2 + Iy2 + A2 × (10,41−7,7)2 = 1510 + 43 × 0, 49 + 116 + 11, 4 × 7, 3441 = 1730, 79274 cm4
Ixy = 43 × (−1,7) × (−0,7) + 26, 6171 + 11, 4 × 6, 42 × 2, 71 = 276, 12658 cm4
Główne centralne momenty bezwładności przekroju:
$I_{\text{ηξ}} = \frac{I_{x} + I_{y}}{2} \pm \sqrt{\left( \frac{I_{x} - I_{y}}{2} \right)^{2} + I_{\text{xy}}^{2}\text{\ \ }} = \frac{1163,83696 + 1730,79274}{2} \pm \sqrt{\left( \frac{1163,83696 - 1730,79274}{2} \right)^{2} + {276,12658}^{2}}\ =$
Iη = 1843, 049107 cm4 , Iξ = 1051, 580593 cm4
Sprawdzenie : Ix × Iy − Ixy2 = Iη × Iξ
1938114, 673 = 1938114, 673
Kąt obrotu układu głównego
$tg2\alpha = - \frac{2 \times I_{\text{xy}}}{I_{x} - I_{y}} = 0,9740674308 = 44,24737054 = 22,12368527 = 22,12368527 + \frac{\pi}{2} = \mathbf{112,12368527}$
$\left( I_{x} - I_{y} \right) \times cos2\varphi - 2I_{\text{xy}} \times sin2\varphi = \left( 1163,83696 - 1730,79274 \right) \times cos2 \times 22,1237 - 2 \times 276,12658 \times sin2 \times 22,1237 = \mathbf{- 536,36 =} > \varphi = \varphi + \frac{\mathbf{\pi}}{\mathbf{2}}$
Mx = M × sinα = 18, 75 × sin85 = 18, 67865 kNm
My = −M × cosα = −18, 75 × cos85 = −1, 634170 kNm
$$\sigma = - \frac{M_{x} \times I_{\text{xy}} + M_{y} \times I_{x}}{I_{x} \times I_{y} - I_{\text{xy}}^{2}} \times x + \frac{M_{y} \times I_{\text{xy}} + M_{x} \times I_{y}}{I_{x} \times I_{y} - I_{\text{xy}}^{2}} \times y$$
$$\sigma = - \frac{1867,865 \times 276,12658 + \left( - 163,417 \right) \times 1163,83696}{1163,83696 \times 1730,79274 - {276,12658}^{2}} + \frac{\left( - 163,417 \right) \times 276,12658 + 1867,865 \times 1730,79274}{1163,83696 \times 1730,79274 - {276,12658}^{2}} = - \frac{325576,4299}{1938114,673}x + \frac{3187763,404}{1938114,673} \times y = \ \mathbf{- 0,167986154}\mathbf{x + 1,644775435}\mathbf{y}$$
$$\sigma = 0 = > y = \frac{0,167986154x}{1,644775435} = \mathbf{0,1021331851}\mathbf{x}$$
x1 = 6, 3 cm y1 = 10, 3
x2 = 6, 3 cm y2 = −8, 7 ∖ nx3 = −7, 7 cm y3 = −8, 7
x4 = −7, 7 cm y4 = 5, 3
$$\sigma_{1} = - 0,167986154 \times 6,3 + 1,644775435 \times 10,3\mathbf{= 15,8829\ \ }\frac{\mathbf{\text{kN}}}{\mathbf{\text{cm}}^{\mathbf{2}}}\mathbf{= 158,829\ MPa\ \ \ }\mathbf{\ }\mathbf{\sigma}_{\mathbf{\max}}$$
$$\sigma_{2} = - 0,167986154x \times 6,3 + 1,644775435 \times - 8,7 = \mathbf{- 15,3679}\frac{\mathbf{\text{\ \ kN}}}{\mathbf{\text{cm}}^{\mathbf{2}}}\mathbf{= - 153,679\ MPa}\mathbf{\ }\mathbf{\sigma}_{\mathbf{\min}}$$
