Ściaga wal

ZMĘCZENIÓWKA

Wykres Wöhlera

Zk- obszar wytrzymałości zmęczeniowej przy małej ilości cykli

Zo- obszar wytrzymałości zm. przy ograniczonej ilości cykli

Zz- obszar wytrzymałości zm. przy nieograniczonej ilości cykli

Sposoby obliczenia współczynnika w poszczególnych obszarach:

1.Nc<104-obszar obciążeń statycznych δ=Re/σmax

2.104<Nc<107 – obszar wytrzymałości ograniczonej δz=Zomax (Zo-wyznaczone doświadczalnie lub obliczone Zo=Zg(107/Nc)^ς)

3.Nc>107 – obszar wytrzymałości nieograniczonej δ=Zgmax

Liczba całkowita cykli

Nc=n(1/min)*60*h(ilość godzin)*z(liczba zmian)*D(dni)*l(lat)

σm=(σmaxmin)/2- naprężenie średnie

σa=(σmaxmin)/2- amplituda naprężeń

R=σminmax –współczynnik asymetrii cyklu

Kappa=σma- współczynnik stałości obciążenia

Wykres Haigha

Wykres Smitha

Aby narysować wykres potrzeba Re, Zo,Zj.

Jeżeli przy wzroście obciążenia stosunek amplitudy σa do naprężenia średniego σm będzie stały to wartość wytrzymałości zmęczeniowej określa punkt k1

σam=const, x2=z1max=E*k1/CD

Jeśli przy wzroście obciążeń naprężenie średnie cyklu pozostaje stałe to wytrzymałość zmęczeniowa odpowiadająca punktowi D określona jest punktem k2, współczynnik bezpieczeństwa

σm=const x2=Z2/σz=Ck2/CD

D-punkt pracy.

CZYNNIKI WPŁYWAIĄCE NA WYTRZ. ZMĘCZENIOWĄ

Pod pojęciem KARBU należy rozumieć wszelkie nieciągłości poprzecznych przekrojów przedmiotu lub zmiany krzywizn powierzchni ograniczających przedmiot (rowki, otwory, gwinty)

Rozkład naprężeń w obszarze karbu zależy od geometrii karbu, związanej z wymiarami przedmiotu. Charakterystykę zmęczeniową karbu ujmujemy w tzw. współczynniku kształtu αk . Wartość współczynnika αk zależy od: stosunku promienia krzywizny dna karbu ρ do promienia lub połowy szerokości przekroju r w elementach płaskich w płaszczyźnie karbu, oraz od stosunku promienia połowy szerokości elementu R w miejscu nie osłabionym karbem do promienia r.

βk- współczynnik działania karbu- stosunek wytrzymałości próbek gładkich bez karbu do wytrzymałości próbek gładkich z karbem. βk- zależy od współczynnika kształtu i współczynnika wrażliwości materiału na działanie karbu.

βk=1+ηkk+1) gdzie ηk- współczynnik wrażliwości materiału na działanie karbu (jest zależny od Rm, ρo) =1 dla materiałów doskonale sprężystych „szkło” =0 dla materiałów niewrażliwych na działanie karbu „żeliwo szare”.

Współczynnik βp charakteryzuje zmianę wytrzymałości elementów po różnej obróbce skrawaniem w porównaniu z próbką polerowaną. Do obliczeń elementów z karbem o znanym βk posługujemy się zależnością β=βkp-1 (w przypadku karbów prostych βp pomijamy, dla żeliwa po usunięciu naskórku odlewniczego przyjmujemy βp=1)

βpz- dla powierzchni ulepszanych β=βkpz

Współczynnik wielkości elementu ε=zd/z, zd- wytrzymałość zmęczeniowa próbki o średnicy d, z- wytrzymałość zmęczeniowa próbki o średnicy od 7 do 10mm (γ=1/ε).

δ-rzeczywisty współczynnik bezpieczeństwa

δ<1 nie występuje

δ=1.3-1.4 –ścisłe obliczenia na podstawie dokładnych danych doświadczalnych

δ=1.4-1.7 - dla zwykłej dokładności obliczeń, bez doświadczalnego sprawdzenia obliczeń

δ=1.7- 2 – dla zmniejszonej dokładności obliczeń, przy możliwości określenia naprężeń i obciążeń

δ=2-3 – przy orientacyjnym określaniu obciążeń i naprężeń dla niepewnych lub specjalnie ciężkich warunków pracy (odlewy)

OBLICZENIA ZMĘCZENIOWE PRZY OBCIĄŻENIACH ZŁOŻONYCH

Przy jednoczesnym występowaniu naprężeń różnego rodzaju naprężenia te składamy przy zastosowaniu odpowiedniej hipotezy wytężeniowej. Naprężenia zastępcze dla obciążeń niesymetrycznych (wahadłowych) obliczamy tak samo jak dla obciążeń stałych. Przy przewadze naprężeń normalnych σz=(σ2+(kσ*τ/kτ)2)^(1/2). Przy przewadze naprężeń stycznych σz=((kτ*σ/kσ)22)^(1/2). Rozwiązując te zależności można dowieść, że rzeczywisty współczynnik bezpieczeństwa jest równy δz=1/(1/δσ2+1/δτ2)1/2

δστ-składowe rzeczywistego współczynnika bezpieczeństwa obliczane tak jakby działało tylko zmienne naprężenie normalne lub styczne.

