Fizyka 96a, EAiE


EAiE

Mateusz Barański

Bartosz Boczar

Rok I

Grupa I

Zespół 1

Pracownia fizyczna

Temat:

Dozymetria promieniowania

Ćwiczenie nr:

96

Data wyk.

04.06.97

Data oddania

Zwrot do pop.

Data oddania

Data zal.

Ocena

1.Cel ćwiczenia.

Zapoznanie z podstawami dozymetrii promieniowania jonizującego oraz prostym radiometrem i sposobem jego wykorzystania do pomiaru mocy dawki.

2.Wprowadzenie.

Znamy następujące rodzaje promieniowania jonizującego emitowanego przez jądra:

cząstki a,b, promieniowanie g, neutrony- a także przez atomy: promieniowanie rentgenowskie.

Emisja promieniowania jądrowego zachodzi podczas przemiany jądra atomowego. Prawo rozpadu promieniotwórczego określa zależność od czasu liczby jąder, które nie uległy dotąd przemianie promieniotwórczej:

N(t)=N0e-lt

gdzie:

N0 - liczba jąder izotopu promieniotwórczego w chwili t=0

N(t) - liczba jąder izotopu, które po czasie t nie uległy jeszcze rozpadowi

l - stała rozpadu

Zachodzi związek:

gdzie T1/2 - okres połowicznego zaniku (rozpadu), czyli czas po upływie którego liczba jąder izotopu promieniotwórczego maleje do polowy pierwotnej ich liczby N0.

Aktywność izotopu promieniotwórczego jest to liczba rozpadów jąder w jednostce czasu. jednostką aktywności jest 1 Bq (Becquerei): 1 Bq =1 rozpad na 1 sek.

Z punktu widzenia oddziaływania biologicznego różne rodzaje promieniowania jonizującego różnią się między sobą gęstością wywoływanej jonizacji, zasięgiem w poszczególnych tkankach oraz przestrzennym rozkładem produkowanych jonów. W celu ilościowego rozważania biologicznych skutków oddziaływania promieniowania jonizującego na organizm ludzki a także umożliwienia ich porównywania wprowadzono następujące wielkości charakterystyczne:

- dawka

- równoważnik dawki

- współczynnik jakości Q

Dawka pochłonięta D0 jest to energia zaabsorbowana przez jednostkę masy (1 kg) napromieniowanej substancji. Jednostką dawki jest 1 gray, który odpowiada energii 1 J zaabsorbowanej przez masę 1 kg: 1 [Gy]=1[J/kg].

Wpływ promieniowania na organizmy żywe (w tym człowieka) zależy od rodzaju promieniowania, w którego strumieniu znajduje się badany organizm (promieniowanie rentgenowskie, promieniowanie g czy elektrony są mniej groźne przy danej dawce niż neutrony czy cząstki a ) i jest określony przez tzw. współczynnik jakości Q.

Parametrem, który uwzględnia rodzaj promieniowania absorbowanego w organizmie jest równoważnik dawki H, określony równoniem:H=D0*Q.Mierzony on jest w sievertach lub remach (1Sv=100rem).Sievert jest to dawka absorbowana dowolnego rodzaju promieniowania jonizującego, która wywołuje identyczny skutek biologiczny jak dawka absorbowana 1 Gy promieniowania X lub g .

Dozymetry

Specyfika oddziaływania promieniowania jądrowego oraz promieniowania rentgenowskiego polega na tym, że nawet duże dawki nie sś odczuwane przez receptory ludzkie w trakcie oddziaływania. Przeto aby kontrolować dawki, na które narażony jest człowiek, należy stosować odpowiednie detaktory, które nazywamy dozymetrami.

Dozymert powinien:

- rejestrować sumaryczny strumień badanego promieniowania

- mierzyć dawkę (widzialaną w dozymetrze energię albo prąd jonizacyjny)

- symulować żywą tkankę pod względem pochłaniania promieniowania

Kątrolę narażenia zewnętrznego można przeprowadzać przez pomiar mocy równoważnika dawki w otoczeniu źródeł promieniowania, a także przez pomiar dawek indywidualnych pochłąniętych przez osoby narażone zawodowo na promieniowanie (kontrola dawek indywidualnycj obejmuje jedynie osoby zawodowo narażone na promieniawanie). Pomiary mocy równoważnika dawki niezbędne są wszędzie tam, gdzie są stasowane źródła promieniowania przenikliwego nie pochłanianego przez osłony, zwłaszcza promieniowania elektromagnetycznego (X,g), czy neutronowego. Moc równoważnika dawki promieniowania X czy g określa się przez pomiar mocy dawki ekspozycyjnej. Służą do tego radiometry do pomiaru mocy dawki.

Najczęście przy pomocy dozynetru można mierzyć moc dawki (dawka promieniowania w jednostce czasu). Spotykane radiometry do pomiaru równoważnika mocy dawki są najczęściej wyskalowane w następujących jednostkach: mR/h lub mSv/h.

Moc dawki promieniowania g(X) w zależności od aktywności żródła można określić za pomocąponiższego wzoru przy założeniu, że źródło promieniowania jest punktowe (można to założyć, jeżeli odległość od żródła jest co najmniej 10 razy większa od największego wymiaru liniowego źródła):

(3)

gdzie:

D - dawka (D/t wyrażone w mSv/h)

a - aktywność żródła

r - odległość od punktowego żródła promieniowania w metrach

t - czas w godzinach

Ig - stała charakterystyczna dla danego izotopu promieniotwórczego

Najprostszymi przyrządami do pomiaru mocy dawki są radiometry. W niniejszym ćwiczeniu będzie wykorzystany radiometr kieszonkowy przeznaczony do kontroli dawek promieniowania g oraz b.

