i | x | f(x) | ||||||
---|---|---|---|---|---|---|---|---|
1 | -3 | 6 | C1 | |||||
1 | C2 | |||||||
2 | -3 | 6 | $$- \frac{7}{4}$$ |
C3 | ||||
-2,5 | 3 | C4 | ||||||
3 | -1 | 1 | $$\frac{17}{4}$$ |
$$- \frac{37}{16}$$ |
C5 | |||
6 | $$- \frac{13}{8}$$ |
$$\frac{41}{144}$$ |
C | |||||
4 | -1 | 1 | 1 | $$- \frac{35}{24}$$ |
$$\frac{6031}{10584}$$ |
|||
6 | -6 | $$\frac{1723}{756}$$ |
||||||
5 | -1 | 1 | -5 | $$\frac{176}{27}$$ |
||||
1 | $$\frac{34}{9}$$ |
|||||||
6 | 0 | 2 | $$\frac{2}{3}$$ |
|||||
2 | ||||||||
7 | 0,5 | 3 | ||||||
POLITECHNIKA WARSZAWSKA
WYDZIAŁ INŻYNIERII ŚRODOWISKA
Metody numeryczne
Ćwiczenie 2
Wykonała
Weronika Hejko gr. IW
Rok 2015/2016
Cel ćwiczenia:
Na podstawie następujących danych wyznaczyć wielomian interpolacyjny oraz obliczyć jego wartość w pkt. x=n, oraz wykonać wykres w programie Grapher.
Dane:
i | x | f(x) |
---|---|---|
1 | -3 | n |
2 | -3 | n |
3 | -1 | 1 |
4 | -1 | 1 |
5 | -1 | 1 |
6 | 0 | 2 |
7 | 0,5 | 3 |
n wynosi 6.
f(x1,x2) = 1
f(x3,x4) = n=6
f(x4,x5) = n=6
f(x3,x4,x5)=1
Obliczenia
$$f\left( x_{2},x_{3} \right) = \frac{f\left( x_{3} \right) - f\left( x_{2} \right)}{x_{3} - x_{2}} = \frac{1 - 6}{- 1 - ( - 3)} = \frac{- 5}{2} = - 2,5$$
$$f\left( x_{5},x_{6} \right) = \frac{f\left( x_{6} \right) - f\left( x_{5} \right)}{x_{6} - x_{5}} = \frac{2 - 1}{0 - ( - 1)} = \frac{1}{1} = 1$$
$$f\left( x_{6},x_{7} \right) = \frac{f\left( x_{7} \right) - f\left( x_{6} \right)}{x_{7} - x_{6}} = \frac{3 - 2}{0,5 - 0} = \frac{1}{0,5} = 2$$
$$f\left( x_{1},x_{2},x_{3} \right) = \frac{f\left( x_{2},x_{3} \right) - f\left( x_{1},x_{2} \right)}{x_{3} - x_{1}} = \frac{- 2,5 - 1}{- 1 - ( - 3)} = - \frac{3,5}{2} = - 1,75$$
$$f\left( x_{2},x_{3},x_{4} \right) = \frac{f\left( x_{3},x_{4} \right) - f\left( x_{2},x_{3} \right)}{x_{4} - x_{2}} = \frac{6 - ( - 2,5)}{- 1 - ( - 3)} = \frac{8,5}{2} = 4,25$$
$$f\left( x_{4},x_{5},x_{6} \right) = \frac{f\left( x_{5},x_{6} \right) - f\left( x_{4},x_{5} \right)}{x_{6} - x_{4}} = \frac{1 - 6}{0 - ( - 1)} = \frac{- 5}{1} = - 5$$
$$f\left( x_{5},x_{6},x_{7} \right) = \frac{f\left( x_{6},x_{7} \right) - f\left( x_{5},x_{6} \right)}{x_{7} - x_{5}} = \frac{2 - 1}{0,5 - ( - 1)} = \frac{1}{1,5} = \frac{2}{3}$$
$$f\left( x_{1},x_{2},x_{3},x_{4} \right) = \frac{f\left( x_{2},x_{3},x_{4} \right) - f\left( x_{1},x_{2},x_{3} \right)}{x_{4} - x_{1}} = \frac{4,25 - ( - 1,75)}{- 1 - ( - 3)} = \frac{6}{2} = 3$$
$$f\left( x_{2},x_{3},x_{4},x_{5} \right) = \frac{f\left( x_{3},x_{4},x_{5} \right) - f\left( x_{2},x_{3},x_{4} \right)}{x_{5} - x_{2}} = \frac{1 - 4,25}{- 1 - ( - 3)} = \frac{- 3,25}{1,5} = - \frac{13}{8}$$
$$f\left( x_{3},x_{4},x_{5},x_{6} \right) = \frac{f\left( x_{4},x_{5},x_{6} \right) - f\left( x_{3},x_{4},x_{5} \right)}{x_{6} - x_{3}} = \frac{- 5 - 1}{0 - ( - 1)} = - \frac{6}{1} = - 6$$