ZALECENIA KONSTRUKCYJNE mające na celu zwiększenie wytrzymałości zmęczeniowej elementów maszyn

-należy dążyć do możliwie łagodnego kształtowania przejść od jednego do drugiego przekroju stosując stożki przejściowe zamiast odsadzeń.

-jeżeli łukowe odsadzenie jest konieczne stosujemy możliwie duży promień przejścia

-działanie karbu można osłabić stosując karby odciążające

-należy dążyć ]do wyrównania współczynników bezpieczeństwa w różnych przekrojach co prowadzi do uzyskania konstrukcji o minimalnej masie

-gładkość powierzchni jest czynnikiem wpływającym w znaczącym stopniu na wytrzymałość zmęczeniową

-metalowe powłoki ochronne o małej wytrzymałości mogą być zaczątkiem pęknięcia zmęczeniowego

-zwiększenie wytrzymałości zmęczeniowej można uzyskać przez wytworzenie na powierzchni elementów napięć wstępnych

WAŁY I OSIE

Jeśli jest przenoszony moment skręcający to taką część nazywamy wałem, jeśli nie to osią. Części wałów osi na których są osadzone współpracujące z nimi elementy nazywamy czopami.

ETAPY PROJEKTOWANIA WAŁÓW:

1.Projektowanie wstępne polegające na ukształtowaniu wału na podstawie uproszczonych obliczeń wytrzymałościowych i zadanych dyspozycji wymiarowych

2.Obliczenia sprawdzające- sztywności(kąta ugięcia i strzałki), obliczenia dynamiczne (prędkości krytycznej ii drgania rezonansowe), obliczenia zmęczeniowe (rzeczywisty współczynnik bezpieczeństwa)

3.Ostateczne kształtowanie wału.

MATERIAŁY NA WAŁY

1.St3-St5 wtedy gdy o kształcie wału decyduje sztywność

2.35-45 gdy wał przenosi duże obciążenie w szczególności 45 gdy wskazanej jest powierzchniowe utwardzenie czopów

3.dla wałów uzębionych materiał taki jak dla kół zębatych (stale CrNi do ulepszania cieplnego, nawęglania i azotowania)

KSZTAŁTOWANIE WAŁU

Kształtowanie powierzchni swobodnych przeprowadzamy po ukształtowaniu powierzchni roboczych, czyli czopów-należy uwzględnić aby d1/d2 <=1,2 , natomiast czopy należy kształtować według zaleceń normy.

Gładkość powierzchni

1.czopów końcowych :Rz=2,5-0,32µm

2.powieszchni swobodnych : wały wolno obrotowe i średnio bieżne (Rz=10-5µm), wysokoobrotowe ( Rz=2,5µm)

Tolerancje – powierzchnie swobodne wykonujemy w tolerancji warsztatowej IT14 (h14) przy dużych obrotach IT12 do IT10

Uwzględnianie wpustu:

1.Jeżeli obciążenie jest w przybliżeniu statyczne wystarczy, by moment bezwładności przekroju z rowkiem był nie mniejszy od momentu bezwładności zarysu teoretycznego.

2.Gdy wał pracuje w zmiennym cyklu obciążenia przy niewielkim udziale momentu skręcającego moment bezwładności koła wpisanego winien być nie mniejszy niż teoretyczny

3.Gdy występuje duży udział momentu skręcającego moment bezwładności koła współśrodkowego z przekrojem poprzecznym wału, stycznego zewnętrznie do dna rowka pod wpust winien być nie mniejszy od teoretycznej

Sprawdzenia – ugięcie dopuszczalne (Fdop=2-3*10-4 rozstawu łożysk), dopuszczalny kąt skręcenia (ϕdop=0,002-0,01rad/m)


Wyszukiwarka

Podobne podstrony:
1 sciaga ppt
metro sciaga id 296943 Nieznany
ŚCIĄGA HYDROLOGIA
D Studiowe PKM Wał Wał złożeniowy Model POPRAWIONY
AM2(sciaga) kolos1 id 58845 Nieznany
Narodziny nowożytnego świata ściąga
finanse sciaga
Jak ściągać na maturze
Ściaga Jackowski
Aparatura sciaga mini
OKB SCIAGA id 334551 Nieznany
Przedstaw dylematy moralne władcy i władzy w literaturze wybranych epok Sciaga pl
fizyczna sciąga(1)
Finanse mala sciaga
Podział węży tłocznych ze względu na średnicę ściąga
OLIMPIADA BHP ŚCIĄGAWKA
Opracowanie Sciaga MC OMEN

więcej podobnych podstron