$$\sigma_{3} = - 0,167986154x \times - 7,7 + 1,644775435 \times - 8,7 = \mathbf{- 13,0161\ \ }\frac{\mathbf{\text{kN}}}{\mathbf{\text{cm}}^{\mathbf{2}}}\mathbf{= - 130,161\ MP}\mathbf{a}$$
$$\sigma_{4} = - 0,167986154x \times - 7,7 + 1,644775435 \times 5,3\mathbf{= 10,0108}\frac{\mathbf{\text{\ \ \ kN}}}{\mathbf{\text{cm}}^{\mathbf{2}}}\mathbf{= 100,108\ MPa}$$
φ = 112, 12368527
β = 27, 12368527
Iη = 1843, 049107 cm4
Iξ = 1051, 580593 cm4
Mξ = −18, 75 × cosβ = −16, 68795774 kNm
Mη = −18, 75 × sinβ = −8, 548366308 kNm
η = x × cosφ + y × sinφ
η = −x × sinφ + y × cosφ
η1=6, 3 × cosφ + 10, 3 × sinφ = 7, 1690165 ≈ 7, 17 cm
ξ1 = −6, 3 × sinφ + 10, 3 × cosφ = −9, 715204686 ≈ −9, 72 cm
η2=6, 3 × cosφ + (−8,7) × sinφ = −10, 43207097 ≈ −10, 43 cm
ξ2 = −6, 3 × sinφ + (−8,7) × cosφ = −2, 559667033 ≈ −2, 56cm
η3= − 7, 7 × cosφ + (−8,7) × sinφ = −5, 15956954 ≈ −5, 16 cm
ξ3 = 7, 7 × sinφ + (−8,7) × cosφ = 10, 40955533 ≈ 10, 41 cm
η4= − 7, 7 × cosφ + 5, 3 × sinφ = 7, 809652823 ≈ 7, 81cm
ξ4 = 7, 7 × sinφ + 5, 3 × cosφ = 5, 137053901 ≈ 5, 14 cm
$$\sigma = \frac{M_{\eta}}{I_{\eta}} \times \xi - \frac{M_{\xi}}{I_{\xi}} \times \eta$$
$$\sigma = \frac{- 854,837}{1843,049107} \times \xi - \frac{- 1668,796}{1051,580593} \times \eta$$
σ = −0, 4638167246 × ξ − (−1, 58694066)×η
$$\mathbf{\sigma}_{\mathbf{1}}\mathbf{=} - 0,4638167246 \times - 9,715204686 - \ \left( - 1,58694066 \right) \times 7,1690165 = \mathbf{15,8829}\frac{\mathbf{\text{kN}}}{\mathbf{\text{cm}}^{\mathbf{2}}}\mathbf{= 158,829\ MPa}$$
$$\mathbf{\sigma}_{\mathbf{2}}\mathbf{=} - 0,4638167246 \times - 2,559667033 - \ \left( - 1,58694066 \right) \times - 10,43207097 = \mathbf{- 15,3679}\frac{\mathbf{\text{kN}}}{\mathbf{\text{cm}}^{\mathbf{2}}}\mathbf{= - 153,679\ MPa}$$
$$\mathbf{\sigma}_{\mathbf{3}}\mathbf{=} - 0,4638167246 \times 10,40955533 - \ \left( - 1,58694066 \right) \times - 5,15956954 = \mathbf{- 13,0161}\frac{\mathbf{\text{kN}}}{\mathbf{\text{cm}}^{\mathbf{2}}}\mathbf{= - 130,161\ MP}\mathbf{a}$$
$$\mathbf{\sigma}_{\mathbf{4}}\mathbf{=} - 0,4638167246 \times 5,137053901 - \ \left( - 1,58694066 \right) \times 7,809652823 = \mathbf{10,01}\mathbf{08}\frac{\mathbf{\text{kN}}}{\mathbf{\text{cm}}^{\mathbf{2}}}\mathbf{= 100,108\ MPa}$$