$$f\left( x_{4},x_{5},x_{6},x_{7} \right) = \frac{f\left( x_{5},x_{6},x_{7} \right) - f\left( x_{4},x_{5},x_{6} \right)}{x_{7} - x_{4}} = \frac{\frac{2}{3} - ( - 5)}{0,5 - ( - 1)} = \frac{\frac{17}{3}}{1,5} = \frac{34}{9}$$
$$f\left( x_{1},x_{2},x_{3},x_{4},x_{5} \right) = \frac{f\left( x_{2},x_{3},x_{4},x_{5} \right) - f\left( x_{1},x_{2},x_{3},x_{4} \right)}{x_{5} - x_{1}} = \frac{- \frac{13}{8} - 3}{- 1 - ( - 3)} = - \frac{37}{16}$$
$$f\left( x_{2},x_{3},x_{4},x_{5},x_{6} \right) = \frac{f\left( x_{3},x_{4},x_{5},x_{6} \right) - f\left( x_{2},x_{3},x_{4},x_{5} \right)}{x_{6} - x_{2}} = \frac{- 6 - \frac{- 13}{8}}{0 - ( - 3)} = - \frac{35}{24}$$
$$f\left( x_{3},x_{4},x_{5},x_{6},x_{7} \right) = \frac{f\left( x_{4},x_{5},x_{6},x_{7} \right) - f\left( x_{3},x_{4},x_{5},x_{6} \right)}{x_{7} - x_{3}} = \frac{\frac{34}{9} - ( - 6)}{0,5 - ( - 1)} = \frac{176}{27}$$
$$f\left( x_{1},x_{2},x_{3},x_{4},x_{5},x_{6} \right) = \frac{f\left( x_{2},x_{3},x_{4},x_{5},x_{6} \right) - f\left( x_{1},x_{2},x_{3},x_{4},x_{5} \right)}{x_{6} - x_{1}} = = \frac{- \frac{35}{24} - \frac{37}{16}}{0 - ( - 3)} = \frac{41}{144}$$
$$f\left( x_{2},x_{3},x_{4},x_{5},x_{6},x_{7} \right) = \frac{f\left( x_{3},x_{4},x_{5},x_{6},x_{7} \right) - f\left( x_{2},x_{3},x_{4},x_{5},x_{6} \right)}{x_{7} - x_{2}} = = \frac{\frac{176}{27} - ( - \frac{35}{24})}{0,5 - ( - 3)} = \frac{1723}{756}$$
$$f\left( x_{1},x_{2},x_{3},x_{4},x_{5},x_{6},x_{7} \right) = \frac{f\left( x_{2},x_{3},x_{4},x_{5},x_{6},x_{7} \right) - f\left( x_{1},x_{2},x_{3},x_{4},x_{5},x_{6} \right)}{x_{7} - x_{1}} = = \frac{\frac{1723}{756} - \frac{41}{144}}{0,5 - ( - 3)} = \frac{6031}{10584}$$
Wielomian ma postać
$$w\left( x \right) = 6 + 1\left( x + 3 \right) - \frac{7}{4}\left( x + 3 \right)\left( x + 3 \right) + 3\left( x + 3 \right)\left( x + 3 \right)\left( x + 1 \right) - \frac{37}{16}\left( x + 3 \right)\left( x + 3 \right)\left( x + 1 \right)\left( x + 1 \right) + \frac{41}{144}\left( x + 3 \right)\left( x + 3 \right)\left( x + 1 \right)\left( x + 1 \right)\left( x + 1 \right) + \frac{6031}{10584}x\left( x + 3 \right)\left( x + 3 \right)\left( x + 1 \right)\left( x + 1 \right)\left( x + 1 \right)$$
Można również zapisać w postaci:
$$w\left( x \right) = 6 + 1\left( x + 3 \right) - \frac{7}{4}\left( x + 3 \right)^{2} + 3\left( x + 3 \right)^{2}(x + 1) - \frac{37}{16}\left( x + 3 \right)^{2}\left( x + 1 \right)^{2} + \frac{41}{144}\left( x + 3 \right)^{2}\left( x + 1 \right)^{3} + \frac{6031}{10584}x\left( x + 3 \right)^{2}\left( x + 1 \right)^{3}$$
Jak również
w(x) = 0, 57x6 + 5, 41x5 + 17, 34x4 + 19, 25x3 + 0, 28x2 − 5, 48x + 2