3. Opracowanie wyników.

Wykres zależności równoważnika mocy dawki od odległości źródło-dozymetr.


r

Ba 133

0,05

185

0,055

157

0,06

136

0,065

134

0,07

114

0,075

94

0,08

93

0,085

90

0,09

76

0,095

80

0,1

61

0,11

55

0,12

55

0,13

42

0,14

38

0,15

49

0,16

45

0,17

37

0,18

27

0,19

26

0,2

33

r

Mn 54

0,05

52

0,055

45

0,06

43

0,065

40

0,07

23

0,075

32

0,08

31

0,085

38

0,09

26

0,095

24

0,1

25

0,11

22

0,12

19

0,13

27

0,14

21

0,15

20

0,16

18

0,17

19

0,18

17

0,19

14

0,2

16


Wykres zależności równoważnika mocy dawki od kwadratu odległości źródło-dozymetr.


r2

Ba 133

0

185

0,003025

157

0,0036

136

0,004225

134

0,0049

114

0,005625

94

0,0064

93

0,007225

90

0,0081

76

0,009025

80

0,01

61

0,0121

55

0,0144

55

0,0169

42

0,0196

38

0,0225

49

0,0256

45

0,0289

37

0,0324

27

0,0361

26

0,04

33

    1. r*r

      Mn 54

      0

      52

      0,003025

      45

      0,0036

      43

      0,004225

      40

      0,0049

      23

      0,005625

      32

      0,0064

      31

      0,007225

      38

      0,0081

      26

      0,009025

      24

      0,01

      25

      0,0121

      22

      0,0144

      19

      0,0169

      27

      0,0196

      21

      0,0225

      20

      0,0256

      18

      0,0289

      19

      0,0324

      17

      0,0361

      14

      0,04

      16




      porównanie wykresów ze wzorem (3).

      W celu sprawdzenia wykresów zależności które otrzymaliśmy ze wzorem (3) należło narysować wykresy zależności równoważnika mocy od odwrotności r2. D/t(1/r2)

      Ze względu na nieznajomość stałej charakterystycznej Ig, przyjęlismy że jest ona równa 1. Tak więc dalsze rozumowanie obarczone jest błędem współczynnika proporcjonalności.

      Ponieważ wzór (3) możemy zapisać w postaci: (4) możemy przyjąć, że funkcja (4) jest funkcją liniową gdzie x=1/r2. Tak więc ostatecznie (D/t)(x)=A*x.

      Stąd można wyznaczyć aktywność danego pierwiastka z kąta nachylenia prostej dobranej do danych doświadczalnych. Tangens kąta nachylenia prostych odpowiednio dla Baru i Manganu obliczmy przez uśrednienie cząstkowych kątów nachylenia w kolejnych przedziałach.


      1/r2

      Ba 133

      Ai

      400,00

      185,00

      0,40

      330,58

      157,00

      0,40

      277,78

      136,00

      0,05

      236,69

      134,00

      0,61

      204,08

      114,00

      0,76

      177,78

      94,00

      0,05

      156,25

      93,00

      0,17

      138,41

      90,00

      0,94

      123,46

      76,00

      -0,32

      110,80

      80,00

      1,76

      100,00

      61,00

      0,35

      82,64

      55,00

      0,00

      69,44

      55,00

      1,27

      59,17

      42,00

      0,49

      51,02

      38,00

      -1,67

      44,44

      49,00

      0,74

      39,06

      45,00

      1,79

      34,60

      37,00

      2,68

      30,86

      27,00

      0,32

      27,70

      26,00

      -2,59

      25,00

      33,00

      1,32

      1/r2

      Mn 54

      Ai

      400,00

      52

      0,10

      330,58

      45

      0,04

      277,78

      43

      0,07

      236,69

      40

      0,52

      204,08

      23

      -0,34

      177,78

      32

      0,05

      156,25

      31

      -0,39

      138,41

      38

      0,80

      123,46

      26

      0,16

      110,80

      24

      -0,09

      100,00

      25

      0,17

      82,64

      22

      0,23

      69,44

      19

      -0,78

      59,17

      27

      0,74

      51,02

      21

      0,15

      44,44

      20

      0,37

      39,06

      18

      -0,22

      34,60

      19

      0,54

      30,86

      17

      0,95

      27,70

      14

      -0,74

      25,00

      16

      0,64


      Średni tangens kąta nachylenia dla Baru: 0,45

      Średni tangens kąta nachylenia dla Manganu: 0,14

      Czyli szacunkowa aktywność Baru: 0,45 *10-3*s-1 a Manganu 0,14*10-3*s-1.



      Wyszukiwarka

      Podobne podstrony:
      Fizyka 52a, EAiE
      Fizyka 52a, EAiE
      Fizyka 22a, EAiE_
      Fizyka 13, EAiE
      Fizyka 25f 2, EAiE
      FIZYKAA
      Fizyka 0 wyklad organizacyjny Informatyka Wrzesien 30 2012
      Badania fizykalne kostno stawowo mięśniowy
      Badanie fizykalne kości, mięśni i stawów
      Sieci komputerowe fizyka informatyka
      Badanie fizykalne1
      Fizyka j c4 85drowa
      Badanie fizykalne 3
      Wyk ad Fizyka 2
      BADANIE FIZYKALNE SKÓRY ppt

      więcej podobnych podstron